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Abstract

Motivation: The phylogenetic signal of structural variation informs a more comprehensive understanding of evolution.
As (near-)complete genome assembly becomes more commonplace, the next methodological challenge for inferring
genome rearrangement trees is the identification of syntenic blocks of orthologous sequences. In this article, we studied
94 reference quality genomes of primarily Mycobacterium tuberculosis (Mtb) isolates as a benchmark to evaluate these
methods. The clonal nature of Mtb evolution, the manageable genome sizes, along with substantial levels of structural
variation make this an ideal benchmarking dataset.

Results: We tested several methods for detecting homology and obtaining syntenic blocks and two methods for
inferring phylogenies from them, then compared the resulting trees to the standard method’s tree, inferred from nu-
cleotide substitutions. We found that, not only the choice of methods, but also their parameters can impact results,
and that the tree inference method had less impact than the block determination method. Interestingly, a rearrange-
ment tree based on blocks from the Cactus whole-genome aligner was fully compatible with the highly supported
branches of the substitution-based tree, enabling the combination of the two into a high-resolution supertree.
Overall, our results indicate that accurate trees can be inferred using genome rearrangements, but the choice of the
methods for inferring homology requires care.

Availability and implementation: Analysis scripts and code written for this study are available at https://gitlab.com/
LPCDRP/rearrangement-homology.pub and https://gitlab.com/LPCDRP/syntement.

Contact: faramarz@sdsu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Methods for phylogenetic inference based on genomic rearrangements
have been developed and refined over the past several decades (Moret
et al., 2013), but the majority of biologists continue to rely primarily
on phylogenetic inference methods based on nucleotide substitutions.
As a major evolutionary mechanism, genomic structural variation can-
not be neglected, yet the application of gene-order methods has been
limited to specific cases of well-assembled eukaryotic genomes (e.g.
Feng et al., 2017; Pevzner and Tesler, 2003), as well as to small plastid
genomes (Moret et al., 2002). For example, the tool CREx is currently
the standard software for analyzing plastid gene order evolution (Bernt

et al., 2007). The widespread application of these methods to larger
genomes, however, has faced many challenges. Before the recent advent
of accurate long-read sequencing technology, the proper de novo as-
sembly of full genomes for use as input to a gene order analysis had
proven difficult; indeed, the mechanisms of rearrangement are often in-
extricably linked to duplicated regions that are well known for confus-
ing short-read reference-based sequencing methods (Liu et al., 2012;
Ranzet al., 2007).

Assembly of reference-quality bacterial genomes is now routine
(Koren and Phillippy, 2015; Phillippy, 2017) and full assembly of
the much larger and complex eukaryotic genomes is now possible
(Liao et al., 2021; Miga et al., 2019; Nurk et al., 2021; Rhie et al.,
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2021). The improved assemblies have the potential to enable a wider
use of rearrangements as a phylogenetic signal. However, methodo-
logical challenges associated with the use of such signal remain and
call for better methods and better empirical understanding of the
strengths and weaknesses of existing methods.

Most of the research in rearrangement phylogenetics is focused
on the difficult problem of modeling complex scenarios that can
arise from genomic structural variations mediated by many different
mechanisms (Fertin, 2009). Methods that infer phylogenies based
on rearrangements are of three varieties (Moret et al., 2013).

1. Model-free methods, which treat rearrangements as character evo-

lution. For example, some methods encode adjacencies as simple

characters (e.g. binary or copy-number) and use standard character

evolution models together with maximum likelihood inference (e.g.

Hu et al., 2014; Lin et al., 2012a; Wang et al., 2002).

2. Another family of methods uses distance-based tree reconstruc-

tion by finding the minimum number of events needed to trans-

form one genome to another (e.g. Bohnenkämper et al., 2020;

Feijao and Meidanis, 2011; Moret et al., 2002; Wang et al.,

2006), a problem that remains challenging if there are duplicated

genes (Fertin, 2009).

3. Finally, models of pairwise comparison can be generalized to the

computation of rearrangements on a fixed phylogeny. This small

phylogeny problem can be solved repeatedly, possibly combined

with branch-and-bound, while searching for a tree topology. Instead

of solving the small phylogeny problem directly, these approaches

are usually based on the median of three genomes (Moret et al.,

2013; Pe’er and Shamir, 1998; Sankoff and Blanchette, 1998), some-

times coupled with other heuristics (Bourque and Pevzner, 2002).

While the last approach is the most thorough, and a version of
the median problem can now often be solved for duplication-free
scenarios of reasonable size (Xu, 2010), the small phylogeny prob-
lem has proven very challenging in the presence of segmental dupli-
cation, and questions of scalability remain (Doerr and Chauve,
2021). Thus, unless compromises are made that resolve duplicated
segments beforehand, the first two approaches are the only types of
method that are practical for datasets of even moderate size. Several
algorithms exist from both categories, and the relative accuracy of
these methods has been the subject of study (e.g. Biller et al., 2016;
Lin et al., 2011). Regardless of which one is used, a more prosaic
question is that of preparing the input to these methods.

Although there are exceptions (Doerr et al., 2018), the input to
rearrangement phylogeny reconstruction consists of a set of homolo-
gous blocks of nucleotide sequence, their homology assignments
within and across genomes, and their relative positions and direc-
tions along the genomes. Clearly, there are many ways to define
such blocks (Ghiurcuta and Moret, 2014), and detection of hom-
ology is far from trivial. The most obvious approach to homology
detection is to annotate genes using gene models. This approach has
to contend with difficulties of gene annotation (Salzberg, 2019), and
outside prokaryotes, the more damaging issue is that only a small
portion of the genome can be used. An alternative is to pairwise
align genomes with respect to each other or a reference genome and
use the alignments to define blocks of homologous sequence. Any
definition of a block should allow some levels of heterogeneity with-
in the block, often necessitating thresholds for defining how much
variability is tolerated. Pairwise alignment has a fundamental limita-
tion: there is no guarantee that the results are consistent (e.g. are
transitive). Thus, a possibly better approach is to rely on multiple
whole genome alignment (WGA). There has been much progress in
recent years on scalable and accurate methods for multiple WGA
(Armstrong et al., 2019; Earl et al., 2014) and new ways to compute
syntenic blocks (Kolmogorov et al., 2018).

Defining the block-level input to rearrangement phylogeny algo-
rithms remains a challenging problem (Lucas and Roest Crollius,
2017), as demonstrated by a thorough literature search which reveals
roughly thirty tools developed for that purpose since 2004. Ghiurcuta

and Moret (2014) attempted to set basic standards for defining synten-
ic blocks but also acknowledged that the variety of criteria for selecting
them corresponds to the variety of applications for which they are
used, and so what is better for one application does not necessarily suit
another. Despite these attempts, little is known about the relative ac-
curacy of available options and the extent of their impact on the result-
ing phylogeny. One challenge when studying block inference methods
is the lack of a sufficiently realistic genome simulator; to our know-
ledge existing simulators either do not allow for ancestral genomes to
be specified as part of the input (Dav�ın et al., 2020; Hindré et al.,
2012) or are no longer maintained (i.e. Evolver). In the absence of such
simulations, we have to rely on empirical data, which poses its own
challenges. In particular, studying the impact of the block definition
would be further complicated by large genome sizes, or very complex
evolutionary histories including horizontal transfers, gene duplication
events, or polyploidy. Thus, a relatively simple model organism is
preferable.

As a way to minimize the issue of evolutionary model complex-
ity, we consider Mycobacterium tuberculosis (Mtb) as a subject.
Mycobacteria are unique in that they do not undergo horizontal
gene transfer (HGT) in the traditional sense. While some mycobacte-
ria have been observed to recombine via distributive conjugal trans-
fer (DCT) (Gray and Derbyshire, 2018), the human-adapted
pathogen Mtb in particular appears to have recently diverged yet
contains appreciable diversity (Coscolla and Gagneux, 2014;
Galagan, 2014). It does not show evidence of either DCT or trad-
itional HGT and appears to have undergone strictly vertical evolu-
tion (Brosch et al., 2002; Gagneux, 2018). Nevertheless, structural
variations do happen for these strains; even within the species, gene
duplication and gene conversion (Uplekar et al., 2011), as well as
inversions (Merrikh and Merrikh, 2018), have been observed.
According to the classification of Koren et al. (2013), Mtb has a
class II genome, characterized by many mid-scale repeats of �1.5 kb
insertion sequences. Focusing on Mtb simplifies the evolutionary
models we must consider, and leaves us with the final difficulty of
rearrangement phylogeny: defining suitable synteny blocks. Despite
its apparent clonal evolution, Mtb has diversified into several line-
ages (Fig. 1) distinguished by variations in repetitive regions
(Kanduma et al., 2003), with the three ‘modern’ lineages further sep-
arated from four ‘ancestral’ lineages by the deletion of the TbD1
locus (Brosch et al., 2002; Gordon et al., 1999; Mostowy et al.,
2002). Its evolution is driven in part by antibiotic pressure, though
some lineages are more virulent and more successful than others
(Merker et al., 2015), such as the globally prevalent Euro-American
(L4) and East-Asian (L2) lineages (Coscolla and Gagneux, 2014).

In this article, we use a set of complete genomes for 92 largely
drug-resistant Mtb clinical isolates and two reference strains, evaluating
different methods of syntenic block determination with respect to how
the block-order phylogeny built from them compares to standard trees
inferred from substitutions. For each method, we use both an
adjacency-based algorithm, maximum likelihood on whole-genome
data (MLWD) (Lin et al., 2012a), and a recent distance-based method
called DING (Bohnenkämper et al., 2020), to infer rearrangement-
based phylogenies. We use two distinct approaches as input to these
methods: (i) synteny blocks determined using modern WGA methods
[Cactus (Armstrong et al., 2020) with different parameters and
SibeliaZ-LCB (Minkin and Medvedev, 2020)], and (ii) blocks deter-
mined by our in-house gene annotation pipeline. Phylogenies are built
on these input blocks before and after applying a block aggregator
called maf2synteny (Kolmogorov et al., 2018). We compare the result-
ing trees to each other, and to those inferred using substitutions alone,
in order to quantify their levels of discordance, especially with respect
to branches with high statistical support.

2 Materials and methods

2.1 Genome assemblies
Genome assemblies made available by Modlin et al. (2020) are used.
These include 85 isolates resequenced from the set collected by the
Global Consortium for Drug-resistant Tuberculosis Diagnostics
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(GCDD) (Hillery et al., 2014) (NCBI Bioproject PRJNA555636), 7
isolates from Berney et al. (2015) (NCBI Bioproject PRJEB8783),
reference strains H37Rv (NCBI Bioproject PRJNA555636), H37Ra
(NCBI accession NZ_CP016972.1) and Mycobacterium canettii
(NCBI accession NC_019951.1). All sequencing data used for the
assemblies, except the M.canettii assembly, are Pacific Biosciences
SMRT sequencing reads. The assembly protocol of Modlin et al.
(2020) was based on HGAP2 (Chin et al., 2013) or, if that failed to
produce a single contig, Canu (Koren et al., 2017). The contigs were
circularized using minimus2 (http://amos.sourceforge.net/) or circla-
tor (Hunt et al., 2015), followed by iterative assembly consensus
polishing with Quiver (Chin et al., 2013). To validate our assem-
blies, we used structural variant detection method PBHoney
(English et al., 2014), which detects irregularities such as soft-
clippings in the alignment of reads to a reference. We applied
PBHoney to the reads’ alignment to the assembly that was generated
from them, so any structural variant detected by PBHoney would in
fact be a candidate misassembly. None of the genomes used here
had any misassemblies detected.

Lineages were identified using TB-profiler (Phelan et al., 2019)
version 4.1.1 with database version 2022-01-25.

2.2 Block assignment
The synteny block assignment strategies we used here fall into the
two categories of annotation-based and alignment-based methods
and so differ in the type of markers they use for defining their
blocks.

2.2.1 Annotation-based methods

Annotation and homology assignment: All genomes were simultan-
eously annotated using the Hybran pipeline (Elghraoui et al., 2022).
Hybran uses a combination of reference-based annotation transfer

implemented by RATT (Otto et al., 2011) and Prokka, an ab initio
method (Seemann, 2014). Annotations from Prokka are only
retained in the places of gaps left where no suitable reference anno-
tation could be transferred. The reference annotation used was that
of M.tuberculosis H37Rv (NCBI accession NC_000962.3).

In the last stage of the annotation pipeline, orthologous genes
across the genomes are identified using CD-HIT (Fu et al., 2012; Li
and Godzik, 2006) and MCL (Enright et al., 2002) clustering. Genes
that cluster together are assigned the same name if they have at least
95% protein sequence identity and 95% alignment coverage with
the representative sequence of the cluster (this threshold is applied
to both query/subject and subject/query coverage). These arbitrary
thresholds clearly have the potential to impact results. Thus, we also
ran the annotation pipeline with relaxed thresholds for the orthol-
ogy mapping: 75% minimum identity and 66% minimum alignment
coverage. These results are subsequently referred to as ‘annotation-
relaxed’. Note that due to the low divergence of sequences in our
dataset, the use of CD-HIT is justified as it is designed for finding
similarity at 60% or higher (Chen et al., 2016).

2.2.2 Alignment-based methods

Cactus (Armstrong et al., 2020) is a whole-genome aligner based on
its namesake cactus graphs, which organize alignments hierarchical-
ly to reveal their substructures. The Cactus aligner is run with de-
fault parameters. Cactus requires soft-masking of repetitive
sequences prior to alignment, so we applied nucmer (Kurtz et al.,
2004) to identify them and bedtools (Quinlan and Hall, 2010) to
apply the masking. Cactus requires a guide tree as input, and the ref-
erence tree based on single nucleotide polymorphisms (SNP tree,
described in Section 2.4) was provided by default. We tested the ro-
bustness to this choice by changing the guide tree. We constructed
an alternative guide tree using FastME (Lefort et al., 2015) on a

Fig. 1. Phylogeny of Mycobacterium tuberculosis (Mtb) clinical isolates used in this study. This maximum-likelihood phylogenetic tree inferred using the GTRCAT

substitutions model from concatenated variable sites with respect to the reference strain H37Rv (NC_000962.3) shows the separation of our Mtb isolate set into 7 of the

defined lineages and the level of diversity between them. This includes 3 Mycobacterium africanum isolates (lineages 5 and 6). Mycobacterium canettii is used as the outgroup
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distance matrix computed using Mash (Ondov et al., 2016) using
the maximum k-mer size (-k) of 32 due to the clonality of the data-
set, and a sketch size (-s) of 1 billion, and phylogenetically corrected
using the Jukes and Cantor (1969) (JC) model. We also used as a
guide tree an adjacency-based tree (Section 2.4) inferred using syn-
teny blocks computed from an alternative method, SibeliaZ-LCB,
described in the next section. The guide tree used is denoted in
parentheses if it is not the SNP tree. For example, Cactus(Mash)
refers to the Cactus alignment based on the Mash guide tree.

SibeliaZ (Minkin and Medvedev, 2020) is a whole-genome align-
ment method for closely-related genomes based on de Bruijn graph
analysis. It was run with graph order (k-mer length) set to 15, the
developer recommended value for bacterial datasets, and two differ-
ent vertex frequency thresholds. To reduce the de Bruijn graph com-
plexity, SibeliaZ removes k-mers that appear more frequently than
the vertex frequency threshold. One of our runs used the default
value of 150, and a second run (which we refer to as SibeliaZ-LCB-
highVF) was performed using a documentation-guided setting of
8924¼97 (number of genomes) � 23 [maximum multiplicity of any
one gene from the annotation (Table 1)] � 4 (scaling factor). Given
that we required only the coordinates of the locally collinear blocks,
rather than the full nucleotide alignments themselves, we ran
SibeliaZ-LCB only, rather than the complete SibeliaZ alignment
pipeline, (–n) following the developer recommendation.

2.2.3 Building synteny blocks

Cactus and SibeliaZ-LCB each produce a collection of sets of aligna-
ble genomic intervals that are inferred to be homologous, called
alignment blocks. We used a custom script (https://gitlab.com/
LPCDRP/syntement) to formulate these alignment blocks as synteny
block permutations for direct input into tree inference, as well as for
formulating genes from the annotation output as such. The WGA
blocks can be very short, which can lead to two problems: (i) the
running time of tree inference methods increases rapidly with the
number of blocks and especially the number of duplicates, and (ii)
blocks that are very small may not represent true homology. A po-
tential solution is maf2synteny (Kolmogorov et al., 2018), a pro-
gram that can combine multiple adjacent small blocks into larger
blocks if they are consistently syntenic across genomes. By creating
these synteny blocks, maf2synteny may produce more accurate
statements of homology and also will reduce the running time of
tree inference. For consistency and to be able to run the more time-
consuming distance inference methods, in this study, we also apply
maf2synteny to annotations to combine syntenic genes into syntenic
blocks.

In combining blocks, maf2synteny considers the lengths of the
alignments and the length of the gaps between them. Specifically,
maf2synteny takes two arguments: a set of simplification parameters

S ¼ fðminBlock1;maxGap1Þ; ðminBlock2;maxGap2Þ; . . .g which
govern when a block is expanded to incorporate adjacent aligned
segments, and a synteny block scale (block_sizes), which we ex-

plore in Section 3. The method is based on an A-Bruijn graph, where
there is a vertex for each alignment block (of length at least

minBlock) and, for each genome, an edge between adjacent align-
ment blocks. Thus, a vertex can have maximum degree twice the
number of genomes. A collinear path in the graph is one that

includes only alignment blocks sharing the same set of genomes, and
it indicates a set of collinear alignment blocks in those genomes.

Maximal collinear paths, with the condition that no adjacent align-
ment blocks are more than maxGap apart, are aggregated. To per-
mit heterogeneity within the syntenic blocks, maf2synteny also

aggregates each set of alignment blocks that participate in a bubble
(subject to the same maxGap parameter), which is a pair of collinear

paths that share endpoints. The set of parameter pairs S is visited
from smallest pairs to largest, and applied to the graph until the tar-
get syntenic block scale block_sizes is reached.

2.3 Evaluations
Because we analyze a real dataset, all trees in this study are inferred
from the data. To use as a reference, we inferred trees using substitu-

tion models (Section 2.4). Clearly, there is no guarantee that these
trees represent the true evolutionary history, and we invite readers
to keep this point in mind when interpreting results. Nevertheless,

when a method shows more similarity to the SNP tree, especially
among highly supported branches, we can interpret this similarity as

combined evidence for a branch in the true history. One caveat is
the use of SNP tree as the guide tree for Cactus, which will be
explored.

For each pair of fully resolved trees, we compare the trees using
the normalized (Robinson and Foulds, 1981) (RF) distance and

matching split distance (Bogdanowicz and Giaro, 2012) (MS) met-
rics, computed using TreeCmp (Bogdanowicz et al., 2012). Because

we study the evolution of relatively closely related genomes, not
every branch can be resolved with high confidence. Thus, in addition
to comparing fully resolved trees, we also study highly supported

branches. We considered each fully resolved tree as well as after con-
tracting branches with bootstrap support (BS) below levels 33%,

50%, 75%, 95% and 100%. For contracted trees, RF and MS be-
come difficult to interpret. Thus, instead, we report the total number
of non-trivial branches in the tree (indicating its resolution), and the

number of non-trivial branches that are compatible between two
trees (recall that two bipartitions are compatible if they can both
exist in the same tree).

Table 1. Characteristics of the blocks generated by each method

Method Number of

blocks

Average genome

coverage

Number of duplicate

blocks

Number of duplicate

occurrences

Multiplicity

Mean Max

annotation 6403 88.6% 35 3002 6.360 23

annotation1maf2synteny 2713 76.4% 20 1441 7.315 23

annotation-relaxed 5305 89.0% 50 3491 4.828 23

annotation-relaxedþmaf2synteny 1658 78.6% 26 1777 4.689 23

Cactus 17 115 100% 3165 75 899 2.047 4

Cactusþmaf2synteny 741 93.7% 41 821 2.037 3

Cactus-filtered 7527 98.9% 532 11 570 2.020 3

Cactus-filtered1maf2synteny 791 93.6% 41 821 2.037 3

SibeliaZ-LCB 3276 98.8% 229 4217 2.035 6

SibeliaZ-LCB1maf2synteny 682 93.5% 47 711 2.055 4

SibeliaZ-LCB-highVF 3479 99.7% 548 112 783 3.468 65

SibeliaZ-LCB-highVFþmaf2synteny 454 91.8% 34 5159 2.467 7

Note: Synteny blocks produced by the methods in bold are the focus of subsequent analyses. They represent configurations that ultimately produced phylogen-

etic trees more congruent with the reference tree, as compared to alternative configurations of the same tools.
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2.4 Phylogenetic tree inference
Reference SNP tree: SNPs were called with respect to the reference
H37Rv (NCBI accession NC_000962.3) using show-snps from the
MUMmer package (Kurtz et al., 2004), then concatenated into a
PHYLIP-formatted alignment. From this, RAxML (Stamatakis,
2014) was used to create a maximum-likelihood tree using the
GTRCAT model with Felsenstein ascertainment bias correction
using the count of sites in the reference genome where no SNP was
observed, and bootstrapping with 100 replicates.

Rearrangement-based trees: For each of the block assignments
specified in Section 2.2, we test both an adjacency-based and a
distance-based method. Among adjacency-based methods, we used a
tree inferred using MLGO (Hu et al., 2014) phylogenetic tree recon-
struction with bootstrapping on 100 replicates. This tool imple-
ments the MLWD algorithm (Lin et al., 2012a), in which ordered
markers are converted into a vector representing the copy-number
of marker adjacencies. A maximum likelihoood tree is then inferred,
considering the transitions between these two states for each adja-
cency. Among distance-based methods, we used DING
(Bohnenkämper et al., 2020) to calculate a distance for every pair of
samples based on the block assignments for each method (Section
2.2). DING computes distances under the double cut and join (DCJ)
model that also accounts for duplications and segmental insertions/
deletions. We reconstructed phylogenetic trees based on these dis-
tance matrices using FastME (Lefort et al., 2015). The distance
matrices could not be computed for the unaggregated annotation
blocks, SibeliaZ-LCB-highVF, or the unfiltered and unaggregated
Cactus blocks after running DING for one week on a machine with
256GB of RAM, but we were able to infer distance trees for the
remaining configurations: annotationþmaf2synteny, Cactus-filtered
and SibeliaZ-LCB (both with and without maf2synteny), which we
subsequently refer to with a þDING suffix.

Combining trees: After contracting low support branches, we are
left with multifurcating trees. When two multifurcating trees are
compatible, they can be easily combined by simply finding the union
of their bipartitions, which implies a tree. We built such combined
trees using Dendropy (Sukumaran and Holder, 2010) and a custom
script.

3 Results

3.1 Composition of syntenic blocks
While the blocks produced by all the methods cover at least 75% of
the genome, the Cactus alignment resulted in complete coverage.
This full coverage is achieved through the creation of an order of
magnitude more syntenic units than the other methods pre-
aggregation. SibeliaZ-LCB-highVF comes close to Cactus, with an
average genome coverage of 99.7% but using close to 5 times fewer
blocks. In fact, SibeliaZ-LCB-highVF only has 203 more blocks than
its sister run SibeliaZ-LCB, which has 98.8% coverage. Cactus’
coverage becomes almost identical to SibeliaZ-LCB and slightly less
than SibeliaZ-LCB-highVF once we filtered the nearly 10 000 align-
ments with fewer than 50 sites (Cactus-filtered) (Table 1) that
accounted for 1.1% of the genome on average. The number 50 was
chosen here as it was the minimum length of blocks produced by
SibeliaZ-LCB. Even still, Cactus-filtered has over double the number
of blocks as SibeliaZ-LCB (7527 versus 3276).

The annotation pipeline detects 6403 blocks (i.e. gene families).
Gene orthology mapping using relaxed thresholds (annotation-
relaxed) produced 17% fewer blocks compared to the default
thresholds while maintaining the same genome coverage, reflecting
the fact that more pairs of genes are identified as homologous as a
result of the lower similarity thresholds. Most blocks appeared only
once in each genome (i.e. were not duplicated), in contrast to pre-
aggregation Cactus and SibeliaZ, both of which have at least
hundreds of duplicates. Cactus, prior to filtering, had thousands of
duplicate blocks with tens of thousands of occurrences. Most of
these, however, were among the short aligned segments (often only
a few bp long) excluded in Cactus-filtered, and so the number of du-
plicate blocks drops substantially—from 3165 to 532—after

filtering. Most alignment-based methods did not identify markers
with a copy number over 6 in any single genome. Thus, they general-
ly failed to capture into a single unit known high-duplicity markers
such as the annotated transposases (of length 1.5 kb), which had a
maximum multiplicity of 23 in the annotation pipeline. A notable
exception is SibeliaZ-LCB-highVF, which delineated synteny blocks
duplicated up to 65 times in a single genome. These duplicates, how-
ever, are mostly short (median length 129 bp) and dissipate upon
processing with maf2synteny: the maximum multiplicity among the
aggregated blocks falls to 7 for SibeliaZ-LCB-highVFþmaf2synteny.

With regard to running time, the three methods were widely dif-
ferent, with SibeliaZ-LCB taking only minutes while annotations re-
quire hours and Cactus close to a day (Supplementary Table S1).
Note that Cactus is the only method here that is producing a com-
plete WGA, explaining its increased running time.

3.2 Impact of block aggregation with maf2synteny
Aggregating the markers with maf2synteny generally resulted in a slight
drop in coverage (Table 1). Intriguingly, both alignment-based methods
SibeliaZ-LCB and Cactus result in a similar numbers of synteny blocks
after aggregation (�700). However, SibeliaZ-LCB-highVF’s aggregation
results in �200 fewer blocks than SibeliaZ-LCB’s despite starting with
203 more blocks. The coverage drop following maf2synteny for the an-
notation markers was more severe, from 88.6% to 76.4%, and the num-
ber of blocks was reduced by more than half (6403 to 2713). The
number of duplicates also drops sharply as a result of maf2synteny,
never exceeding 50 in any condition after aggregation whereas it could
be as high as 3165 prior. In fact, the number of duplicate markers
according to the aggregated alignment-based methods becomes similar
to the raw annotation despite the order of magnitude difference in the
number of blocks.

The block compositions, however, are sensitive to the parame-
ters used with maf2synteny (Fig. 2). In particular, maf2synteny
requires a block scale (—block_sizes), which is set by default to
5000 and which we have set to 500 to be approximately half the
size of the average gene in the reference genome annotation.
Exploring this parameter in one instance of each tool, we detected
that it has a major impact on the number of blocks obtained, with
the default resulting in 24–123 blocks. Reducing the block scale to
500 increased the number of syntenic blocks to around 700 for the
alignment-based methods, with only minimal changes to the cover-
age. For all methods, average coverage generally decreases with
increasing block scale. The highest coverage is attained at the lowest
block scale tested, 50, and the next highest coverage comes with
block scale 1000 rather than 500. This is likely due to the inter-
action of the block scale parameter and maf2synteny’s simplification
parameters (Section 2.2.3), where one more iteration of simplifica-
tion takes place when using block scale 1000 versus block scale 500.
The simplification parameters, however, are also tuneable to cir-
cumvent this lack of monotonicity between the block scale intervals
we tested. The overall drop in coverage is more substantial for anno-
tation and approaches 65% at larger block scales. The number of
blocks and duplicate block occurrences decreases monotonically
with increasing block scale for all methods. Thus, the impact of this
parameter is mostly in how aggressively blocks are combined and
not in how much of the genome is captured, except for annotation.
Reassuringly, Cactus and SibeliaZ-LCB have comparable numbers
of blocks at each block scale.

Because the default value, 5000, resulted in �50 blocks, it pro-
vides very little phylogenetic signal. A tree computed for Cactus
using this default setting had almost no resolution with a mean BS
of 8% and only four branches with BS above 60%. The coverage
difference between our setting of 500 and the slight improvement
seen with 1000 did not strongly justify switching to it, as the data at
this point were already tractable and further simplification would
result in some further loss in signal, as seen in the extreme case of
5000.

By changing the composition of the blocks, method settings also
impact the final tree in substantial ways. An increased number of
blocks tends to result in trees with lower branch lengths. For ex-
ample, the tree inferred from relaxed annotations has less than half
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of the total branch length of the default annotations (0.053 versus
0.162), despite having only 20% fewer blocks. These changes are
not necessarily surprising, because branch lengths are computed in
the unit of mutations per site, which in this case can be interpreted
as the number of changes per adjacency. When large blocks are div-
ided into smaller blocks with little or no change in adjacencies,
fewer changes will be observed per adjacency. Thus, the interpret-
ation of branch lengths is very much tied to parameters.

3.3 Impact of block assignment method on trees
The choice of the block assignment methods had substantial impact
on the resulting trees, especially among their less supported branches
(Fig. 3). Tree resolution (i.e. the number of branches left after con-
tracting low support branches) drops substantially at higher levels of
support for rearrangement-based methods with the notable excep-
tion of Cactus-filtered without maf2synteny. The SNP tree has high
resolution, with 93% mean BS and 63 (71) out of 91 branches hav-
ing 100% (�95%) BS. Among the unaggregrated blocks, the
Cactus-filtered tree has the highest resolution, followed by SibeliaZ-
LCB and annotation (mean BS: 98%, 84% and 79%, respectively).
Moreover, block aggregation using maf2synteny substantially
reduces resolution. Considering only the trees built from
maf2synteny-aggregated blocks for each method, Cactus-filtered
again has the highest, followed by annotation then SibeliaZ-LCB
(mean BS: 82%, 79% and 77%, respectively).

Note that lower support should not be interpreted as less accur-
acy because if a method produces incorrect synteny blocks, the
resulting tree can have high support for the wrong branches. A bet-
ter measure of accuracy is the compatibility of trees with the refer-
ence trees. Taking the SNP tree as reference, we observe relatively
high levels of compatibility with the reference tree among

adjacency-based methods and less so with the annotation-based tree
(Fig. 3).

Compared to Cactus-raw, Cactus-filtered had similar compati-
bility with the SNP tree (Supplementary Fig. S1) and the added bene-
fit of computational feasibility for running DING (the raw Cactus
results in extremely large numbers of duplicate blocks that pre-
cluded running DING); so Cactus-filtered is exclusively used. The
Cactus adjacency tree showed the greatest compatibility with the
reference SNP tree, converging to perfect compatibility among
branches with � 75% bootstrap support. Applying maf2synteny to
it, however, substantially reduces compatibility. Perfect compatibil-
ity is not achieved except among branches with � 95% BS and this
furthermore comes at a cost of much lower resolution.

Upon further examination of the Cactus adjacency tree
(Fig. 4A), several patterns emerge. The Cactus adjacency tree is con-
sistent with all assignments to standard lineages. Branches separat-
ing lineages are relatively long, especially for the East-Asian lineage
(L2), separated by a branch of length 0.002 (i.e. 0.2% of block adja-
cencies have shifted in this clade). There is high BS (100%) for Indo-
Oceanic (L1) to be the first to diverge from the rest, consistent with
its classification as an ancestral lineage (Brosch et al., 2002;
Gagneux, 2018). There is also strong support (100%) for uniting
the East-African-Indian lineage (L3) with East-Asian. The diameter
of the tree is 0.01, showing that 1% of adjacencies are different
between the most divergent pair of isolates. The mean distance
between any pair of sequences is 0.0058.

SibeliaZ-LCB’s adjacency tree was less compatible than Cactus
with the SNP tree before aggregation. It had four (five) incompatible
branches at 100% BS (� 95%) with the SNP tree. maf2synteny
slightly improved its compatibility, leaving one (three) incompatible
branch(es) at 100% BS (� 95%), but at a cost of further reducing
resolution of the tree at 100% BS (32% versus 59% resolution for

Fig. 2. maf2synteny parameter effects on synteny blocks. The effects of varying the—block_sizes parameter of maf2synteny (default 5000) on the average genome coverage

fraction, resulting number of synteny blocks, and the number of duplicate occurrences. The isolated points represent the values for the raw markers. Only methods used in our

subsequent phylogenetic analyses are shown here, representing a single run configuration for each tool used to identify the raw syntenic markers that maf2synteny acts upon
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after and before maf2synteny, respectively). The deterioration in
resolution of the alignment-based markers’ adjacency trees follow-
ing maf2synteny is suggestive of reduced signal as a result of merg-
ing of orthologous alignment blocks across the taxa. As for
SibeliaZ-LCB-highVF (þmaf2synteny), the result is strictly worse
than SibeliaZ-LCB (þmaf2synteny) in that both resolution and com-
patibility are lower (Supplementary Fig. S2). Furthermore, the high
duplicity of blocks in SibeliaZ-LCB-highVF makes computing a dis-
tance matrix for them with DING infeasible. Because the use of a
higher VF value resulted in no obvious improvement, we use the de-
fault version in the rest of these analyses.

Annotation also had substantial incompatibilities with the SNP
tree (nine branches at 95% BS and two branches at 100% BS),
which improved with maf2synteny to four incompatible branches at
95% BS and 3 three at 100% BS, with little loss in resolution com-
pared to the unaggregated annotation. Comparing relaxed annota-
tion and the default annotation, we did not observe a reduction in
incompatibilities with the SNP tree (Supplementary Fig. S3), leading
us to focus on the default annotation for the rest of the analyses.
These high levels of fully supported incompatibilities in the raw an-
notation tree are consistent with it including strong but incorrect sig-
nal, perhaps as a result of incomplete orthology assignments
resulting in missing adjacencies. The improvement in its compatibil-
ity with the SNP tree following maf2synteny may indicate that some
of the incomplete and incorrect orthology assignments are masked
by aggregation, making the final result a net improvement.

Combining complementary signals: Because the Cactus tree is
fully compatible with the SNP tree at 75% BS, the two trees can eas-
ily be combined into a supertree (Fig. 4B) where every branch has
� 75% BS in at least one of the two source trees. This supertree
makes it clear that the SNP tree and the Cactus adjacency tree in-
clude complementary signals; while the two base trees have 85 and
87 branches with � 75% BS, the supertree has 90 out of 91 such
branches (i.e. is 99% resolved). This supertree has all main lineages
as monophyletic and the overall topology matches current
understanding of Mtb’s evolution (Gagneux, 2018): separating an
East-African-Indian (L3) þ East-Asian (L2) clade, first from
Euro-American (L4), and then from the remaining lineages. The
only remaining polytomy in the combined tree is between isolates
1-0156, SEA11020038, and the pair SEA11020092 and 1-0044.
Even here, however, both the SNP and Cactus trees resolve it the
same way, the former tree with BS 29% and the latter with BS 55%.

3.4 Impacts of guide tree
While the Cactus adjacency tree was highly compatible with the
SNP tree, a caveat is that the guide tree used to infer the Cactus
WGA is the SNP tree. Thus, to examine the impact of the Cactus
guide tree on these results, we reran Cactus with two alternative
guide trees: An independent one based on Mash distances (see
Section 2.2.2) and the SibeliaZ-LCBþmaf2synteny adjacency tree.
We chose SibeliaZ-LCBþmaf2synteny as one of the guide trees in
order to test if Cactus results are biased toward the input guide tree.
The results show that Cactus is indeed sensitive to the guide tree.
Judging by matching split (MS) distance (Fig. 5), we see that the
most similar trees to each other, by a large margin of at least 50
points, are those between a Cactus adjacency/distance tree and its
guide tree or between the Cactus adjacency and distance trees based
on the same alignment (explored more generally in Section 3.5).
While the choice of the guide tree does not impact the amount of the
resolution of the Cactus adjacency tree, it dramatically impacts the
topology, especially for branches with lower resolution. While
Cactus(SNP)-filtered shares 97% of the SNP tree branches,
Cactus(Mash)-filtered shares 81%, and Cactus(SibeliaZ-LCB)-
filtered only shares 64%. Similar patterns are observed at higher
bootstrap support. Among branches with � 75% BS, while
Cactus(SNP)-filtered had no incompatibility with the SNP tree,
Cactus(SibeliaZ-LCB)-filtered has 31 such incompatible branches at
� 75% BS level and even 12 incompatible branches at 100% BS.
Similarly, while Cactus(SibeliaZ-LCB)-filtered has only one incom-
patibility with the SibeliaZ-LCB guide tree at � 75% BS,
Cactus(SNP)-filtered has 16 incompatible branches with SibeliaZ-
LCB at that level, 5 at � 95% BS, and 2 at 100% BS
(Supplementary Fig. S4). Thus, each Cactus tree is most congruent
with its own guide tree and quite incongruent with other trees, even
at high support. In other words, the impact of the guide tree on the
adjacency-based tree resulted in a bias toward the guide tree (as
opposed to noisy variations). The fact that the impact of the guide
tree extends to highly supported branches shows that the choice of
the guide tree is critical.

3.5 Impact of tree inference method
Having established that the choice of methods of block assignment do in-
deed matter, we next ask whether the results are robust to the choice of
the tree estimation method. As bootstrapping is not commonplace for

Fig. 3. Resolution and branch compatibility versus minimum bootstrap support in MLWD rearrangement trees. Two lines are plotted for each method. The upper lines repre-

sent the total number of branches in each tree and the reference SNP tree after contracting branches with support below a threshold (x-axis). The lower lines represent the total

number of compatible branches in the two trees. Convergence of the two lines indicates perfect compatibility. The left panel uses trees based on the raw markers produced by

the method, while the right uses those based on markers aggregated using maf2synteny
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distance-based genome rearrangement methods (an approach has been
proposed (Lin et al., 2012b), but is not, to our knowledge, available as a
software package), we compare the distance trees only to the fully
resolved adjacency trees using MS and RF metrics. Overall, the distance-
based and adjacency-based trees inferred from the same blocks were

most similar to each other (Fig. 6), making the underlying synteny blocks
the largest factor in the agreement of the trees. For example, the highest
RF distance between any pair of methods was between
Cactus(SNP)þmaf2syntenyþMLWD and annotationþMLWD methods
at 56% (Supplementary Fig. S5). In contrast, distances between trees

A

B

Fig. 4. (A) Adjacency tree produced from filtered Cactus synteny blocks. (B) Combination of compatible, highly supported branches from the Cactus adjacency tree and SNP

tree. Since the two trees were fully compatible for branches with � 75% bootstrap support, they are easily combined to form this tree with greater resolution. Diagrams were

drawn using ggtree (Yu et al., 2017)
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Fig. 5. Cactus whole-genome alignment is sensitive to the input guide tree. The plot shows matching split (MS) distances between rearrangement trees inferred from Cactus

alignments based on three different guide trees: SNP, Mash and SibeliaZ-LCB. Each point corresponds to the MS distance between the method indicated on the x-axis and that

denoted by the point’s color. The MS distances between MLWD/DING trees and the corresponding guide tree are shown as triangular points. The most similar tree to a given

MLWD/DING tree is invariably either the guide tree used for the underlying Cactus alignment itself, or the tree built using the same synteny blocks but the other inference

method (i.e. methodAþMLWD and methodAþDING). Furthermore, there is a large difference between these and the remaining independent Cactus results. The use of

SibeliaZ-LCBþmaf2syntenyþMLWD as one of the guide trees further shows how Cactus can, to an extent, mimic another method’s alignment and thereby produce a similar

rearrangement tree
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Fig. 6. Comparison of fully resolved MLWD and DING trees using Matching Split distance. As in Fig. 5, each point corresponds to the matching split distance between the

method indicated at the x position and that denoted by the point’s color. The MS distances between trees built from the same underlying synteny blocks but using a different

tree inference method are shown as triangular points. In the majority of cases, the trees closest to each other are in fact these pairs, with the exception of

annotationþmaf2syntenyþMLWD having greater similarity to both trees from SibeliaZ-LCBþmaf2synteny than to annotationþmaf2syntenyþDING. A comparison of

annotationþMLWD to annotationþDING (without maf2synteny) cannot be shown due to the computational infeasibility of computing the distance matrix for the latter
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using the same inference method applied to the same synteny blocks dif-
fered from as little as 4% RF, 22 MS (Cactus-filtered) to 29% RF, 94
MS (SibeliaZþmaf2synteny). The only case where the tree inference
method mattered more than the block determination method was
annotationþmaf2syntenyþMLWD, where this tree was slightly closer
to both SibeliaZ-LCBþMLWD (31% RF, 91 MS) and SibeliaZ-
LCBþDING (29% RF, 112 MS) than to its partner tree
annotationþmaf2syntenyþDING (27% RF, 114 MS).

Interestingly, the MS distances of DING trees (annotationþ
maf2syntenyþDING, SibeliaZ-LCBþmaf2syntenyþDING and Cactus
þDING, both with and without maf2synteny) to the SNP tree did tend
to be higher than those of the corresponding trees with MLWD, indicat-
ing a potential advantage of MLWD as a tree-inference method. For
SibeliaZ-LCB (unaggregated), however, the MLWD tree had a slightly
higher MS distance than the corresponding DING tree (161 versus 158)
(Supplementary Fig. S6).

4 Discussion

As inferring phylogenies based on large-scale mutations becomes in-
creasingly more feasible in terms of data availability, many ques-
tions about the best practices remain unanswered. Before these
reconstruction methods are more broadly adopted, we need more
empirical analyses that guide the practitioners in building robust
and reliable analysis pipelines. In this article, we took a step in that
direction. Using a dataset of high-quality Mtb genomes, we interro-
gated the robustness of methods used for preparing the syntenic
blocks, which form the input to methods that infer phylogenies
using rearrangements.

The space of possible methods for obtaining input to rearrange-
ment phylogenies is wide and this study is necessarily incomplete.
While we have made an effort to represent the most modern WGA-
based strategies for block assignment, many alternatives exist and
future work should explore them.

While we considered two sets of parameters for orthology as-
signment of the annotation blocks, we did not consider alternative
assignment methods (Linard et al., 2021), and the full phylogenetic
impact of the different methods for annotation, orthology detection
and post-processing of orthology, remains a daunting task.
Additionally, we limited our study to the use of maf2synteny for the
agglomeration of basic homology statements into syntenic blocks.
Other methods such as i-ADHoRe3.0 (Proost et al., 2012) and
Cyntenator (Rödelsperger and Dieterich, 2010) exist for this pur-
pose. Unfortunately, we were unsuccessful in running each of these
on our dataset. i-ADHoRe3.0 has an array of parameters and, using
the recommended values, we received empty output. Running
Cyntenator with default parameters produced only 2 synteny blocks.
After adjusting parameters and rerunning, Cyntenator did not com-
plete after a week of computation.

Cactus’ requirement of a guide tree to determine the order of
pairwise alignment became an important variable for the subsequent
inference of the tree from the alignment. The yet-unpublished
Cactus Pangenome Pipeline is presented as a solution to the problem
of guide trees, though rather than a guide tree, it requires specifying
a reference genome. This option should be explored as an alternative
solution.

To combine methods inferred from two types of data, we relied
on the fact that they were fully compatible for highly supported
branches. Such simple supertree methods facilitate interpretation, as
one knows each branch has support from at least one data source
and no strong conflict from the other. Nevertheless, full compatibil-
ity will not always be achieved, necessitating more complex proce-
dures for obtaining supertrees (Bininda-Emonds, 2004), which may
reduce interpretability. An arguably more principled approach for
combining the phylogentic signals is to combine the data and infer
one tree from the entirety of the data. This combination, however, is
not trivial. We can perhaps concatenate data and use data partition-
ing, but proper weighting of the data sources is not obvious. Such
approaches need to be further explored.

In terms of tree inference methods, the aim of this study was not
to exhaustively test and compare methods. Rather, we chose two

methods to demonstrate the impact of synteny block formation on
different families of methods. Many more methods for phylogenetic
inference from syntenic blocks exist (e.g. Drillon et al., 2020; Zhao
et al., 2021). While comparing these methods is beyond the scope of
this work, it seems reasonable to expect that similarly to the two
methods that we did test, they would also show sensitivity to block
formation strategies.

It should also be noted that our dataset consists of primarily Mtb
isolates, chosen partially because the vertical evolution of Mtb is ad-
vantageous for our purposes. Thus, our conclusions may be specific
to closely-related or microbial genomes without many horizontal
events. Alignment difficulty is clearly a function of divergence, and
as the divergence levels increase, various aligners may be impacted
unevenly. In fact, it is possible that, for very divergent species, anno-
tation works better than alignment. Moreover, the choice of best
parameters for aligners and annotators will likely depend on the di-
vergence levels. Thus, additional future studies on more datasets are
needed to test whether the patterns observed here are replicated
across longer evolutionary times and more complex evolutionary
scenarios.

Finally, method evaluation on real data, while free of concern
about realism of the data, is complicated by a lack of access to the
ground truth. Realistic genome simulation remains challenging;
options that do exist tend to have important shortcomings such as
lack of user support, bugs, and limited features. We require a
method that supports genome-scale rearrangement as well as gene-
scale substitutions, a model for intergenic nucleotide evolution, and
the specification of a real genome at the root of the simulated species
tree. Most existing methods lack some of these features. For ex-
ample, the program ALF (Dalquen et al., 2011) supports genome-
scale rearrangement, substitutions, and specification of a root gen-
ome, but does not model intergenic nucleotide evolution. As far as
we know, Evolver (https://www.drive5.com/evolver) is the only op-
tion that has the complete feature set, but the software is complex to
set up, was designed specifically for eukaryotic genomes, and is no
longer supported by its authors. Once improved methods for gen-
ome simulation are available, repeating our analyses will allow a
more direct measurement of accuracy, at every step of the pipeline.

5 Conclusions

Our results both create cause for caution and room for optimism. It
would be ideal if the inferred phylogenies were robust to the block
inference and reconstruction methods. Instead, we saw that the
choice of the block assignment method matters, but also parameter
settings of the methods can impact results. The block composition
seems sensitive to the parameters of alignment, on one hand, and
parameters of the methods used to group alignment segments into
larger groups (e.g. maf2synteny), on the other. The block properties,
in turn, impact the phylogeny. Furthermore, some parameters, such
as the guide tree used for WGA, do not impact block composition in
obvious ways but impact the final tree in substantial ways. Thus,
practitioners are encouraged to remain cautious about these choices,
and our results call for more extensive empirical analyses.

The apparent importance of the choice of synteny block con-
struction method on the downstream phylogenetic inference should
not surprise us. Traditional phylogenetics has long wrestled with
impacts of incorrect homology detection and alignment on tree in-
ference (Li-San Wang et al., 2011; Liu et al., 2009; Lunter et al.,
2008; Ogden and Rosenberg, 2006; Philippe et al., 2017; Springer
and Gatesy, 2018), and it would be naive to expect rearrangement
phylogenies would be spared that concern. In fact, some of our find-
ings are analogous to similar observations for multiple sequence
alignment. For example, the impact of guide trees on final adjacency
trees reminds one of the impact of guide trees on multiple sequence
alignments and resulting trees (Boyce et al., 2014; Lake, 1991;
Nelesen et al., 2008).

Beyond parameters, our results provide reasons to prefer some
methods versus others. Compared to using gene annotations, the
alignment-based methods showed superior compatibility with the
reference SNP tree and with each other. In contrast, the annotation-
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based tree has numerous incompatibilities, even among branches
with 100% bootstrap support, with the SNP tree. The large number
of blocks in the annotation input is cause for concern, and not great-
ly improved by further aggregation. It appears that annotation pipe-
lines, even run with relaxed settings, fail to make complete
orthology calls in our dataset. Such failures to find orthology can
easily lead to inconsistent adjacencies across genomes, and perhaps
high support for wrong branches. Thus, our results support the use
of WGA.

Despite the variability that we observed, some encouraging pat-
terns emerged. The Cactus adjacency tree did have high levels of
compatibility and a complementary signal to the SNP tree, allowing
us to combine their highly supported branches into a supertree with
more resolution than either tree. It is true that the compatibility is
helped by the choice of the SNP tree as the guide, complicating the
interpretation of compatibility. Nevertheless, if we are not using the
SNP tree for benchmarking, this compatibility shows a path for-
ward. Practitioners can infer preliminary substitution-based trees,
using reference genomes and infer a WGA using those as guide tree.
The WGA can then be used both with adjacency-based and
substitution-based models to infer alternative trees, which when
compatible, can easily and unambiguously be combined. When this
process is successful, as it was here, the long-standing goal of com-
bining signal from two types of events is achieved.
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