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Abstract. A fundamental step in any comparative whole genome anal-
ysis is the annotation of homology relationships between segments of the
genomes. Traditionally, this annotation has been based on coding seg-
ments, where orthologous genes are inferred and then syntenic blocks
are computed by agglomerating sets of homologous genes into homolo-
gous regions. More recently, whole genomes, including intergenic regions,
are being aligned de novo as whole genome alignments (WGA). In this
article we develop a test to measure to what extent sets of homology
relationships given by two different software are hierarchically related
to one another, where matched segments from one software may con-
tain matched segments from the other and vice versa. Such a test should
be used as a sanity check for an agglomerative syntenic block software,
and provides a mapping between the blocks that can be used for fur-
ther downstream analyses. We show that, in practice, it is rare that two
collections of homology relationships are perfectly hierarchically related.
Therefore we present an optimization problem to measure how far they
are from being so. We show that this problem, which is a generaliza-
tion of the assignment problem, is NP-Hard and give a heuristic solution
and implementation. We apply our distance measure to data from the
Alignathon competition, as well as to Mycobacterium tuberculosis, show-
ing that many factors affect how hierarchically related two collections
are, including sensitivities to guide trees and the use or omission of an
outgroup. These findings inform practitioners on the pitfalls of homol-
ogy relationship inference, and can inform development of more robust
inference tools.
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1 Introduction

The increasing ease of whole genome sequencing and assembly has opened a new
era of comparative genomics. With the data available today, not only can the
phylogenetic histories of all the genes between a set of genomes be analyzed, but
also the interaction between these genes, linking gene regulation and function
to the positions of groups of genes. These analyses require a reliable grouping of
homologous genomic segments from the multiple genomes in question.

Thus, the inference of sets of homologous genomic segments is of fundamental
importance. Such a homology statement comes in the form of a set of genomic
segments that contains at least one, but potentially multiple, segments from
several genomes. Each pair of segments from the set shares common ancestry
over some proportion of their intervals, which varies depending on the scale and
level of precision required by the application.

The most basic segment on which statements are made has traditionally
been the gene, detected through either manual or automatic means. The number
of tools designed to infer homology relationships between annotated genes has
grown, provoking the formation of the Quest for Orthologs (QfO) consortium
dedicated to the evaluation and comparison of these tools [12].

General genomic intervals, that can contain both coding and noncoding posi-
tions, have also been used as homology statements. In this case, researchers have
considered bidirectional best hits as evidence for orthology [22,31]. More recently,
“whole genome alignment” methods partition entire genomes into blocks that
can be aligned into multiple sequence alignments (MSAs), de novo, with no spe-
cial input from the user. The Alignathon collaborative competition was devel-
oped to evaluate and compare these methods [9].

Study of the large scale changes between genomes has inspired a more vague
notion of homology between genome segments. Even before the discovery of
the double helix, groups were studying homology of large segments of genomes
from the salivary glands of drosophila [29]. More precise lengths of roughly con-
served chromosomal segments began to be studied using linkage maps [23]. In the
postgenomic era, basic homology segments are agglomerated into syntenic blocks,
possibly separated by micro-rearrangements. GRIMM-synteny was developed for
the study of large scale chromosomal changes, in response to the whole genome
sequencing efforts in human and mouse [27]. Since then, many syntenic block
inference tools have been introduced but, despite twenty years of development,
a unified definition of syntenic block has yet to be found. Indeed, most tools rely
on operational definitions rather than biological or mathematical ones [11,30].

There are several tests used for comparing and evaluating homology state-
ments. For orthology statements between coding sequences, the QfO project
has established tests that: 1) compare trees inferred from orthologous families to
agreed-upon species trees, 2) compare the subsets of orthologs from curated gene
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families, and 3) use consistency in gene ontology annotation [1]. For statements
between syntenic blocks, comparisons of inclusion and exclusion of segments
between methods have been done, and blocks from a single method have been
compared to known gene clusters [19]. Other sources of ground truth, such as
RNA-seq data, have been used to confirm co-regulation between genes occurring
in a proposed block [33].

For general statements (on both coding and noncoding DNA), the Alignathon
competition used three different measures [9]. If homology statements are given
as a set of (potentially gapped) equal-length segments from several genomes,
then each homologous pair of positions between two genomes as given by one
method, can be queried in another method. The number of such shared positions
is a measure of similarity and, when one of the methods is taken as ground truth,
the number of shared positions can be used to measure precision and recall.
The mafComparator tool estimates these values by sampling positions [9]. For
sets of aligned homology statements (i.e. MSAs), probabilistic sampling-based
alignment reliability (PSAR) was used to assess each aligned column [16]. PSAR
fixes all rows of the alignment but one, and samples from the many ways to
align that row within the fixed alignment. After this is repeated for each row, an
alignment reliability score for each pair of positions in a column can be assigned.
When aligned homology statements are augmented with a phylogeny, another
statistical test called StatSigMA can be used [28]. For each edge of the phylogeny,
the rows of the alignment are split into two alignments. The two alignments
are then tested for exhibiting “unrelated behaviour” using Karlin-Altschul log
likelihood scores. If the test for all branches passes, then the homology statement
is validated.

For homology statements that come in the form of syntenic blocks, Ghiur-
cuta and Moret outline some necessary conditions for a valid agglomeration of
homologous units into such blocks [11].

There exists very few methods that compare homology statements in the form
of sets of genomic segments, unmarried to connotations of orthologous genes, and
independent of multiple sequence alignments. To our knowledge, the Jaccard
distance (e.g. as computed by mafComparator) applied to pairwise homology
statements, is the only known comparison that falls into this category.

In this article we introduce a simple definition of homology block (Sect. 2.1)
and formally characterize the conditions under which a set of homology blocks
are valid (Sect. 2.2). We show what it means for collections of blocks to be hier-
archically related and use this to develop a method for measuring disagreement
between two different collections of blocks. In Sect. 2.3 we show a necessary con-
dition for two collections of blocks to be in a hierarchical relationship (in the
form of Lemma 1), based on a graph representing the overlap between the sets.
For different parts of the genomes in question, our test allows for the collections
of blocks to be hierarchically related in both ways; in some parts of the genomes
the first set could be more general than the second, while in other parts of the
genomes the opposite can be true. We introduce an optimization problem, called
Minimum Deletion into Disjoint Stars (MDDS), which gives a lower bound
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on the number of positions that must be ignored so that the two collections of
blocks could be related through a hierarchical relationship. Not only does a solu-
tion to MDDS give a measure as to the degree of hierarchical dissonance between
two collections, but it serves as an unambiguous mapping between the blocks of
the two. This mapping could be used for further downstream comparisons, an
illustration of which is shown in Appendix C.

We show that the MDDS problem is NP-Hard, before presenting a polyno-
mial time heuristic based on an exact algorithm for solving MDDS on a tree.
In Sect. 4 we define the homology discordance ratio and use this measure as a
distance between block collections built on Alignathon data and on a set of 94
Mycobacterium tuberculosis isolates. On the tuberculosis strains we study the
relationship between blocks built using an outgroup or no outgroup, using anno-
tations or no annotations, using maf2synteny to agglomerate or not, as well as
study the effect of the guide tree on Cactus MSA blocks. On the simulated data
from the Alignathon project, we highlight differences between our method and
the Jaccard distance (as computed with mafComparator).

For the entirety of the article we focus on the general case of homology
statements, although most of the discussion also applies to the restricted case of
orthology statements.

2 Methodological Foundations

2.1 Overlapping Homology Statements and the Block Graph

We use gi[k..�] to denote a segment between positions k and � of genome gi

and we let T denote the universe of all segments over all possible genomes and
position-pairs. Define the overlap op(s1, s2) between two segments s1 and s2 as
the number of positions where they overlap in the same genome. For example
op(g1[1..5], g1[3..9]) = 3 but op(g1[1..5], g2[3..9]) = 0.

Definition 1 (homology statement block). A homology statement block
(called a block for short) B is a set of segments B ⊂ T such that all pairs of
segments in B have zero overlap.

The right panel of Fig. 1 depicts two collections of homology state-
ment blocks A = {A1, A2, A3} and B = {B1, B2, B3}. The blocks of
A are A1 = {g1[1..12], g2[13..24]}, A2 = {g1[14..28], g2[26..41]}, A3 =
{g1[53..66], g2[101..113]}, while the blocks of B are B1 = {g1[1..28], g2[13..41]},
B2 = {g1[46..68], g2[94..115]}, and B3 = {g1[34..39], g2[42..46], g2[116..121]}.

Before discussing the semantic interpretation of a homology statement block,
we first introduce a graph that represents the overlap between blocks. The over-
lap op(B1, B2) =

∑
s1,s2∈B1×B2 op(s1, s2) between blocks B1 and B2 is the

total overlap between all pairs of segments in the two. A collection of blocks
B = {B1, B2, . . .} is considered to be clean if the overlap between any pairs of
blocks in B is zero. Both collections depicted in Fig. 1 are clean.

For two collections of blocks A and B, we build a bipartite block graph
BG(A,B) where there is an edge between A and B for any A ∈ A and B ∈ B if
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Fig. 1. To the right, the collections of blocks A = {A1, A2, A3} and B = {B1, B2, B3}
appearing in genomes g1 and g2, along with the graph BG(A, B). Segments are depicted
with brackets and lined up according to their positions on the chromosomes. They are
labeled by their tuple (when space permits) and the block to which they belong. The
configuration of positive and negative witness pairs shows that B generalizes A. Some of
the genome positions are highlighted with boxes, and two such positions are connected
by a solid line if they appear as a positive witness in B, and that line is bold if they are
also in A. The dashed line represents one of the (many) negative homology witnesses
between A1 and A2 that are negative witness pairs for A but not for B. To the left,
the graph BG(A, B) appears with edges labeled by overlap length in gray. All of the
connected components are stars.

and only if blocks A and B overlap (i.e. op(A,B) > 0). Thus, the block graph
BG(A,A) for a clean collection A is a perfect matching. E(G) is the set of
edges of the graph G. We associate to each edge AB ∈ E(G) a weight function
ω : E(G) → N such that ω(AB) = op(A,B). The left side of Fig. 1 shows the
block graph for the collections to the right.

2.2 Homology Witnesses and Block Hierarchies

A homology block can be interpreted as a positive and negative statement of
homology (i.e. statements about common ancestry). On the positive side, the
block {g1[1..5], g2[11..16]} says that positions 1 through 5 in genome g1 are some-
how homologous to positions 11 through 16 in genome g2 (in this case the seg-
ments are not the same length, so we assume that each position from the segment
g1[1..5] is homologous to either a position in g2[11..16] or to none other in g2).
On the negative side, the block could be interpreted as saying that no position
in g1[1..5] is homologous to any other position in g1 or any other position in g2,
outside of g2[11..16].

In this section we suppose that we know the truth about the ancestral rela-
tionships between the base-pair positions of the genomes in question. With this
supposed knowledge, we can categorize pairs of homology witness positions as
positive or negative, depending on their evolutionary relationship. Using these
relationships, we define properties that a valid collection of homology blocks must
respect. These definitions are extended to encompass hierarchical relationships
between collections of blocks.
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Consider any pair of positions gi[x] and gj [y] from genomes gi and gj . This
pair is called a positive homology witness if the two positions descend from the
same ancestral position, otherwise the pair is called a negative homology witness
(positive homology witnesses represent pairs of positions that are typically called
“homologous” positions). Note that the true relationship between positions is
unknown, yet it imposes constraints on what we consider a valid collection of
blocks according to the following definition.

Consider any position-pair (gi[x], gj [y]) such that gi[x] is contained in a seg-
ment from a block B in a collection B. If (gi[x], gj [y]) is a positive homology
witness, then either

1. gj [y] appears in B, and we say that the pair is a positive witness in B, or
2. gj [y] appears in no block of B.

By this definition no position-pair (gi[x], gj [y]) with gi[x] and gj [y] in different
blocks of B, can be a positive homology witness and, since all position-pairs are
either positive or negative homology witnesses, (gi[x], gj [y]) must be a negative
homology witness. Any position-pair (gi[x], gj [y]), where gi[x] and gj [y] are in
different blocks of B or in no block of B, is called a negative witness for B.

Note that, for a clean collection B, no position-pair can be both a positive
and negative witness in/for B. There may also be position-pairs that are nei-
ther positive nor negative witnesses in/for B, such as those pairs that have one
position contained in a block of B and the other outside all blocks of B. Finally,
note that not all position-pairs appearing between segments in a homology block
need necessarily be positive homology witnesses.

Positive witness pairs limit what can exist in two different blocks; a block
containing one position of a positive homology witness imposes the constraint
that the other position must either be in the same block, or in no block. On the
other hand, we will see in the following that negative homology witnesses existing
between two different blocks in a collection enforce constraints on the hierarchical
relationships that this collection can have with another block collection.

Consider the collections of blocks in Fig. 1 and note that whenever a positive
homology witness is a positive witness in A, it must also be a positive witness in
B, whereas not all positive witnesses in B exist in A. Conversely, every negative
witness for B is also a negative witness for A. In this sense, the blocks of B are
“more general” than the blocks of A. This motivates the following definition, for
which we focus on subcollections of blocks A′ ⊆ A and B′ ⊆ B.

Definition 2 (generalization). A clean (sub)collection of blocks B′ generalizes
a clean (sub)collection A′ if and only if every positive witness in A′ is also a
positive witness in B′ and every negative witness for B′ is also a negative witness
for A′.

Note that any clean collection generalizes itself.
While some subcollections of B may generalize subcollections of A, other

subcollections of A may generalize subcollections of B. Partition them A =
A1 ∪ A2 ∪ · · · ∪ Ak and B = B1 ∪ B2 ∪ · · · ∪ Bk according to the connected
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components of BG(A,B) (e.g. A1∪B1 is the set of vertices in the first connected
component).

Definition 3 (hierarchical). We say that A and B have a hierarchical rela-
tionship if and only if Ai generalizes Bi, or Bi generalizes Ai, for 1 ≤ i ≤ k.

The existence of hierarchical relationships between collections of blocks are
interesting to us for at least two reasons. Consider two block inference meth-
ods, MethodA and MethodB, producing different clean collections of blocks A
and B respectively. If MethodB is meant to agglomerate blocks from MethodA,
then we would expect B to generalize A. This is useful for the verification of
agglomeration methods, and as a sanity check for the practitioner. In this case,
if MethodB also trims spurious blocks or segments from MethodA, B may not
generalize A, but A and B would still be hierarchically related. Another reason
for interest in the hierarchical relationship may be that, if B generalizes A, then
we can define a mapping from each block A ∈ A to a block B ∈ B. This mapping
can be used for further comparisons between the collections. The refinement of
orthology assignments, as illustrated in Appendix C is an example of one such
comparison.

2.3 Relating Block Hierarchy to Stars in the Block Graph

While simple hierarchical relationships are easy to detect, real-world data are
not so well behaved, and require a formalism to measure the extent to which
a relationship is hierarchical. The types of connected components in the block
graph give us insight into collections that cannot have a hierarchical relationship.

Lemma 1. Let A and B be clean collections of blocks such that B generalizes A
and BG(A,B) is connected. Then, all vertices of A have degree one in BG(A,B),
that is, BG(A,B) is a star with center in B.
Proof. Let A be a block in A, and assume that it has at least two distinct
neighbors B1, B2 ∈ B in BG(A,B), that is, both B1 and B2 overlap A. Thus,
there are positions gi[x] and gj [y] appearing in A such that gi[x] appears in B1
and gj [y] appears in B2. Since B is clean, we also know that these positions are
distinct. Since (gi[x], gj [y]) appears in different blocks in B, we know that it is
a negative homology witness for B. However, since gi[x] and gj [y] appear in the
same block in A, the pair is not a negative witness for A. Thus, (gi[x], gj [y]) is
a negative witness for B but not for A, contradicting the fact that B generalizes
A. �	

We say that a graph is hierarchical if it is a collection of vertex-disjoint stars,
that is, if no component has two vertices of degree greater than one. It is easy to
check if a graph meets this criterion. Note that the condition of a graph BG(A,B)
being hierarchical is necessary for A and B to have a hierarchical relationship,
but it is not sufficient. Also note that, Lemma 1 outlines a property on each
individual connected component, allowing some parts of A to generalize parts
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A1 A1

A1 A1

A1 A1

Fig. 2. Two subsets of blocks from collections A and B that are not hierarchically
related. The top panel depicts a subset of blocks for part of the genome g1, but not
the other genomes. Positions α and β form a negative homology witness for A, but
not for B, while β and γ form a negative homology witness for B, but not for A. This
contradicts properties of a hierarchy and, therefore, yields the non-star topology to the
left. The bottom panel depicts a subset of blocks for part of the genomes g1 and
g2. These segments contradict properties of a hierarchy in a different way, and yield
the non-star topology to the left. This kind of scenario would arise when orthologs are
matched in one way from MethodA, and in another way for MethodB. Note that even
if the block A5 was not in collection A, the contradiction still holds and the connected
component is not a star.

of B, while allowing other parts of B to generalize parts of A. Thus, a natural
corollary to Lemma 1 is that if A and B are hierarchically related, then BG(A,B)
is hierarchical.

For a graph that is not a collection of stars, one may want to measure to what
degree it deviates from being so. Lemma 1 inspires the search for star packings
on G = BG(A,B).

Input: a bipartite graph G with weight function ω : E(G) → N

Output: E′ ⊆ E(G) such that the subgraph of G formed by the edge set
(E(B) \ E′) is a collection of vertex-disjoint stars

Measure:
∑

e∈E′ ω(e)

Minimum Deletion into Disjoint Stars (MDDS)

A solution to MDDS gives a lower bound on the number of overlapping
positions that must be ignored so that A and B can be hierarchically related.
For example, Fig. 2 shows two connected components that are not stars. Consider
the graph from the upper panel and assume that in the non-depicted genomes
(i.e. gi for i > 1) there is no overlap of the segments of A1 with those of B2, or of
segments of A2 with those of B1. Then, the solution to MDDS on this component
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would result from the removal of the edge between B1 and A2, since this edge
has the minimum-size overlap. In Sect. 4.1 we highlight the differences between
our MDDS method, and the Jaccard similarity index used in the Alignathon.

3 Algorithms

In this section we show that the Minimum Deletion into Disjoint Stars
problem is NP-Hard, and then present a practical heuristic based on solving
MDDS optimally on a tree. For simplicity and without loss of generality, we will
assume that all block graphs are connected.

Other generalizations of the assignment problem, similar to MDDS, have
been studied for decades, the closest of which has most recently been called
the T -star packing problem [4]. This problem asks for a star packing where
the size of the star is limited by an input parameter T . When the measure is
the number (or weight) of edges, Hell and Kirkpatrick show that the T -star
packing is NP-Hard by reduction to the version of the problem that asks for
a decomposition of a given graph into subgraphs isomorphic to the star with
T edges [13]. Since the only difference between MDDS and the edge-weighted
T -star packing problem is the parameter T , it is tempting to adapt the same
series of reductions to MDDS by setting T to the maximum degree over all
vertices in the graph. This approach is not clearly feasible, however, since the
reduction from 3-Dimensional Matching to the decomposition version of the
problem creates vertices of degree higher than T [17].

Babenko and Gusakov give a 9
4

T
T+1 approximation algorithm for the T -star

packing problem based on a reduction to the max-network flow problem [4]. We
could use this elaborate approximation algorithm by fixing T to the maximum
degree of the input graph, but we choose instead to implement the much simpler
heuristic presented in Sect. 3.2.

3.1 NP-Hardness of MDDS

We will show that the decision version of MDDS is NP-hard by reducing the
well-known 3-SAT problem to it. Our construction uses similar techniques as
the NP-hardness proof of the Transitivity Edge Deletion problem [32].

Construction 1 (see Fig. 3). Let ϕ be an instance of 3-SAT with variables
X := {x1, x2, . . . , xn} and clauses C := {C1, C2, . . . , Cm} such that each clause
contains exactly three literals. For each variable xi, let ni denote the number of
clauses that contain xi or ¬xi and let γ0

i , γ1
i , . . . , γni−1

i be any sequence of these
clauses. We construct an edge-weighted graph (G,ω) as follows:

1. For each variable xi create a cycle Qi containing 6ni vertices
v0

i , v1
i , . . . , v6ni−1

i and give all edges weight m.
2. For each clause Ck ∈ C, create a single vertex uk.
3. For each i, j let � be such that γj

i = C� and, if xi occurs non-negated in C�,
then add the edge {v6j

i , u�} with weight 1, otherwise add the edge {v6j+2
i , u�}

with weight 1.
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(x1 ∨ x3 ∨ ¬x8)

v151
v161 v171 v181 v191

v201
v211

x1

v33

v43

v53

v63
v73

v83
v93

x3

v278v288
v298

v308
v318

v328

v338

x8

Fig. 3. Example of Construction 1. The clause C := (x1 ∨ x3 ∨ ¬x8) corresponding
to the center vertex is equal to γ3

1 = γ1
3 = γ5

8 , that is, it is the 4th clause containing
x1, the 2nd clause containing x3 and the 6th clause containing x8. A truth-assignment
setting x1 to TRUE and x3 and x8 to FALSE corresponds to the star cover indicated
by gray highlights. Note that taking the edge between v18

1 and C instead of the edge
between v32

8 and C corresponds to satisfying the clause C by x1 instead of ¬x8.

Note that the image of ω is {1,m}, the total weight of all edges is 18m2 + 3m,
and G is bipartite, since any edge from part 3. of the construction, connecting a
(variable) cycle to a (clause) vertex u�, connects to an even numbered vertex in
the cycle.

Besides NP-hardness, our reduction implies exponential lower bounds assum-
ing widely believed complexity-theoretic hypotheses. The “Exponential-Time
Hypothesis” (combined with results by Impagliazzo et al. [15]) roughly states
that 3SAT on formulas with m clauses cannot be decided in 2o(m) time. This
lower bound transfers since the constructed graph G has only 21m edges.

Theorem 1. Minimum Deletion into Disjoint Stars is NP-hard and can-
not be solved in 2o(|E(G)|) time on graphs G, even if G is restricted to maximum
degree three, assuming the Exponential-Time Hypothesis.

3.2 A Heuristic for MDDS

In light of the hardness result presented in Sect. 3.1, we devised a heuristic that
first computes a maximum-weight spanning tree T on each connected component
of BG. It then transforms each T into a star packing by computing MDDS on T .

We present a dynamic programming algorithm solving MDDS on a tree T . To
this end, we root T at an arbitrary vertex, and compute a dynamic programming
table for vertices in a post-order traversal. Consider a set S of edges that, after
removal from T , yields a collection of disjoint stars. We denote the result of this
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removal as T − S = (V (T ), E(T ) \ S). Each vertex x has one of three states
relative to S:

1. x is the center of a star in T − S (covered by D∗(x) in the DP),
2. x has degree one in T − S and the edge between x and its parent is in T − S

(covered by D+(x) in the DP), and
3. x has degree one in T − S and the edge between x and its parent is not in

T − S (covered by D−(x) in the DP).

Then, D∗(x), D+(x), and D−(x) contain the weight of an optimal solution Sx

for the subtree rooted at x, for each of the three cases respectively. If x is a
leaf of T , then set D∗(x) := D−(x) := D+(x) := 0. Otherwise, let v1, v2, . . . , vm

denote the children of x in T . We visit the children in this order and accumulate
each partial subsolution, starting with D0

∗(x) := D0
+(x) := D0

−(x) := 0 and
proceeding as follows for each 1 ≤ i ≤ m:

Di
∗(x) := Di−1

∗ (x) + min
(
D+(vi), ω(xvi) + min(D∗(vi),D−(vi))

)

That is, if x is the center of a star, then the edge xvi must be in S if either vi

is the center of a star or the edge between vi and its parent x is not in T − S.

Di
+(x) := Di−1

+ (x) + ω(xvi) + min(D∗(vi),D−(vi))

That is, if x is a leaf of a star centered at the parent of x, then the edge xvi

must be in S.

Di
−(x) := min

(
Di−1

− (x) + ω(xvi) + min(D∗(vi),D−(vi)),
Di−1

+ (x) + D∗(vi)

)

The case of Di
−(x) is a bit more subtle. Since x is not the center of a star, all

but at most one edge between x and its children are in S, so if xvi is not in S
then Di−1

+ (x) forces all xvj to be in S, for 1 ≤ j < i. Finally, the subsolutions
rooted at x are, then, given by:

D+(x) := Dm
+ (x) D−(x) := Dm

− (x) D∗(x) := Dm
∗ (x)

4 Quantifying Hierarchical Conficts

We applied our MDDS heuristic to homology statements on a set of prokary-
otes, and on a set of eukaryotes. The solution to MDDS provides an estimate
of the minimum number of positions that must be ignored so that the neces-
sary conditions for a hierarchy, highlighted by Lemma 1, are achieved. Before
applying the heuristic of Sect. 3.2 we cleaned the syntenic blocks according to
Appendix B, and preprocessed the graphs for segmental duplications according
to Appendix C.
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4.1 Discordance Ratio and Distinction from Jaccard Index

Define coverage(B ) of a collection of blocks B as the total number of positions
covered by all segments in blocks of B. We report the hierarchical discordance
ratio between collections A and B as d(A,B) = w/(coverage(A)+coverage(B)),
where w is the weight of the MDDS on BG(A,B). A discordance ratio of 0.1
means that we have to ignore at least 10% of the total coverage of the blocks (in
both methods) in order to have a hierarchical relationship between them.

Alignathon used mafComparator to compute the straightforward Jaccard
similarity index between collections of blocks. In this case, the elements of the
sets in question are the pairwise alignments of positions implied by the blocks.
So if a pair of positions are aligned in one class of blocks but not the other, this
will contribute one to the denominator.

Consider collections A and B such that A only contains blocks with segments
from {gi[200x+1..200x+100] | 0 ≤ x < 
 �(gi)

200 �}, and B only contains blocks with
segments from {gi[200x + 101..200x + 200] | 0 ≤ x < 
 �(gi)

200 �}, for all genomes gi

with length �(gi). In other words, the collections can only have blocks of length
100 that do not overlap with each other. In this case the Jaccard similarity mea-
sure will be zero no matter the length of the genomes, indicating the most severe
dissimilarity, whereas the two collections are hierarchically related, showing no
conflicts, and the block graph is composed only of degree zero vertices. In that
sense, our comparison method is tolerant to collections that conservatively make
no assertion about a region.

We consider the two measures complementary in that they capture differ-
ent qualities of the overlap properties of block collections. We see in Sect. 4.3
instances from the Alignathon data where the Jaccard similarity is low, yet the
two collections are hierarchically related, and vice versa.

4.2 Mycobacterium Tuberculosis Clinical Isolates

For the prokaryotes, we used a set of 94 Mycobacterium tuberculosis strains [5,21]
with homology statements given by the methods listed in Table 1. These sets of
blocks are those produced in [10], where the methods were compared to assess
their impact on inferring rearrangement phylogenies. Note that all Cactus blocks
used in this subsection had segments with fewer than 50 positions filtered out.

The collections of blocks for four of the methods, along with their
maf2synteny counterparts are compared in Fig. 4. As expected, each collection
of blocks had a very low discordance ratio with its counterpart agglomerated by
maf2synteny. Further, the agglomerated blocks always have lower discordance
to all the other methods, when compared to their unagglomerated counterparts.
Of the unagglomerated methods, SibeliaZ is the least discordant.

There were a couple of surprises. The first is that the most discordant pairs
are between the gene-based annotation method and the de novo inference meth-
ods Cactus and SibeliaZ. Contrary to the other methods, the agglomerated
annotation blocks show a small improvement against Cactus, and a surprising
degradation (going up from 4% to 5%) in the discordance ratio for SibeliaZ.
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Table 1. Homology statement determination methods applied to the M. tuberculosis
genomes

Method Description

Cactus(SNP) Cactus [3] alignment guided by a ML tree based on

Concatenated substitutions with respect to reference

strain H37Rv (NCBI accession NC 000962.3)

Cactus(SibeliaZ) Cactus alignment guided by a MLWD [14] adjacency tree

Computed from SibeliaZ+M2S synteny blocks

Cactus(Mash) Cactus alignment guided by a B(I)ONJ tree based on the

genomes’ Mash [25] distance matrix

SibeliaZ Locally collinear blocks produced in the first step of the

SibeliaZ pipeline [20]

Annotation Simultaneous annotation and orthology assignment by

95% amino acid sequence identity and 95%

Alignment coverage

Modifiers Description

+out Synteny blocks computed while including the outgroup

Strain M. canettii (NCBI accession NC 019951.1)

+M2S Agglomerated with maf2synteny [18]

This implies that either 1) many blocks from the Cactus method bridge between
coding regions, or 2) many duplicate regions are assigned in discordant ways.
The second surprise is that the unagglomerated Cactus methods, with different
guide trees, are more discordant from each other than they are with SibeliaZ. It
has been reported that Cactus’s sensitivity to guide trees also has implications
on the downstream phylogenetic analyses [10].

In Fig. 5, the checkered pattern shows that the inclusion of an outgroup affects
Cactus blocks more than the choice of a guide tree. The inclusion of the outgroup
strain also decreases the discordance between the Cactus blocks on different
guide trees. For example, Cactus(Mash) has discordance ratios of 0.044 and 0.061
against Cactus(SNP) and Cactus(SibeliaZ), but for Cactus(Mash)+out these
values are 0.022 and 0.026. Table 2 shows the discordance between a method and
its version with the outgroup. Cactus is most highly affected by the inclusion
of the outgroup. While SibeliaZ is somewhat affected, Annotation is barely
affected. Agglomerating the blocks with maf2synteny diminishes the discordance
in all cases but Annotation.

4.3 Alignathon

The Alignathon competition was created to compare “whole genome alignment”
methods [9]. Authors of WGA software were invited to submit the collections
of blocks computed by their program, which were compared using the measures
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Fig. 4. The discordance ratio between each pair of block collections. Each of meth-
ods Cactus(SNP), Cactus(SibeliaZ), SibeliaZ, and Annotation along with their
maf2synteny counterpart.

Fig. 5. The inclusion of an outgroup affects Cactus blocks more than the choice of a
guide tree.

described in the introduction. The project fabricated two synthetic datasets that
were used to evaluate the block collections, one that mimicked the properties of
set of Primates, and another that mimicked the properties of a set of Mammals.

We applied our MDDS heuristic to each pair of block collections. Note that
we were limited to the collections available on the Alignathon downloads page,
so were unable to compare to some methods, such as Mercator/Pecan [26].
The results for the Primate dataset are depicted in Fig. 6 while results for the
mammal dataset are depicted in Fig. 7. Being evolutionarily closely related, the
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Table 2. Comparison of discordance ratios between blocks computed by the same
method, with and without an outgroup in the input genome set. maf2synteny usually
reduces the high discordance (shown as a percentage) between the blocks. For example,
Cactus(SNP) applied to the TB sets with and without the outgroup shows a very high
divergence ratio, yet a much lower one after maf2synteny has been applied to the two
block collections.

maf2synteny? Cactus(SNP) SibeliaZ Annotation

No 10.09% 3.57% 0.00263%

Yes 1.57% 2.37% 0.0547%

Fig. 6. Discordance ratios for simulated Primates.

Primates dataset mostly shows discordance ratios below 2%. While this trend
is consistent with the Alignathon findings, including GenomeMatch2 (SoftBerry,
Mount Kisco, NY) being relatively more discordant, there were differences with
the Jaccard index reported by Alignathon. VISTA-LAGAN [8], for instance, stands
out as generally more discordant than the others, being rather dissimilar to
PSAR-Align [16], AutoMz, and Multiz [6]. EBI-MP stands out as having both the
best, and the worse discordance ratios of the dataset; despite having a ratio of
over 12% against progressiveMauve [7], it also is the only method in the set
to be hierarchically related to another one (Robusta [24]). Cactus has very low
discordance with all methods except GenomeMatch2.

The simulated mammal dataset contained genomes that were separated by a
larger evolutionary distance, and this was reflected in surprisingly large discor-
dance ratios. We observe several discrepancies with the Jaccard distances reported
by Alignathon ([9] – Fig. 8B). GenomeMatch3 was extremely dissimilar to all
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Fig. 7. Discordance ratios for simulated Mammals.

methods but Mugsy [2], yet we observe high hierarchical discordance ratios
only against Robusta and Multiz. Cactus has low hierarchical discordance
against all other methods, whereas it had high Jaccard distances against Mugsy,
GenomeMatch3, and EBI-EPO. On the other hand, Robusta seemed to have poor
comparisons for both the Jaccard and hierarchical measures.

5 Discussion and Conclusions

In this article we addressed the question of how to relate two collections of
homology statement blocks to each other. We established a relationship between
collections where we allowed overlapping parts of those collections to be hierar-
chically related. In the absence of these conditions, we developed a method that
gives a lower bound on the number of positions that must be ignored in order
for the two to be hierarchically related.

The notion of being hierarchically related depends on semantics that we
imposed on the blocks, which speak to the pairwise homology relationships
between the constituent genomic positions appearing in the blocks. As Ghiurcuta
and Moret [11] used “homology statements” to define their “syntenic blocks”, we
used “positive homology witness” pairs to limit which segments can be contained
within a homology statement block; while they required every homology state-
ment within a segment to occur in all other segments of the block, we allowed
positions that do not appear in a positive witness pair in the block, as long
as they do not occur in another block. We went further by associating semantic
meaning to the fact that two positions appear in different blocks. This allowed us
to define what it means for some (sub)collection of blocks to generalize another
(sub)collection.

On the algorithmic side, we showed the Minimum Deletion into Disjoint
Stars problem to be NP-Complete. Our heuristic for MDDS is based on a
dynamic program that solves MDDS exactly on a tree. Future improvements
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will include the exploration of other algorithms with provable guarantees to
the quality of their solutions. The solution to the MDDS problem gives the
number of nucleotides that must be ignored so as to make the components of
the block graph stars. This is a necessary condition for the two collections to
be hierarchically related, but not sufficient, and thus is a lower bound on the
number of nucleotides that must be ignored so as to make the two collections
hierarchically related. Future work will explore ways to tighten this bound.

We studied block collections on a set of 94 Mycobacterium tuberculosis
strains, built by annotation and non-annotation based means. We showed on
this data that the agglomeration of blocks using maf2synteny almost always
yielded collections that were less discordant. We showed surprising discordance
between the gene-based annotation method and the de novo block inference
methods Cactus and SibeliaZ. Cactus showed great heterogeneity, dependent
on the guide tree that was used to construct the blocks.

When performing a phylogenetic analysis on the blocks, one is tempted to
incorporate an outgroup for the sake of rooting the tree. We showed the inclusion
of that outgroup had drastic effects on blocks, producing blocks that were less
sensitive to the Cactus guide tree. This was concordant with our results from a
phylogenetic study [10].

We studied block collections from the Alignathon project. The simulated
Primates dataset showed that EBI-MP had both the best discordance ratio, and
the worst, among all pairwise comparisons, being hierarchically related to the
Robusta blocks while having ratio over 0.13 with progressiveMauve. For the less
closely related simulated mammalian genomes, we showed several discrepancies
between the Jaccard index reported by Alignathon and our discordance ratio,
the most notable one being that while Cactus had a poor Jaccard index against
a few methods, it had very low hierarchical discordance with all other methods
(except GenomeMatch2).

While WGA tools and syntenic block agglomeration methods have continued
to be developed, the methods to compare and analyze them has lagged behind,
and the definitions of syntenic blocks are usually procedural or based on co-
linearity. In this article we outlined constraints on homology blocks based on
the homology relationships between pairs of positions in the genome. These
constraints put as much importance on the ends of the blocks as it does their
contents; if two genomic segments are put into different blocks, we interpret this
as a statement that should only be contradicted in a generalization of the blocks.
Our new measure should inform future block inference tool development, and
serve as a sanity check for the practitioner studying large scale structure of sets
of genomes.

Acknowledgement. The authors would like to thank the helpful suggestions by the
reviewers. AE and FV are supported by the NIAID grant R01AI105185. KS is partially
supported by the grant ANR-20-CE48-0001.



Quantifying Hierarchical Conflicts in Homology Statements 163

Availability of Code. All of the code associated with this paper is publicly availble

at the following URL: https://bitbucket.org/thekswenson/homology-evaluation.

A NP-Hardness of MDDS

Note that the notion of star and induced star coincide on bipartite graphs since,
for any bipartite G, the vertices of any star-subgraph of G also form an induced
star in G. Further, no collection of node-disjoint stars can contain the triangle C3

or the path on 4 vertices P4 as a subgraph and it can be seen that this condition
is also sufficient.

Observation 1. A bipartite graph G is a collection of stars if and only if G
does not contain a P4 subgraph.

For the correctness proof, we will make two assumptions on the structure of
the input formula ϕ, without loss of generality. First, we assume that no variable
occurs in all clauses. If a variable x does occur in all clauses, then we simply add
a new variable y and the singleton clause on y. Second, we assume that each
clause in ϕ has exactly three literals. If a clause C has at most two literals, we
can simply double the occurrence of any literal in C.

Lemma 2. Let ϕ be an instance of 3SAT and let (G = (V,E), ω) be the result
of applying Construction 1 to ϕ. Then, ϕ is satisfiable if and only if (G,ω) has
a star packing of weight at least 12m2 + m.

Proof. For each variable xi of ϕ, let us define the edge sets

Ti :=
⋃

0≤j<2ni

{v3j
i v3j+1

i , v3j+2
i v3j⊕3

i } and Fi :=
⋃

0≤j<2ni

{v3j+1
i v3j+2

i , v3j+2
i v3j⊕3

i }

where 3j ⊕ 3 := (3j + 3) mod 6ni. Note that any vj
i has degree two in subgraph

(V, Ti) if and only if j ≡ 0 mod 3 and any vj
i has degree two in (V, Fi) if and only

if j ≡ 2 mod 3. Further, ω(Ti) = ω(Fi) = 4mni. We prove the two directions of
the lemma separately.

⇒: Let ϕ be satisfiable, that is, there is a set L of literals over variables in
ϕ such that each clause Ck intersects L in at least one literal �k and L contains
exactly one of xi and ¬xi for all i. If �k is the literal xi in clause Ck = γj

i , then
let ek := ukv6j

i and, if �k is the literal ¬xi, then let ek := ukv6j+2
i . Note that all

ek are distinct, ek ∈ E(G) for all k. Let Sclause contain ek for all clauses Ck of ϕ
and note that ω(Sclause) = m. Further, for all variables xi of ϕ, let Svar

i := Ti if
xi ∈ L and Svar

i := Fi, otherwise (that is, ¬xi ∈ L). Finally, let the selected edges
be S := Sclause∪⋃

i Svar
i (see gray edges in Fig. 3), noting that ω(S) = 12m2+m.

It remains to show that (V, S) does not contain a P4 as a subgraph. Towards a
contradiction, assume that (V, S) contains a P4 p := (a, b, c, d). By construction,
neither

⋃
i Svar

i nor Sclause contains a P4, and p must contain edges from both of
these sets. Thus, p contains uk for some clause Ck. Since any uk has degree one

https://bitbucket.org/thekswenson/homology-evaluation
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in (V, S), we can assume without loss of generality that ab = ek. By definition of
ek, there are i and j such that either b = v6j

i and xi ∈ L ∩ Ck or b = v6j+2
i and

¬xi ∈ L ∩ Ck. Since 6j ≡ 0 mod 3 and 6j + 2 ≡ 2 mod 3 we know that in both
cases b has degree two in (V, Svar

i ), and both of its neighbors have degree one in
(V, Svar

i ) and, thus, in (V, S). This contradicts (a, b, c, d) being a path in (V, S).
⇐: Let S be a maximum-weight subset of E such that ω(S) ≥ 12m2 + m

and (V, S) does not contain a P4 as a subgraph. First, let Sclause denote the
set of edges of S incident with a clause node uk. Second, for each xi, let Svar

i

denote the set of edges of S on the variable cycle corresponding to xi and note
that, for each P3 (a, b, c) in (V, Svar

i ), both a and c have degree one in (V, Svar
i )

since, otherwise, (V, S) contains a P4. For each i, the connected components of
(V, Svar

i ) are paths of lengths 1, 2, or 3 and we denote the number of P1s, P2s,
and P3s in (V, Svar

i ) by ri, si and ti, respectively. By construction, each P2 is
adjacent to at most one clause vertex uk in (V, S), and since (V, S) does not
contain P4, each P3 is also adjacent to at most one clause vertex uk in (V, S).

Claim.
∑

i ti = 6m.

Proof. By decomposing the 18m vertices of the variable cycles into P3 subgraphs
separated by single edges, the upper bound of 6m is attained. It suffices to show∑

i ti ≥ 6m so, towards a contradiction, assume that
∑

i ti < 6m. Then, there is
a variable xi such that ti < 2ni implying |Svar

i | ≤ 4ni −1 by construction. Let S′

result from S by removing all edges incident with vertices of the variable cycle
corresponding to xi and adding the edges in Ti. Since xi does not occur in all
clauses, we removed edges of total weight strictly less than m+(4ni−1)m = 4mni

and we added edges of total weight m|Ti| = 4mni. Since neither (V, S) nor (V, Ti)
contains a P4, neither does (V, S′), thus contradicting optimality of S. �

Corollary 1. Each subgraph (V, Svar
i ) decomposes into disjoint copies of P3.

Corollary 2. Let vj
i and vj′

i be nodes of degree two in some subgraph (V, Svar
i ).

Then, |j − j′| ≡ 0 mod 3.

Corollary 3. Let ukvj
i be an edge in Sclause. Then, vj

i has degree two in
(V, Svar

i ).

Note that each P3 in (V,
⋃

i Svar
i ) has weight exactly 2m, so S contains exactly m

edges of Sclause. Further, by Corollary 3, all clause vertices uk have degree at
most one since they are not adjacent to degree-one vertices. Together, this means
that all clause vertices uk are incident to exactly one edge in S.

We now construct an assignment β and show that it satisfies ϕ. To this end,
let β(xi) = TRUE if and only if S contains the edge ukv6j

i for some j, k ∈ N.
Note that, if S contains the edge ukv6j

i for any j, k ∈ N then, by Corollary 1,
v6j

i has degree two in (V, Svar
i ). Then, by Corollary 2, S cannot contain the edge

uk′v6j+2
i for any j′, k′ ∈ N. Thus, β is well-defined. It remains to show that β

satisfies ϕ. To this end, let Ck be any clause in ϕ, let ukz be the unique edge
incident with uk in S and let xi be the variable whose variable cycle contains z.
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If xi occurs non-negated in Ck, then z = v6j
i for some j ∈ N by construction.

But then, β(xi) = TRUE and xi satisfies Ck. If xi occurs negated in Ck, then
z = v6j+2

i for some j ∈ N by construction. But then, β(xi) = FALSE and xi

satisfies Ck. In both cases, Ck is satisfied. �	

B Collections of Block that are not Clean

Many of the software we studied produced blocks that were not clean, containing
blocks with overlapping segments. We removed overlapping segments by visiting
pairs of blocks in an arbitrary order, removing the overlap between their over-
lapping segments. Although the order in which overlaps are removed can effect
the final set of blocks, we made the process deterministic by visiting the pairs
in a fixed order.

C Segmental Duplications

If some method makes orthology predictions that may contain multiple segments
from the same genome (e.g. clusters of orthologous groups that contain paralogs
from a single genome), the block graph may provide insight into how to refine
the orthology groups using blocks from another method. This section outlines
such a case.

When a block A ∈ A contains multiple segments from multiple genomes,
blocks from another set B1, B2 ∈ B could overlap in ways that create non-star
graph topologies. Figure 8 shows one such example.

A1

A1 A1

A1

Fig. 8. The block A1 ∈ A has two (duplicated) segments in genomes g1 and g2. The
blocks B1, B2 ∈ B each overlap with one of the two copies. This configuration creates
the non-star topology depicted in the middle. The block A1 can easily be split into two
so that the graph becomes only stars. This results in a refinement of the blocks of A,
based on the blocks of B.

Blocks B1 and B2 each overlap one of the two duplicate copies of A1 in
genomes g1 and g2. The block A1 can be split into two blocks A1′ and A1′′ such
that the collections {A1′, A1′′, A2, A3} and B are hierarchically related. The two
connected components of BG({A1′, A1′′, A2, A3},B) are both stars with vertices
{A2, B2, A1′} and {A1′′, B1, A3}. This transformation can be generalized to
vertices of higher degree, as long as the overlapping segments can be split in this
way.
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