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A Faster Algorithm for Computing the Kernel of 
Maximum Agreement Subtrees 

Biing-Feng Wang and Krister M. Swenson 

Abstract—The maximum agreement subtree method determines the consensus of a collection of phylogenetic 
trees by identifying maximum cardinality subsets of leaves for which all input trees agree. The trees induced by 
these maximum cardinality subsets are maximum agreement subtrees (MASTs). A single MAST may be 
misleading, since there can exist two MASTs which share almost no leaves; nevertheless, it may be impossible to 
inspect all MASTs, since the number of MASTs can be exponential in the number of leaves. To overcome this 
drawback, Swenson et al. suggested to further summarize the information common to all MASTs by their 
intersection, which is called the kernel agreement subtree (KAST). The construction of the KAST is the focus of 
this paper. Swenson et al. had an O(kn3 + n4 + nd+1) time algorithm for computing the KAST of k trees on n leaves, 
in which at least one tree has maximum degree d. In this paper, an O(kn3 + nd)-time algorithm is presented. We 
demonstrate the efficiency of our algorithm on simulated trees as well as on ribosomal RNA alignments, where 
trees with 13,000 taxa took only hours to process, whereas the previous algorithm did not terminate after a week 
of computation. 

Index Terms— Algorithms, phylogenetic trees, consensus trees, agreement subtrees 
 
1. Introduction 

The reconstruction of evolutionary relationships among 
sets of genes or sets of species is fundamental. These relation-
ships often take the form of a phylogenetic tree. When com-
bined with geographical data, phylogenies are essential to un-
derstanding the movements and interactions of populations 
[12]. When combined with geographical and temporal data, 
they are essential to understanding the spread of epidemics 
[22]. While the utility of phylogenies is evident in areas like 
phylogeography and epidemiology, they are also at the heart 
of seemingly less related fields like functional genomics. In-
deed, large-scale studies linking a biological trait to a function 
rely on phylogenetic relationships to differentiate between 
"Selected Effect" and "Causal Role" [26]. 

It is, however, often difficult to find the true phylogenetic 
tree for a set of taxa. Many methods for constructing phylo-
genetic trees have been proposed, and many different evolu-
tionary characters can be considered [11], [17], [23], [24], 
[40]. The use of different methods or different evolutionary 
characters, however, may result in different trees on the same 
set of taxa. These trees need to be compared or summarized. 

One approach is to calculate a numerical index of agree-
ment or a distance between rival trees. Many tree comparison 
metrics have been proposed for this purpose, such as the co-
phenetic correlation coefficient [41], the path-difference dis-
tance [43], [47], the nearest-neighbor interchange (NNI) dis-
tance [14], [48], the Robinson-Foulds (RF) distance [15], [39], 
the quartet distance [8], and the matching distance [33]. 

Another approach is to compute a new tree that represents 
the information shared by the rival trees. Such an approach is 
called a consensus method and the computed tree is called a 

consensus tree. Since Adams [2] introduced the first consen-
sus method in 1972, a great variety of different consensus 
methods have been developed and studied. Interested readers 
may refer to [6], [9] for excellent surveys. 

Most consensus methods assume that all the input trees 
have equal taxon sets, and output a tree having the same taxon 
set as the input trees. Two widely-used examples are the strict 
consensus tree and the majority-rule consensus tree [36]. Re-
moving an edge from a phylogenetic tree yields a bipartition 
of the entire taxon set. The strict consensus tree contains ex-
actly those bipartitions common to all input trees while the 
majority-rule consensus tree contains exactly those biparti-
tions that appear in more than half of the input trees. 

A rogue leaf in a collection of phylogenetic trees is one 
whose position is obviously different from tree to tree. These 
two consensus methods are susceptible to the presence of 
rogue leaves. Even a small number of rogue leaves may sub-
stantially increase tree distances, and deteriorate the resolu-
tions (i.e. the number of internal edges) of the strict and ma-
jority-rule consensus trees [1], [38], [45], [49]. 

One way to overcome the problem caused by rogue leaves 
is to use a consensus subtree method, which allows some taxa 
to be removed from the input trees. The most popular of such 
methods is the agreement subtree method, introduced by 
Finden and Gordon [25]. This method determines the consen-
sus of a collection of trees by identifying maximum cardinal-
ity subsets of leaves for which all input trees agree. The trees 
induced by these maximum cardinality subsets are maximum 
agreement subtrees (MASTs). The problem of constructing 
MASTs has been extensively studied in the literature [3], [7], 
[13], [18]–[21], [25], [27], [29], [30], [32], [44]. 

The agreement subtree method avoids the problem caused 
by rogue leaves. However, unlike the strict and majority-rule 
consensus trees, MASTs of a collection of trees are not nec-
essarily unique. The number of MASTs can be exponential in 
the number of leaves [30] and there can exist two MASTs 
which share almost no leaves [45]. Therefore, the agreement 
subtree method has the following disadvantage: using a single 
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MAST to represent the information shared by rival trees can 
be misleading, while it may be impossible to inspect all 
MASTs. 

Aiming at providing a baseline method to report a subtree 
of high confidence that is not susceptible to rogue leaves, 
Swenson et al. [45] suggested using the summary of the in-
formation common to all MASTs, as represented by their in-
tersection. This is called the kernel agreement subtree (KAST). 
Like the agreement subtree, this new consensus subtree 
method avoids the problem caused by rogue leaves. In addi-
tion, as with the strict consensus tree, it reports a single sub-
tree of highest confidence. Experimental results showed that 
the KAST can be used as a baseline method to find subtrees 
of confidence, to report subsets of input trees for which we 
are confident, and to be an indicator of randomness in the in-
put [45]. In summary, the KAST is complementary to the 
strict consensus tree, since it reports a leaf set of high confi-
dence while the strict consensus tree reports an edge set of 
high confidence. 

A fast algorithm for computing the KAST is of interest. In 
the age of modern phylogenetic inference researchers are now 
addressing datasets with thousands [5], [31], [35], or even 
tens-of-thousands of taxa [34], and equally as many trees [50] 
derived from diverse evolutionary characters [46]. Version 
4.0a123 of the popular phylogenetic program PAUP* [46] in-
cludes an implementation of the KAST that does not scale to 
datasets of these sizes. 

The focus of this paper is speeding up the construction of 
the KAST. Let T be a set of k phylogenetic trees on a set of n 
taxa. Assume that at least one of the trees in T has degree 
bounded by a constant d. The current best known algorithms 
for finding a MAST of T are due to Farach et al. [19] and 
Bryant [7], which require O(kn3 + nd) time. Although the num-
ber of all MASTs can be exponential, Swenson et al. [45] 
showed that the KAST of T can be computed in polynomial 
time through a modification of Bryant's MAST algorithm. 
They did not analyze the complexity of their algorithm, yet 
claimed a running time similar to that of Bryant’s by ignoring 
the time necessary to compute set operations. In Section 4, a 
detailed analysis is given, which shows that their algorithm 
takes O(kn3 + n4 + nd+1) time. In this paper, a faster algorithm 
is presented. The presented algorithm requires O(kn3 + nd) 
time, which matches the current best upper bound for the 
MAST problem. 

The experimental section applies our algorithm to simu-
lated data, where rogue taxa are added to a fixed topology. On 
a pair of trees with 2,000 taxa our new algorithm is on average 
over 40 times faster than the previous, and uses more than an 
order of magnitude less RAM. The importance of our innova-
tion is glaring when applying our algorithm to trees produced 
from large ribosomal RNA alignments. Four of these tests did 
not terminate using the old algorithm, after a week of compu-
tation using more than 100 gigabytes of RAM on a server. Our 
new algorithm took at most 8 hours and 9 gigabytes of RAM 
for all datasets. A positive side effect of our new algorithm 
is significant savings in memory consumption. 

The remainder of this paper is organized as follows. Sec-
tion 2 introduces notation and definitions. Section 3 reviews 
Bryant's MAST algorithm. Section 4 describes Swenson et 
al.'s KAST algorithm. Section 5 gives a faster algorithm for 

the KAST problem, which requires O(kn3 + n4 + nd) time. For 
d  4, the algorithm in Section 5 is as fast as the current best 
MAST algorithms. However, for the cases of d = 2 and 3, it is 
slower by a factor of n. We note that these are the most im-
portant special cases, because in practice, phylogenetic trees 
usually have very small degrees, typically no larger than three 
[3]. Section 6 shows how to solve the KAST problem in O(kn3 
+ nd) time. Section 7 presents our experimental results, while 
Section 8 concludes the paper. 
 
2. Notation and definitions 

A phylogenetic tree is a tree in which the leaves are 
uniquely labeled by a set of taxa. For convenience, a leaf of a 
phylogenetic tree is simply identified with its label. A phylo-
genetic tree can be rooted or unrooted. In this paper, only 
rooted trees are considered. The degree of a node is its num-
ber of children. We assume that the degree of every non-leaf 
node is at least two, so that the number of non-leaf nodes is 
bounded by the number of leaves. As in all MAST literature, 
a node with degree d greater than two is considered a "hard 
polytomy", the alternative being a "soft polytomy" which am-
biguously represents all possible tree topologies on the d chil-
dren. 

Consider a phylogenetic tree T. If the path from a node a 
to the root passes through a node b, we call b an ancestor of 
a and call a a descendant of b. A proper descendant of a node 
v is a descendant of v which is not v itself. A proper ancestor 
is defined similarly. For any two nodes a, b of T, the lowest 
common ancestor (LCA) of a and b is the ancestor of a and b 
that is a descendant of all ancestors of a and b. For any subset 
S of the leaves of T, we follow convention by denoting T|S as 
the subtree of T induced by S. T|S is the tree with leaf set S and 
interior node set {x : x is the LCA of some pair of leaves in S} 
inheriting the ancestor relation from T (i.e. for all a, b  S, the 
LCAs of a, b in T and T|S are the same). Two trees T1 and T2 

on the same label set are isomorphic if there is a 1-1 mapping 
between their internal nodes such that the LCA of any two 
leaves a, b in T1 is mapped to the LCA of a, b in T2. 

Let T = {T1, T2, ..., Tk} be a set of phylogenetic trees on 
the same set L of n labels. Throughout this paper, we assume 
that at least one of the trees in T has maximum degree d, 
where d  2 is a constant. An agreement subtree of T is a tree 
T such that T, T1|S, T2|S, ..., and Tk|S are mutually isomorphic, 
where S is the leaf set of T. The leaf set of an agreement sub-
tree is called an agreement set. The size of an agreement sub-
tree is the cardinality of its leaf set. A maximum agreement 
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Figure 1. The three MASTs of T = {T1, T2}. 
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subtree (MAST) is an agreement subtree of maximum size. 
For example, for the set T = {T1, T2} in Figure 1(a), the three 
MASTs of T are depicted in Figure 1(b). The MAST problem 
is to find a MAST of T. The kernel agreement subtree (KAST) 
of T, denoted by KAST(T), is the intersection of the leaf sets 
of all MASTs of T. For example, in Figure 1, we have 
KAST(T) = {a, b, d, e, f} ⋂	{a, c, d, e, f} ⋂	{b, c, d, e, f} = {d, 
e, f}. The KAST problem is to compute the KAST of T. 

In the following, we introduce some notation and defini-
tions that are used throughout this paper. Let T be a phyloge-
netic tree. The leaf set of T is denoted by L(T). For each node 
v, the subtree rooted at v is denoted by T(v) and the subtrees 
rooted at the children of v are called the subtrees of v. The 
subtrees of the root are the maximal subtrees of T. Let a, b, c 
be three leaves of T. Figure 2 depicts the four possible topol-
ogies of the subtree induced by {a, b, c}. For the first three 
cases, we say that a, b, c form a rooted triple in T. We use 
ab|c to denote the rooted triple in which the LCA of a, b is a 
descendant of the LCA of a, c. For the last case, we say that 
a, b, c form a fan triple in T and use (a, b, c) to denote the fan 
triple. A set S  L(T) is a fan set of T if in the induced tree T|S 
all the leaves are children of the root. For example, in T2 of 
Figure 1, both {a, b, c} and {a, d, f} are fan sets.  

For a pair (a, b)  L2, we use lcai(a, b) to denote the LCA 
of a, b in a tree Ti  T and use lca*(a, b) to denote the se-
quence (lca1(a, b), lca2(a, b), ..., lcak(a, b)). The set of all 
rooted triples common to all trees in T is denoted by R and 
the set of all fan triples common to all trees in T is denoted 
by F. A set is called a fan set of T if it is a fan set of every 
tree in T. Since at least one tree has maximum degree d, it is 
easy to see that any fan set of T has size at most d. 

 
3. Bryant's MAST algorithm 

This section reviews Bryant's MAST algorithm. For brev-
ity, only the computation for the size of a MAST of T, denoted 
by mast(T), is described. The following lemma provides the 
basis of Bryant's algorithm. 
Lemma 3.1. [7] A tree T is an agreement subtree of T if and 
only if r(T)  R and f(T)  F, where r(T) and f(T) are, re-
spectively, the set of rooted triples and the set of fan triples in 
T. 

For each pair (a, b)  L2, define the following: 
A(a, b): the set of agreement subtrees of T in each of which 

a, b are leaves and the LCA of a, b is the root; 
m(a, b): the size of the largest trees in A(a, b); and 
M(a, b): the set of largest trees in A(a, b). 

Clearly, mast(T) is the maximum value of m(a, b) over all 
(a, b)  L2. Thus, to compute mast(T), it suffices to compute 
m(a, b) for every (a, b)  L2. 

Bryant's algorithm computes all m(a, b) by dynamic pro-
gramming. It determines m(a, b) before m(a', b') if in T1 the 
LCA of a, b is a proper descendant of the LCA of a', b'. We 

proceed by discussing the computation for a fixed pair (a, b) 
 L2. If a = b, we simply have m(a, b) = 1. Assume that a  
b. Consider a tree Q  M(a, b). Since the LCA of a, b is the 
root of Q, we know that a and b are in different maximal sub-
trees of Q. Let Qa be the maximal subtree containing a, Qb be 
the maximal subtree containing b, and Q1, Q2, ..., Qr be the 
remaining maximal subtrees, if there are any. Note that r  d 
 2, since at least one tree in T has maximum degree d. For 1 
 j  r, let cj be any leaf of Qj. 

For 1  i  k, let i = lcai(a, b). By the definition of M(a, 
b), Q is a largest agreement subtree of {Ti(i) : 1  i  k} under 
the condition that a and b should be contained in an agreement 
subtree. Since {a, b, c1, c2, ..., cr} is a fan set of Q, according 
to Lemma 3.1, we know that in each Ti, 1  i  k, the leaves 
a, b, c1, c2, ..., and cr are in different subtrees of i. As a result, 
the sizes of Qa, Qb, Q1, Q2, ..., and Qr can be discussed indi-
vidually. 

Consider the subtree Qa first. For 1  i  k, let Ai be the 
subtree containing a that is rooted at a child of i. Then, Qa is 
a largest agreement subtree of {Ai : 1  i  k} under the con-
dition that a should be contained in an agreement subtree. Let  

X(a|b) = {x : ax|b  R} ⋃ {a}. 
Note that X(a|b) is the set of common labels of A1, A2, ..., Ak 
and thus only the labels in X(a|b) can be leaves of an agree-
ment subtree of {Ai : 1  i  k}. Clearly, under the condition 
that a should be contained in an agreement subtree, a tree T is 
an agreement subtree of {Ai : 1  i  k} if and only if T  A(a, 
x) for some x  X(a|b). Therefore, the size of Qa can be com-
puted as 
 m(a|b) = max{m(a, x) : x  X(a|b)}. 
Similarly, the size of Qb can be computed as m(b|a) and the 
size of each Qj, 1  j  r, can be computed as m(cj|a) (or 
m(cj|b)). Consequently, given c1, c2, ..., cr, the size of Q can be 
computed as 
 m(a|b) + m(b|a) + 1jr m(cj|a). 

We proceed by deriving a recurrence for m(a, b). Let C(a, 
b) = {c : (a, b, c)  F}. If C(a, b) is empty, all trees in A(a, 
b) are binary and thus we have 

 m(a, b) = m(a|b) + m(b|a). 
Assume that C(a, b) is not empty. Define G(a, b) to be a graph 
in which for each c  C(a, b) there is a vertex c with weight 
m(c|a) and for every pair (u, v) of vertices, there is an edge 
between u and v if and only if (a, u, v)  F. A clique in a graph 
is a subset of the vertices such that every two distinct vertices 
in the clique are connected by an edge. By the definition of 
G(a, b), a set U is a clique in G(a, b) if and only if {a, b}  
U is a fan set of {Ti(i) : 1  i  k}. As a result, it can be 
concluded that the value of m(a, b) is m(a|b) + m(b|a) + w if 
and only if w is the maximum total weight of any clique in 
G(a, b). Therefore,  

m(a, b) = m(a|b) + m(b|a) + cS m(c|a), (1) 
where S is a maximum weight clique in G(a, b). Bryant's al-
gorithm for computing each m(a, b) is formally described as 
follows. 
Procedure FINDMAST(a, b) 
input: (a, b)  L2 
output: m(a, b) 
begin 

(a, b, c) 

a b 

c 
a b c

ab|c ac|b bc|a 
Figure 2. Rooted and fan triples. 
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1. if a = b then return 1  
2. m(a|b)  max{m(a, x) : x  X(a|b)} 
3. m(b|a)  max{m(b, x) : x  X(b|a)} 
4. for each c  C(a, b) do 
5.  m(c|a)  max{m(c, x) : x  X(c|a)} 
6. S  a maximum weight clique in G(a, b) 
7. m(a, b)  m(a|b) + m(b|a) + cS m(c|a) 
8. return m(a, b) 
end 

The time complexity of FINDMAST is analyzed as follows. 
Lines 1-3 require O(n) time. Lines 4-5 require O(|C(a, b)|  n) 
= O(n2) time. The finding of a maximum weight clique in Line 
6 is done by considering all subsets {c1, c2, ..., cl} of C(a, b), 
where 0  l  d  2. Since |C(a, b)|  n and d is a constant, the 
number of such subsets is at most 0ld2  = O(nd2). Each 
subset can be checked in O(d2) = O(1) time. Thus, Line 6 re-
quires O(nd2) time. Line 7 requires O(d) = O(1) time. There-
fore, the time complexity of FINDMAST is O(n2 + nd2). 

To solve the MAST problem, FINDMAST is called for 
every (a, b)  L2. As a result, a total of O(n2  (n2 + nd2)) = 
O(n4 + nd) time is required. The n4 term is contributed by 
Lines 4-5, which computes m(c|a) for each c  C(c, b). This 
term can be reduced to n3 by simply avoiding the work of re-
computing the value of m(c|a) for the same pair of (c, a). 
Therefore, the total time spent on computing the values of all 
m(a, b) is O(n3 + nd). The construction of R and F takes O(kn3) 
time [7]. Consequently, the following is obtained.  

Theorem 3.1. [7] The MAST problem on a set of k trees can 
be solved in O(kn3 + nd) time, where n is the size of the trees 
and at least one tree has maximum degree d. 
 
4. Swenson et al.'s KAST algorithm 

Swenson et al. solved the KAST problem through a mod-
ification of Bryant's MAST algorithm. Let M(, ), m(, ), 
m(|), C(, ) be defined the same as in Section 3. For each pair 
(a, b)  L2, define  
 K(a, b) = ⋂QM(a, b) L(Q). 
Then, the KAST of T is the intersection of all K(a, b) such 
that m(a, b) = mast(T). Thus, the KAST problem can be 
solved by computing K(a, b) for every (a, b)  L2. 

Consider the computation of K(a, b) for a fixed pair (a, b) 
 L2. For convenience, define  

 X*(a|b) = {x : x  X(a|b), m(a, x) = m(a|b)} and 
 K(a|b) = ⋂xX*(a|b) K(a, x). (2) 
For example, consider the set T = {T1, T2}, where T1 = (((((((a, 
w), x), p), y), z), q), (b, c)) and T2 = ((((((((a, w), z), y), q), x), 
p), c), b). In this example, X(a|b) = {p, q, x, y, z, w}, m(a, w) 
= 2, m(a, x) = m(a, y) = m(a, z) = 3, and m(a, p) = m(a, q) = 4. 
Hence, m(a|b) = 4 and X*(a|b) = {p, q}. Since M(a, p) = {(((a, 
w), x), p)} and M(a, q) = {(((a, w), y), q), (((a, w), z), q)}, we 
have K(a, p) = {a, w, x, p} and K(a, q) = {a, w, y, q}  {a, w, 
z, q} = {a, w, q}. Thus, K(a|b) = K(a, p)  K(a, q) = {a, w}. 
 If a = b, we have K(a, b) = {a}. Assume that a  b. By 
definition, K(a, b) is the set of leaves common to all trees in 
M(a, b). Consider the case that C(a, b) is empty. In this case, 
all trees in M(a, b) are binary trees. Under the condition that 
a should be contained in an agreement subtree, the set of all 
maximum agreement subtrees of T on the leaf set X(a|b) is  
 M(a|b) = {Q : Q  M(a, x), x  X*(a|b)}. (3) 

Similarly, under the condition that b should be contained in 
an agreement subtree, the set of all maximum agreement sub-
trees of T on the leaf set X(b|a) is M(b|a). It can be shown 
that a tree Q  A(a, b) is in M(a, b) if and only if one of its 
maximal subtrees is in M(a|b) and the other is in M(b|a). 
Since X(a|b) and X(b|a) are disjoint, we have 

K(a, b)  
= ⋂QM(a, b) L(Q) 
=  (⋂QM(a|b) L(Q)) ⋃ (⋂QM(b|a) L(Q)) 
= (⋂xX*(a|b)(⋂QM(a,x) L(Q))) ⋃ (⋂xX*(b|a)(⋂QM(b,x) L(Q))) 
= (⋂xX*(a|b) K(a, x)) ⋃ (⋂xX*(b|a) K(b, x)) 
= K(a|b) ⋃ K(b|a). 

We proceed by discussing the case where C(a, b) is not 
empty. Let G(a, b) be defined the same as in Section 3. Let S 
= {c1, c2, ..., cr} be a maximum weight clique in G(a, b). De-
fine Q*(S) to be the set of trees that can be constructed as fol-
lows: choose an arbitrary tree from each of M(a|b), M(b|a), 
M(c1|a), M(c2|a), ..., and M(cr|a); and then create a new ver-
tex and make the roots of the chosen trees as its children. Ac-
cording to (1), any member of Q*(S) is a tree in M(a, b).  

Consider the computation of ⋂QQ*(S) L(Q). For a set H of 
trees, let L*(H) denote the union of the leaf sets of the trees 
in H. By the definitions of M(|) and G(a, b), we know that 
L*(M(a|b)), L*(M(b|a)), L*(M(c1|a)), L*(M(c2|a)), ..., and 
L*(M(cr|a)) are pairwise disjoint. Furthermore, by the defini-
tion of Q*(S), any tree in the sets M(a|b), M(b|a), M(c1|a), 
M(c2|a), ..., and M(cr|a) is necessarily contained in some tree 
in Q*(S). Therefore,  
	⋂QQ*(S) L(Q)  

 =  (⋂QM(a|b) L(Q)) ⋃ (⋂QM(b|a) L(Q)) ⋃		
	 	 	 	 ⋃cS (⋂QM(c|a) L(Q))) 
= (⋂xX*(a|b)(⋂QM(a,x) L(Q))) ⋃ (⋂xX*(b|a)(⋂QM(b,x) L(Q))) ⋃ 
	 	 	 ⋃cS(⋂xX*(c|a) (⋂QM(c,x) L(Q)))) 
= (⋂xX*(a|b)K(a, x)) ⋃ (⋂xX*(b|a) K(b, x)) ⋃	
    ⋃cS(⋂xX*(c|a) K(c, x))) 
= K(a|b) ⋃ K(b|a) ⋃	 ⋃cS K(c|a)).  
Let S*(a, b) be the set of maximum weight cliques in G(a, b). 
It can be shown that for any agreement subtree Q in M(a, b), 
there exists at least a clique S in S* such that Q  Q*(S). Con-
sequently, we have the following recurrence: 
 K(a, b) 
=  ⋂QM(a, b) L(Q) 
	 ⋂SS*(a, b) (⋂QQ*(S) L(Q)) 

= ⋂SS*(a, b) (K(a|b) ⋃ K(b|a) ⋃	 ⋃cS K(c|a))) 
= K(a|b) ⋃ K(b|a) ⋃	(a, b), (4) 
where	
 (a, b)	 	⋂SS*(a, b) ⋃cS K(c|a)). (5) 

Swenson et al.'s algorithm for computing each K(a, b) is for-
mally described as the following procedure. 
Procedure FINDKAST(a, b) 
input: (a, b)  L2 
output: K(a, b) 
begin 
1. if a = b then return {a}  
2. K(a|b)  ⋂xX*(a|b) K(a, x) 
3. K(b|a)  ⋂xX*(b|a) K(b, x) 
4. for each c  C(a, b) do 
5.  K(c|a)  ⋂xX*(c|a) K(c, x) 
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6. (a, b)  ⋂SS*(a, b) ⋃cS K(c|a)) 
7. K(a, b)  K(a|b) ⋃ K(b|a) ⋃	(a, b) 
8. return K(a, b) 
end 

Assume that R, F, and all m(a|b) and m(a, b), where (a, b) 
 L2, have been computed by performing Bryant's algorithm. 
The time complexity of FINDKAST is analyzed as follows. 
Line 1 takes O(1) time. Lines 2-5 compute the following sets: 
K(a|b), K(b|a), and K(c|a) of each c  C(a, b). According 
to (2), each of these sets needs a sequence of O(n) set inter-
section operations to compute. A set operation requires O(n) 
time. Therefore, the running time of Lines 2-5 is O((|C(a, b)| 
+ 2)  n  n) = O(n3). Lines 6 and 7 compute K(a, b) accord-
ing to (4) and (5). The computation of (a, b) in Line 6 needs 
a sequence of O(d  |S*(a, b)|) = O(nd2) set union and set in-
tersection operations. Therefore, Line 6 requires O(nd1) time. 
Line 7 takes O(n) time. As a result, the overall running time 
of Lines 6-7 is O(nd1). 

To solve the KAST problem, FINDKAST is called for every 
(a, b)  L2. For convenience, we say that the total running 
time of Lines 2-5 of FINDKAST(a, b) over all (a, b)  L2 is 
spent on computing all K(a|b) and the total running time of 
Lines 6-7 of FINDKAST over all (a, b)  L2 is spent on com-
puting all K(a, b). For a fixed pair (a, b), Lines 2-5 require 
O(n3) time. However, the time spent on computing all K(a|b) 
is O(n4), instead of O(n5), since we only need to compute 
K(a|b) once for each distinct (a, b). For a fixed pair (a, b), 
Lines 6-7 requires O(nd1) time. Therefore, the time spent on 
computing all K(a, b) is O(nd+1). Bryant's algorithm for com-
puting R, F, and all m(a|b) and m(a, b) requires O(kn3 + nd) 
time. Consequently, we obtain the following. 
Theorem 4.1. [45] The KAST problem on a set of k trees can 
be solved in O(kn3 + n4 + nd+1) time, where n is the size of the 
trees and at least one tree has maximum degree d. 

An important case of the KAST problem is the case when 
the given trees are binary trees. For this case, the following is 
obtained. 
Corollary 4.1. [45] The KAST problem on a set of k binary 
trees can be solved in O(kn3 + n4) time, where n is the size of 
the trees. 

 
5. An O(kn3 + n4 + nd)-time KAST algorithm 

A bottleneck of the algorithm in Section 4 is the computa-
tion of (a, b) in Line 6 of FINDKAST. According to (5), com-
puting each (a, b) needs O(nd2) set operations. In this sec-
tion, we improve the upper bound of the KAST problem to 
O(kn3 + n4 + nd) by showing that each (a, b) can be com-
puted by using amortized O(1) set operations. 

Consider the computation of (a, b) for a fixed pair (a, b) 
 L2. As in Section 3, for 1  i  k, we define i to be lcai(a, 
b). For a tree Ti(i), 1  i  k, and a leaf l of Ti(i), we use (i, 

l) to denote the subtree of i that contains l. For example, in 
Figure 3, (1, x) = H1, (2, x) = I3, and (3, x) = J1. Let G(a, 
b), S*(a, b) and Q*(S) be defined the same as in Section 4. Our 
first intent is to avoid redundant set operations for computing 
(a, b) by utilizing the topological structure of T1(1). We 
start with the following two simple observations. 
Lemma 5.1. Any clique in G(a, b) contains at most one leaf 
of each subtree of 1. 
Proof. Let S  C(a, b) be a set containing two leaves, say u and 
v, of a subtree of 1. In G(a, b), there is an edge between u and v 
if and only if (a, u, v)  F. Since uv|a is a rooted triple of T1, we 
have (a, u, v)  F. Thus, S is not a clique in G(a, b) and the 
lemma holds.  
Lemma 5.2. Let S be a clique in S*(a, b). A leaf l  L can be 
contained in a tree Q  Q*(S) only if there is leaf s  {a, b} 
⋃ S such that l and s are in the same subtree of i for every i 
= 1, 2, ..., k. 
Proof. According to the construction of the trees in Q*(S), Q 
is made up by taking a tree from M(a|b), a tree from M(b|a), 
and a tree from M(s|a) for each s  S. The trees in M(a|b) are 
agreement subtrees of {(i, a) : 1  i  k} and thus contain 
only leaves common to all (i, a), 1  i  k. Similarly, the trees 
in M(b|a) contain only leaves common to all (i, b), 1  i  k, 
and for each s  S the trees in M(s|a) contain only leaves com-
mon to all (i, s), 1  i  k. Therefore, a leaf l  L can be 
contained in a tree Q  Q*(S) only if there exists a leaf s  {a, 
b} ⋃ S such that l is in (i, s) for every i = 1, 2, ..., k. Thus, 
the lemma holds.        

For convenience, if a clique S in G(a, b) contains a leaf of 
a subtree H of 1, we say that S uses H. For example, in Figure 
3, S = {z, v} is a clique in G(a, b) and it uses H1 and H3. We 
have the following.  
Lemma 5.3. Let H be a subtree of 1 that contains neither a 
nor b. If H is not used by all cliques in S*(a, b), then K(a, b) 
does not contain any leaf of H. 
Proof. Assume that H is not used by a clique S  S*(a, b). By 
definition, K(a, b) is the set of leaves common to all trees in 
M(a, b). This lemma can be proved by showing that there 
exists a tree Q  M(a, b) that does not contain any leaf of H. 
Let Q  Q*(S) be a tree. Note that any member of Q*(S) is a 
tree in M(a, b). Consider any leaf l of H. Since a and b are 
not in H and H is not used by S, leaf l is not in (1, s) for all s 
 {a, b} ⋃ S. As a result, by Lemma 5.2, Q does not contain 
any leaf of H. Thus, the lemma holds.  
 For each subtree H of 1, let C(a, b, H) be the set of leaves 
in H that are contained in some clique in S*(a, b). That is,  
 C(a, b, H) = ⋃SS*(a, b) (L(H) ∩ S).  
For convenience, we say that some leaves of L are coherent 
with respect to (a, b) if they are in the same subtree of i for 
every i = 1, 2, ..., k. For example, in Figure 3, x and y are 
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Figure 3. An illustration.
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coherent; but x, y, and z are not, since in T2, they are not con-
tained in the same subtree of 2. According to Lemma 5.3, in 
the computation of K(a, b), we can ignore any subtree of 1 
that contains neither a nor b and is not used by all cliques in 
S*(a, b). The following lemma allows us to identify more sub-
trees that can be ignored.  
Lemma 5.4. Let H be a subtree of 1 that is used by all cliques 
in S*(a, b). If C(a, b, H) contains two leaves that are not co-
herent with respect to (a, b), then the set K(a, b) does not 
contain any leaf of H. 
Proof. Assume that there are two leaves, say c and c', in C(a, 
b, H) that are not coherent with respect to (a, b). In the fol-
lowing, we prove this lemma by showing that there are two 
trees Q, Q'  M(a, b) such that L(Q)	⋂	L Q') does not contain 
any leaf in H. 
 By the definition of C(a, b, H), there are two cliques, say 
S and S', in S*(a, b) such that S contains c and S' contains c'. 
Note that S  S', since by Lemma 5.1 each of S and S' contains 
at most one leaf of H. Let Q be a tree in Q*(S) and Q' be a tree 
in Q*(S'). Consider a leaf l in H. By Lemma 5.1, c is the 
unique leaf of S that is in H. Thus, c is the only leaf of S such 
that c and l are in the same subtree of 1. Consequently, ac-
cording to Lemma 5.2, l can be contained in Q only if l and c 
are coherent with respect to (a, b). Similarly, l can be con-
tained in Q' only if l and c' are coherent with respect to (a, b). 
Since c and c' are not coherent with respect to (a, b), we know 
that l cannot be a leaf of both Q and Q'. The lemma holds. 

Let Valid(a, b) = {H : H is a subtree of 1 used by all 
cliques in S*(a, b) and all leaves in C(a, b, H) are coherent}. 
According to (4), K(a, b) is the union of three disjoint sets 
K(a|b), K(b|a), and (a, b). The leaves of K(a|b) and K(b|a) 
are contributed, respectively, by the subtree of 1 that con-
tains a and the subtree of 1 that contains b; and the leaves of 
(a, b) are contributed by the subtrees of 1 that contain nei-
ther a nor b. By Lemmas 5.3 and 5.4, if a subtree H of 1 
contains neither a nor b, K(a, b) contains a leaf of H only if 
it is in Valid(a, b). Thus, it can be concluded that only the sub-
trees in Valid(a, b) can give leaves to (a, b). Therefore, the 
right side of equation (5) can be simplified as follows:  
 ⋂SS*(a, b) ⋃cS K(c|a)) 
= ⋂SS*(a, b) ⋃cS and (1, c)Valid(a, b) K(c|a)) 
= ⋂SS*(a, b) ⋃HValid(a, b), cS⋂L H 	K(c|a)) 
= ⋃HValid(a, b)	 ⋂SS*(a, b), cS⋂L H  K(c|a)) 
   (since the subtrees of 1 are mutually disjoint) 
= ⋃HValid(a, b)	 ⋂cC(a, b, H) K(c|a)) 
   (since C(a, b, H) = ⋃SS*(a, b) (L(H) ∩ S)). 

Consequently, (5) can be written as 
 (a, b)	= ⋃HValid(a, b)	a(C(a, b, H)),  (6)	

where for any U  L,  
 a(U) = ⋂cU K(c|a).  (7) 

 Clearly, according to (6) and (7), the number of set opera-
tions required for computing each (a, b)	is reduced to O(n). 
Consequently, the total number of set operations required to 
compute (a, b) for all (a, b)  L2 is O(n3). In the following, 
by further utilizing the topological structure of each input tree, 
we show that the total number of required set operations can 
be reduced to O(n2). More specifically, we show that for each 
a  L, O(n) set operations are sufficient for computing (a, 

b) for all b  L. 
 Consider a fixed a  L. According to (6), to compute (a, 
b) for all b  L, it suffices to compute a(C(a, b, H)) for all 
b  L and all H  Valid(a, b). If we compute (a, b) for all b 
 L individually according to (4) and (5), it may happen that 
a(U) is computed many times for the same set U. For in-
stance, consider the artificial example in Figure 4, in which k 
= 3 and T1(1), T2(2), and T3(3) are isomorphic. In this ex-
ample, it is easy to see that for each b  L(B), we have H  
Valid(a, b) and C(a, b, H) = L(H); and if we compute all (a, 
b) individually according to (4) and (5), a(L(H)) will be 
computed |L(B)| times. Define a to be the following collec-
tion of sets: 

{C(a, b, H) : b  L, H  Valid(a, b)}.  
Then, to compute (a, b) for all b  L, it suffices to compute 
a(U) for all U  a. Our intent is to avoid re-computing the 
content of a(U) for the same set U and to show that O(n) set 
operations are sufficient for computing a(U) for all U  a. 

 For convenience, we say that the subtrees in Valid(a, b) 
are valid for (a, b). We need the following lemma. 
Lemma 5.5. Let H be a subtree of 1 that is valid for (a, b). 
The value of m(c|a) is the same for every c  C(a, b, H). 
Proof. We prove this lemma by contradiction. Suppose that 
there are two leaves c, c'  C(a, b, H) such that m(c|a) < 
m(c'|a). By the definition of C(a, b, H), there is a clique S  
S*(a, b) which contains c. Since H is valid for (a, b), we 
know that c and c' are coherent with respect to (a, b). Thus, 
for each x  C(a, b), we have (a, c, x)  F if and only if (a, 
c', x)  F. As a result, c and c' have the same neighborhood 
in the graph G(a, b). Therefore, S  {c} ⋃ {c'} is clique. Since 
m(c|a) < m(c'|a), this clique, S  {c} ⋃ {c'}, has larger total 
weight than S, contradicting to that S is a maximum weight 
clique in G(a, b). Therefore, the lemma holds  
Lemma 5.6. Let a, b, b' be three leaves. If lca*(a, b)  lca*(a, 
b'), we have C(a, b)  C(a, b') = . 
Proof. Assume that lca*(a, b)  lca*(a, b'). Since lca*(a, b)  
lca*(a, b'), there is a tree Tg such that lcag(a, b)  lcag(a, b'), 
where 1  g  k. Since lcag(a, b)  lcag(a, b') and there is an 
ancestor-descendant relationship between them, there is no 
leaf l such that both (a, b, l) and (a, b', l) are fan triples in Tg. 
By definition, if C(a, b)  C(a, b')  , there exists a leaf l 
such that both (a, b, l) and (a, b', l) are fan triples in Ti for 
every i = 1, 2, .., k. Therefore, it can be concluded that C(a, b) 
 C(a, b') = . Thus, the lemma holds.   
Lemma 5.7 Let a, b, b' be three leaves such that lca*(a, b) = 
lca*(a, b'). Let H be a subtree of 1 = lca1(a, b). If H is valid 
for both (a, b) and (a, b'), then either C(a, b, H)  C(a, b', 
H) =  or C(a, b, H) = C(a, b', H). 
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Proof. Note that since lca*(a, b) = lca*(a, b'), we know that b' 
and a are in different subtrees of i = lcai(a, b) for every i = 
1, 2, ..., k; but b' and b may be in the same subtree or in dif-
ferent subtrees of i. Since H is valid for (a, b), all leaves in 
C(a, b, H) are in the same subtree of i for every i = 1, 2, ..., 
k. Similarly, all leaves in C(a, b', H) are in the same subtree 
of i for every i = 1, 2, ..., k. Two cases are considered. 
Case 1. There is a tree Tg, 1  g  k, such that the leaves in 

C(a, b, H) and C(a, b', H) are in different subtrees of g. 
(See Figure 5(a) for an illustration, in which g = 2.) 
Since the leaves in C(a, b, H) and the leaves in C(a, b', H) 
are contained, respectively, in two disjoint subtrees of g, 
we have C(a, b, H)  C(a, b', H) = . 

Case 2. The leaves in C(a, b, H) and C(a, b', H) are in the 
same subtree of i for every i = 1, 2, ..., k. (See Figure 
5(b).)  

 In the following, we prove that in this case C(a, b, H) = 
C(a, b', H). First, we show that C(a, b, H)  C(a, b', H). 
Consider a leaf c in C(a, b, H). Since H is valid for (a, 
b), there is a clique S  S*(a, b) that contains c. Let S' be 
any clique in S*(a, b'). Since H is valid for (a, b'), set S' 
contains a leaf c'  C(a, b', H). Note that c and c' are in 
the same subtree of i for every i = 1, 2, ..., k. Recall that 
a set U is a clique in G(a, b) if and only if {a, b}  U is a 
fan set of T. Thus, {a, b}  S is a fan set of T. Since S 
contains c and the two leaves c, c' are in the same subtree 
of i for every i = 1, 2, ..., k, we know that {a, b} ⋃ (S  
{c} ⋃ {c'}) is also a fan set of T. That is, S  {c} ⋃ {c'} 
is a clique in G(a, b). Consequently, we have m(c'|a)  
m(c|a); otherwise this clique, S  {c} ⋃ {c'}, has larger 
total weight than S, contradicting to that S is a maximum 
weight clique in G(a, b). Similarly, from the fact that S' is 
a maximum weight clique in G(a, b'), it can also be de-
rived that S'  {c'} ⋃ {c} is a clique in G(a, b') and m(c|a) 
 m(c'|a). As a result, it can be concluded that m(c|a)  
m(c'|a) and S'  {c'} ⋃ {c} is a maximum weight clique in 
G(a, b'). Therefore, c is contained in C(a, b', H). From the 
above discussion, we know that C(a, b, H)  C(a, b', H). 
Similarly, it can be shown that C(a, b', H)  C(a, b, H). 
By combining these two statements, we have C(a, b, H) = 
C(a, b', H), which completes the proof of this lemma. 
  
By combining Lemmas 5.6 and 5.7, the following is ob-

tained. 
Lemma 5.8. Let a, b, b' be three leaves. Let H be a subtree of 
lca1(a, b) that is valid for (a, b) and H' be a subtree of lca1(a, 
b') that is valid for (a, b'). Then, either C(a, b, H)  C(a, b', 
H') =  or C(a, b, H) = C(a, b', H'). 
Proof. If lca*(a, b)  lca*(a, b'), the lemma holds, since by 
Lemma 5.6, we have C(a, b, H)  C(a, b', H')  C(a, b)  
C(a, b') = . Assume that lca*(a, b) = lca*(a, b'). Two cases 
are considered: H  H' and H = H'. If H  H', we know that H 
and H' are two different subtrees of lca1(a, b), since lca1(a, b) 
= lca1(a, b'). Thus, we have C(a, b, H)  C(a, b', H') = . If 
H = H', by Lemma 5.7, either C(a, b, H)  C(a, b', H') =  
or C(a, b, H) = C(a, b', H'), which completes the proof.   
 We proceed to show that for each a  L, O(n) set opera-
tions are sufficient for computing a(U) for all U  a. Recall 
that a = {C(a, b, H) : b  L, H  Valid(a, b)}. Let size(a) 

be the total size of the sets in a. According to (7), for each U 
 a, the number of set operations required for computing 
a(U) is |U|  1. Therefore, the number of set operations re-
quired for computing a(U) for all U  a is less than size(a). 
The following lemma gives an upper bound on size(a). 
Lemma 5.9. For any a  L, size(a)  n  1. 
Proof. Clearly, a  C(a, b, H) for any b  L and H  Valid(a, 
b). By Lemma 5.8, any two sets in a are disjoint. Therefore, 
size(a)  |L  {a}|  n  1 and the lemma holds.   
 According to (4), (6), (7), and Lemma 5.9, a more efficient 
algorithm for computing K(a, b) is given as follows. 
Procedure NEWKAST-1(a, b) 
input: (a, b)  L2 
output: K(a, b) 
begin 
1. if a = b then return {a}  
2. K(a|b)  ⋂xX*(a|b) K(a, x) 
3. K(b|a)  ⋂xX*(b|a) K(b, x) 
4. for each c  C(a, b) do 
5.  K(c|a)  ⋂xX*(c|a) K(c, x) 
6. find Valid(a, b) and compute C(a, b, H) for each subtree 

H  Valid(a, b) 
7. for each H  Valid(a, b) do  
8.  a(U)  ⋂cU K(c|a), where U = C(a, b, H) 
9. (a, b)  ⋃HValid(a, b) a(C(a, b, H)) 
10. K(a, b)  K(a|b) ⋃ K(b|a) ⋃	(a, b) 
11. return K(a, b) 
end 

The detailed implementation of NEWKAST-1 is described 
as follows. Without loss of generality, assume that the maxi-
mum degree of T1 is d. The following lemma gives the time 
complexity of Line 6. 
Lemma 5.10. Given a pair (a, b)  L2, we can find Valid(a, 
b) and compute C(a, b, H) for each H  Valid(a, b) in O(nd2) 
time. 
Proof. For d = 2, since Valid(a, b) is empty, the lemma holds 
trivially. Assume that d  3. We prove this lemma by present-
ing an algorithm. Initially, all subtrees of 1 and all leaves in 
T1(1) are unmarked. This initialization takes O(n) time. First, 
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for each clique S  S*(a, b), we mark all the leaves in S and 
mark all the subtrees of 1 that are not used by S. Since the 
degree of 1 and the size of a clique are both bounded by d, 
this step requires O(d  |S*(a, b)|) = O(nd2) time. Next, for 
each subtree H of 1, we compute C(a, b, H) as the set of 
marked leaves in H. This step requires O(|L(T1(1)|) = O(n) 
time. 
 To find the set Valid(a, b), we need to determine whether 
each subtree of 1 is valid for (a, b). All marked subtrees 
are not valid, since they are not used by all the cliques in S*(a, 
b). Consider an unmarked subtree H. By definition, H is valid 
if all leaves in C(a, b, H) are coherent with respect to (a, b). 
Clearly, two leaves c, c' in H are coherent with respect to (a, 
b) if and only if cc'|a  R. Therefore, we determine whether 
H is valid as follows: pick an arbitrary leaf c  C(a, b, H) and 
then check whether cc'|a  R for all c'  C(a, b, H)  {c}. 
The above checking requires O(|C(a, b, H)|) time. Conse-
quently, the set Valid(a, b) can be found in O(H |C(a, b, H)|) 
= O(|L(T1(1)|) = O(n) time. 
 The above algorithm requires O(nd2) time. Therefore, the 
lemma holds.   

We proceed to describe the implementation of Lines 7 and 
8. By Lemma 5.9, O(n) set operations are sufficient for com-
puting a(U) for all U  a. To avoid re-computation, for 
each leaf a  L, we maintain an array, TABLEa of n entries 
to save the results of computed a(U) and implement the find-
ing of a(U) in Line 8 as follows: first check to see whether 
a(U) has been already computed for U = C(a, b, H); if so, 
use the result stored in TABLEa; if not, compute a(C(a, b, 
H)) and then store the result in TABLEa. We need to establish 
a relationship between the positions of TABLEa and the sets 
in a. By Lemma 5.8, any two sets in a are disjoint. Thus, 
each set in a can be uniquely identified by any of its elements. 
We let each set in a be represented by its smallest element. 
More specifically, when a(U) has been computed for a set 
U, the result is stored in TABLEa[lmin], where lmin is the small-
est element in U. Accordingly, the corresponding position of 
a given set U in TABLEa can be found in O(|U|) = O(n) time. 

For a fixed a  L, Lines 7-8 of NEWKAST-1 over all b  
L require O(n) set operations. Therefore, the required set op-
erations of Lines 7-8 over all (a, b)  L2 is O(n2). Conse-
quently, the total time of Lines 7-8 over all (a, b)  L2 is O(n3). 

By Lemma 5.10, the total time of Line 6 over all (a, b)  
L2 is O(nd). As discussed in Section 4, the total time of Lines 
1-5 and Line 10 over all (a, b)  L2 is O(n4). Therefore, we 
obtain the following.  
Theorem 5.1. The KAST problem on a set of k trees can be 
solved in O(kn3 + n4 + nd) time, where n is the size of the trees 
and at least one tree has maximum degree d. 
 
6. An O(kn3 + nd)-time KAST algorithm 

In this section, we show how to further improve the upper 
bound of the KAST problem to O(kn3 + nd). 

To solve the KAST problem, the algorithm in Section 5 
computes K(a, b) for all (a, b)  L2. At the time of writing, 
we are not aware of a more efficient way to compute all K(a, 
b) explicitly.  In the time complexity of Theorem 5.1, the n4 

term comes from Lines 2-5 of NEWKAST-1, which computes 
K(a|b) for all (a, b)  L2. Recall that this straightforward 

method for computing K(a|b) potentially requires a linear 
number of set intersections on subsolutions K(a, x) such that 
m(a, x) = m(a|b) and x  X(a|b). Thus, for each pair in L2 we 
must take potentially Ω(n2) time to perform all set intersec-
tions. 

This section reduces the total number of set intersections 
necessary by working with what we call refinements of K(a, 
b) and K(a|b), denoted by K1(a, b) and K1(a|b), rather than 
K(a, b) and K(a|b) themselves. A refinement of a set is a 
subset that preserves all KAST leaves. We compute K1(a, b) 
and K1(a|b) only for the pairs (a, b) that are relevant to the 
computation of the KAST of T. The idea is to group compu-
tations for a fixed leaf a; all relevant pairs (a, b) have equiva-
lent K1(a|b) if they have the same value for m(a|b) and their 
subsolutions are all computed from the same intersection of 
sets K1(a, x) such that m(a, x) = m(a|b) and (a, x) are relevant. 
The implication is that K1(a, x) appears only in a single set 
intersection for a fixed a. This results in an algorithm that uses 
a linear number of total set operations to compute refinements 
of K1(a|b) for a fixed a, rather than Ω(n2). Consequently, the 
n4 term in the time complexity of Theorem 5.1 is removed. 
Since K1(a, b) preserves all KAST leaves of K(a, b), the 
KAST of T is the intersection of all K1(a, b) such that m(a, 
b) = mast(T). 

Section 6.1 shows how to identify all relevant pairs (a, b). 
Section 6.2 describes the computation of K1(a, b) and K1(a|b) 
for each relevant pair. 

 
6.1 Finding relevant pairs 

Let (a, b) be a pair in L2. We say that (a, b) is relevant if 
there exists a MAST of T that contains a tree in M(a, b) as a 
subtree, and is irrelevant otherwise. That is, (a, b) is relevant 
if M(a, b) contains a sub-solution to the problem of finding 
the MASTs of T. Suppose that there is a MAST of T that con-
tains a tree X in M(a, b) as a subtree. If we modify the MAST 
by replacing X with any other tree in M(a, b), it is easy to 
concluded from Lemma 3.1 that the resulting tree is still a 
MAST. Therefore, if (a, b) is relevant, every tree in M(a, b) 
is a subtree of a MAST of T. 

As discussed in Section 3, given a clique S  S*(a, b), a 
tree in M(a, b) can be constructed by taking a tree in M(a|b), 
a tree in M(b|a), and a tree in M(c|a) for each c  S. From 
this, and the definition of M(a|b) in (3), it can be concluded 
that if (a, b) is a relevant pair, all pairs in the following set are 
relevant: 

(a, b) = {(a, x) : x  X*(a|b)} ⋃	{(b, x) : x  X*(b|a)}	⋃	
	 	 ⋃SS*(a, b) ⋃cS{(c, x) : x  X*(c|a)} 	

As a result, after m(a|b) and m(a, b) have been computed for 
every (a, b)  L2 by applying Bryant's dynamic programming 
algorithm, all relevant pairs can be recognized by tracing back 
the steps that led to each maximum table entry. More specifi-
cally, all relevant pairs can be recognized, in a top-down man-
ner, according to the following rules: 
(i) if m(a, b) = mast(T), (a, b) is relevant (since all trees in 

M(a, b) are MASTs); and  
(ii) if (a, b) is relevant, all pairs in (a, b) are relevant. 

Assume that R, F, and all m(a|b) and m(a, b), where (a, 
b)  L2, have been computed. A procedure that finds all rele-
vant pairs is given as follows. 
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Procedure FINDREVELANT 
/* find the set of relevant pairs 
begin 
1. REVELANT   /* initialization 
2. for each (a, b)  L2 do /* initialization 
3.  compute X*(a|b) and mark X*(a|b) unexplored 
4. for each (a, b)  L2 do /* find relevant pairs recursively 
5.  if m(a, b) = mast(T) then ADDREVELANT(a, b) 
6. return REVELANT 
end 
Procedure ADDREVELANT(a, b) 
// add (a, b) and the pairs in (a, b) into REVELANT 
begin 
1. REVELANT  REVELANT  {(a, b)} 
2. if X*(a|b) is unexplored then EXPLORE(X*(a|b)) 
3. if X*(b|a) is unexplored then EXPLORE(X*(b|a)) 
4. for each c  ⋃SS*(a, b) S do 
5.  if X*(c|a) is unexplored then EXPLORE(X*(c|a)) 
end 
Procedure EXPLORE(X*(p|q)) 
//add the pairs in X*(p|q) into REVELANT 
begin 
1. mark X*(p|q)} explored /* avoid re-exploring 
2. for each x  X*(p|q) do 
3.  if (p, x)  REVELANT then ADDREVELANT(p, x) 
end 
Lemma 6.1. FINDREVELANT requires O(n3 + nd) time. 
Proof. Each call to ADDREVELANT takes O(d|S*(a, b)|) = 
O(nd2) time, excluding the time spent on the calls to EX-
PLORE. Each call to EXPLORE takes O(|X*(p|q)|) = O(n) time, 
excluding the time spent on the calls to ADDREVELANT. The 
number of calls to ADDREVELANT is bounded by the number 
of relevant pairs, which is at most n2. The number of calls to 
EXPLORE is bounded by the number of explored sets X*(p|q), 
which is also bounded n2. Therefore, the total time of 
FINDREVELANT is O(n3 + nd) and the lemma holds.   

For ease of discussion, we call K(a, b) and K(a|b), respec-
tively, the K-set and the conditional K-set of (a, b). Accord-
ing to (2), (4), and (5), K(a, b) is determined from the K-sets 
of the pairs in (a, b). Therefore, if (a, b) is relevant, all the 
K-sets required for computing K(a, b) are also of relevant 
pairs. As a result, it can be concluded that a set K(a, b) needs 
to be computed only if (a, b) is relevant. In the remainder of 
this section, we show that a set K(a|b) also needs to be com-
puted only if (a, b) is relevant. 
Lemma 6.2. Let a, b, c be three leaves such that (a, b, c)  F 
and c is a leaf of a tree in M(a, b). If (a, b) is relevant, then 
(a, c) is relevant. 
Proof. Assume that (a, b) is relevant. Let X be a tree in M(a, 
b) that contains the leaf c. Since (a, b) is relevant, there is a 
MAST, say Z, that contains X as a subtree. Since (a, b, c)  
F, tree X is an agreement subtree in which a, c are leaves and 
the root is the LCA of a, c. Thus, X  A(a, c). All trees in 
A(a, c) are agreement subtrees of {Ti(i) : i = lcai(a, c), 1  
i  k}. Therefore, after modifying Z by replacing X with any 
tree in A(a, c), the resulting tree is still an agreement subtree. 
Consequently, X is a largest tree in A(a, c); otherwise, Z is 
not a MAST. That is, X  M(a, c). Since X is a subtree of a 
MAST, (a, c) is relevant and the lemma holds.  

According to (4) and (5), the following conditional K-sets 

are required for the computation of the K-set of a relevant 
pair (a, b): 
 K(a|b), K(b|a), and K(c|a) of each c  ⋃SS*(a, b) S. 
The sets K(a|b) and K(b|a) are of relevant pairs (a, b) and (b, 
a). Note that (b, a) is a relevant pair since M(b, a) = M(a, b). 
Recall that given a set S  S*(a, b), a tree in M(a, b) can be 
constructed by taking a tree in M(a|b), a tree in M(b|a), and 
a tree in M(c|a) for each c  S. Therefore, each c  ⋃SS*(a, b) 
S is a leaf of a tree in M(a, b). In addition, each c  ⋃SS*(a, b) 
S is a leaf in C(a, b). As a result, it can be concluded from 
Lemma 6.2 that (c, a) is relevant for each c  ⋃SS*(a, b) S. 
Based upon the above discussion, we know that K(a|b) also 
needs to be computed only if (a, b) is relevant. 
 
6.2 Computing refinements 

In this section, we show that K1(a, b), which is a refine-
ment of K(a, b), can be computed for every relevant pair (a, 
b) in O(kn3 + nd) time. Recall that the computation of K(a, b) 
is based on computing K(a|b) = ⋂xX*(a|b) K(a, x), where 
X*(a|b) = {x : x  X(a|b), m(a, x) = m(a|b)}. Similarly, for each 
relevant pair (a, b), the computation of K1(a, b) is based on 
an analogue of K(a|b) called K1(a|b). The key observation 
will be described by Lemma 6.7, which says that, for any two 
relevant pairs (a, b) and (a, b'), K1(a|b) and K1(a|b') are equal 
if m(a|b) = m(a|b'). Thus, for a fixed a we group computations 
of K1(a|b) according to the value of m(a|b) so that we only 
need to compute K1(a|b) once for all b with the same m(a|b). 
As with K(a|b), K1(a|b) only depends on the relevant pairs 
(a, x) with the same m(a, x). Therefore, each subsolution K1(a, 
x) for relevant pair (a, x) is implicated in a set operation for 
exactly one group. Thus, all K1(a|b) can be computed in 
quadratic time for a fixed a, yielding an algorithm that com-
putes K1(a, b) for all relevant pairs in O(kn3 + nd) time. 

A refinement of a set U  L is any set obtained by deleting 
from U none or some leaves that are not in KAST(T). For ex-
ample, if KAST(T) = {a, c, d} and U = {a, b, d, f}, then {a, d}, 
{a, b, d}, {a, d, f}, and {a, b, d, f} are all refinements of U; 
but {a, b, f} is not, since it does not contain the KAST leaf d. 
Recall that KAST(T) is the intersection of all K(a, b) with 
m(a, b) = mast(T). Since a refinement of a K-set preserves 
all the KAST leaves in the K-set, in the above computation 
of the intersection, each K-set can be replaced by any of its 
refinement. Therefore, to solve the KAST problem, it suffices 
to find a refinement of K(a, b) for each relevant pair (a, b).  

By the definition of a refinement, it is easy to obtain the 
following. 
Observation 6.3. Let U1, U'1, U2, U'2, .., Up, U'p be sets such 
that for each i, 1  i  p, U'i is a refinement of Ui. Then, U'1	⋃ 
U'2 ⋃ ... ⋃ U'p is a refinement of U1	⋃ U2 ⋃ ... ⋃ Up; and U'1	
⋂ U'2 ⋂ ... ⋂ U'p is a refinement of U1	⋂ U2 ⋂ ... ⋂ Up. 
Lemma 6.4. Let (a, b) be a relevant pair and Q be any tree in 
M(a, b). Then, for each Ti  T, a leaf l of Ti(i) is in KAST(T) 
only if Q contains l, where i = lcai(a, b). 
Proof. Let Ti be a tree in T and l be a leaf of Ti(i). Since (a, 
b) is relevant, there is a MAST, say Z, that contains Q as a 
subtree. By definition, the leaf l is in KAST(T) only if it is 
contained in every MAST of T. Assume that l  L(Q). In the 
following, we prove this lemma by showing that Z does not 
contain l. Suppose by contradiction that Z contains l. From 
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Lemma 3.1, it is easy to conclude that any subset of an agree-
ment set is also an agreement set. Thus, L(Q) ⋃ {l} is an 
agreement set and Ti|L(Q)⋃{l} is an agreement subtree. Since l 
is a leaf of Ti(i) and Q  A(a, b), we know that in Ti|L(Q)⋃{l}, 
a, b are leaves and the LCA of a, b is the root. Therefore, 
Ti|L(Q)⋃{l} is in A(a, b), contradicting to that Q is a largest tree 
in A(a, b). Thus, the lemma holds.  

For ease of description, we define a valid filter of a set U 
 L to be a set containing all the KAST leaves in U. For ex-
ample, if KAST(T) = {a, c, d} and U = {a, b, d, f}, then {a, d}, 
{a, b, c, d}, are {a, c, d, g} are all valid filters of U; but {a, c, 
f} is not, since {a, c, f} does not contain the KAST leaf d. 
Note that a refinement of U is also a valid filter of U, but the 
reverse may not be true. For example, {a, b, c, d} is a valid 
filter of U, but it is not a refinement of U, since it is not a 
subset of U. A valid filter of a set U can be used to remove 
from U some leave that are not in KAST(T). More specifically, 
if U' is a valid filter of U, then U'  U is a refinement of U 
Lemma 6.5. Let (a, b) be a relevant pair. Then, for each Ti  
T, K(a, b) is a valid filter of any subset of L(Ti(i)), where i 
= lcai(a, b). 
Proof. We first show that K(a, b) is a valid filter of L(Ti(i)). 
Let l be any leaf of Ti(i). By Lemma 6.4, l is in KAST(T) 
only if it is in every tree in M(a, b). Thus, l is in KAST(T) only 
if l is in K(a, b). Therefore, K(a, b) is a valid filter of 
L(Ti(i)). Clearly, a valid filter of a set U is a valid filter of 
any subset of U. Thus, the lemma holds.   
 For each relevant pair (a, b), define a variant of X*(a|b): 

 X1
*(a|b) = {x : (a, x) is relevant, m(a, x) = m(a|b)}.  

We have the following. 
Lemma 6.6. For any relevant pair (a, b), X*(a|b)  X1

*(a|b). 
Proof. Let x be any leaf in X*(a|b). Recall that X*(a|b) = {x : x 
 X(a|b), m(a, x) = m(a|b)}. Since x  X*(a|b), we have m(a, 
x) = m(a|b). In addition, since (a, b) is relevant and {(a, x) : x 
 X*(a|b)}  (a, b), we know that (a, x) is relevant. There-
fore, it can be concluded that each x  X*(a|b) is contained in 
X1

*(a|b). Thus, the lemma holds.   

Before presenting an algorithm that computes a refine-
ment for the K-set of each relevant pair, we describe the idea 
behind our approach. Consider the computation of K(a|b) for 
a relevant pair (a, b). By definition, K(a|b) = ⋂xX*(a|b) K(a, 
x). Essentially, our idea is to compute ⋂xX1*(a|b) K(a, x) to 
take the place of K(a|b). Let Z = X1

*(a|b)  X*(a|b). Since 
X*(a|b)  X1

*(a|b), this set, ⋂xX1*(a|b) K(a, x), can be consid-
ered as the set obtained from K(a|b) by removing leaves not 

in K(a, z) for every z  Z. Consider a leaf z  Z. Since m(a, 
z) = m(a|b), we know that az|b  R; otherwise z  X*(a|b). 
That is, az|b is not a rooted triple in at least one of the trees in 
T. Without loss of generality, assume that az|b is not a rooted 
triple in T1. Since az|b is not a rooted triple in T1, we know 
that 1 = lca1(a, b) is a descendant of '1 = lca1(a, z). There 
are two cases: 1 = '1, and 1 is a proper descendant of '1. 
(See Figure 6.) In either case, we have L(T1('1))  L(T1(1)). 
Since K(a|b) contains a leaf l only if al|b  R, we know that 
K(a|b) is a subset of L(T1(1)) and thus is a subset of 
L(T1('1)). Hence, by Lemma 6.5, K(a, z) is a valid filter of 
K(a|b). Therefore, ⋂xX1*(a|b) K(a, x) preserves all KAST 
leaves in K(a|b) and thus is a refinement of K(a|b). 

Based upon the above idea, by replacing X*(a|b) with 
X1

*(a|b) in the definition of K(a|b), we define K1(a, b) as fol-
lows: if a = b, K1(a, b) = {a}; otherwise 

K1(a, b) = K1(a|b) ⋃ K1(b|a) ⋃		
	 	 	 ⋂SS*(a, b) ⋃cS K1(c|a))), (8) 

where 
K1(a|b) = ⋂xX1*(a|b) K1(a, x). (9)	

Our algorithm uses K1(a|b) to replace K(a|b). As mentioned, 
essentially, our idea is to compute ⋂xX1*(a|b) K(a, x) to take 
the place of K(a|b). We remark that according to the defini-
tion in (9), K1(a|b) may not be the same as ⋂xX1*(a|b) K(a, x). 

Before showing that K1(a, b) is a refinement of K(a, b), 
we describe the advantage of replacing X*(a|b) with X1

*(a|b) 
in the definition of K(a|b). 
Lemma 6.7. Let a, b, and b' be leaves such that (a, b) and (a, 
b') are both relevant, and m(a|b) = m(a|b'). Then, K1(a|b) = 
K1(a|b'). 
Proof. Since m(a|b) = m(a|b'), according to the definition of 
X1

*(, ), we have X1
*(a|b) = X1

*(a|b'). Thus, K1(a|b) = K1(a|b') 
and the lemma holds.  

In the time complexity of Theorem 5.1, the n4 term comes 
from Lines 2-5 of NEWKAST-1, which computes K(a|b) for 
all (a, b)  L2. Lemma 6.7 indicates that for a fixed a  L and 
size t < mast(T), K1(a|b) only needs to be computed once for 
all b with m(a|b) = t. Later, we will show that this property 
allows K1(a|b) to be computed for all relevant pairs (a, b) in 
O(n3) time. 

We proceed by showing that for each relevant pair (a, b), 
K1(a, b) is a refinement of K(a, b). The proof is done by in-
duction on on the size m(a, b). The following lemma is needed. 
Lemma 6.8. Let (a, b) be a relevant pair. Suppose that K1(a, 
x) is a refinement of K(a, x) for each x  X1*(a|b). Then, 
K1(a|b) is a refinement of K(a|b). 
Proof. Recall that, previous to Lemma 6.7, we explained that 
⋂xX1*(a|b) K(a, x) is a refinement of K(a|b). The proof of this 
lemma is similar. By Lemma 6.6, X*(a|b)  X1

*(a|b). Thus, we 
can write K1(a|b) = U1 ⋂	U2, where 
 U1 = ⋂xX*(a|b) K1(a, x) and U2 = ⋂zX1*(a|b)X*(a|b)K1(a, z).  
Since K1(a, x) is a refinement of K(a, x) for each x  X*(a|b), 
by Observation 6.3, ⋂xX*(a|b) K1(a, x) is a refinement of 
⋂xX*(a|b) K(a, x). That is, U1 is a refinement of K(a|b). In the 
following, we show that U2 is a valid filter of K(a|b). 
 Consider a fixed z  X1*(a|b)  X*(a|b). Since m(a, z) = 
m(a|b) and z  X*(a|b), we know that az|b is not a rooted triple 
in at least one of the trees in T. Without loss of generality, 

Case 2. 1  '1

L(T1(1)) = L(T1('1)) 

Case 1. 1 = '1 

T1 1 = '1 

X
*
(a|b) z b 

a 

Figure 6. A leaf z  X1
*(a|b)  X*(a|b) such that 

az|b is not a rooted triple in T1. 

z

L(T1(1)) 
L(T1('1)) 

T1 

X
*
(a|b) 

b 

1 
'1 

a
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assume that az|b is not a rooted triple in T1. Since az|b is not 
a rooted triple in T1, we know that 1 = lca1(a, b) is a descend-
ant of '1 = lca1(a, z). (See Figure 6.) Since K(a|b)  L(T1(1)) 
 L(T1('1)), by Lemma 6.5, K(a, z) is a valid filter of K(a|b). 
In addition, since K1(a, z) is a refinement of K(a, z), it is easy 
to see that K1(a, z) is also a valid filter of K(a|b). Clearly, the 
intersection of valid filters is also a valid filter. Therefore, U2 
is a valid filter of K(a|b). 
 In summary, U1 is a refinement of K(a|b) and U2 is a valid 
filter of K(a|b). From this, it is easy to conclude that U1 ⋂	U2 
is a refinement of K(a|b), which completes the proof of this 
lemma.  

Our new algorithm is designed based upon the following. 
Theorem 6.1. For any relevant pair (a, b), K1(a, b) is a re-
finement of K(a, b). 
Proof. We prove the theorem by induction on the size m(a, b). 
First, consider the case m(a, b) = 1. In this case, we have a = 
b; otherwise, |M(a, b)|  |{a, b}|  2. Since a = b, by definition, 
we have K1(a, b) = K(a, b) = {a} and thus the theorem holds.  

Consider the case m(a, b) > 1. Suppose, by induction, that 
this theorem is true for all K(a', b') such that (a', b') is rele-
vant and m(a', b') < m(a, b); we will show that this theorem 
holds for (a, b) as well. Recall that  

K(a, b) = K(a|b) ⋃ K(b|a) ⋃		
	 	 	 	 	 ⋂SS*(a, b) ⋃cS K(c|a))), and 
K1(a, b) = K1(a|b) ⋃ K1(b|a) ⋃		
	 	 	 	 	 ⋂SS*(a, b) ⋃cS K1(c|a))). 

According to Observation 6.3, to prove that K1(a, b) is a re-
finement of K(a, b), it suffices to show the following:  
(i) K1(a|b) is a refinement of K(a|b); 
(ii) K1(b|a) is a refinement of K(b|a); and 	
(iii)	 K1(c|a) is a refinement of K1(c|a) for any c  S and S  

S*(a, b). 
In the following, only the proof of (i) is given. The proofs of 
(ii) and (iii) are similar. Consider an x  X1*(a|b). Note that 
according to the definition of X1*(a|b), (a, x) is relevant and 
m(a, x) = m(a|b). According to (1), we have m(a|b) < m(a, b) 
and thus m(a, x) = m(a|b) < m(a, b). Consequently, by the in-
duction hypothesis, K1(a, x) is a refinement of K(a, x) for 
any x  X1*(a|b). As a result, by Lemma 6.8, K1(a|b) is a 
refinement of K(a|b), which completes the proof of this the-
orem.   
 Due to the similarity between the recurrences of K(a, b) 
and K1(a, b), K1(a, b) can be computed by slightly modified 
NEWKAST-1 as follows.  
Procedure NEWKAST-2(a, b) 
input: (a, b)  L2 is a relevant pair 
output: K1(a, b) 
begin 
1. if a = b then return {a}  
2. K1(a|b)  ⋂xX1*(a|b) K1(a, x)  /* (a, b) is relevant 
3. K1(b|a)  ⋂xX1*(b|a) K1(b, x)  /* (b, a) is relevant 
4. for each c  C(a, b) do  
5.   if (c, a) is relevant then K1(c|a)  ⋂xX1*(c|a) K1(c, x) 
6. find Valid(a, b) and compute C(a, b, H) for each subtree 

H  Valid(a, b) 
7. for each H  Valid(a, b) do  
8.   a(U)  ⋂cU K1(c|a), where U = C(a, b, H) 
9. (a, b)  ⋃HValid(a, b) a(C(a, b, H)) 

10. K1(a, b)  K1(a|b) ⋃ K1(b|a) ⋃	(a, b) 
11. return K1(a, b) 
end 

To solve the KAST problem, procedure NEWKAST-2 is 
called for every relevant pair (a, b), in non-decreasing order 
of m(a, b). The overall time complexity is analyzed as follows. 
As shown in Section 5, Lines 1 and 6-10 of NEWKAST-2 can 
be implemented such that their execution requires O(nd) time 
over all relevant pairs (a, b). In the following, we show that 
Lines 2-5 of NEWKAST-2 can be implemented such that their 
execution takes O(n3) time over all relevant pairs (a, b). 

The purpose of Lines 2-5 is to compute K1(a|b) for all 
relevant pairs (a, b). According to Lemma 6.7, for any two 
relevant pairs (a, b) and (a, b'), K1(a|b) and K1(a|b') are the 
same if m(a|b) = m(a|b'). For each a  L and positive integer 
t < mast(T), define  

K1
(t)(a) = ⋂x{x : (a, x) is relevant, m(a, x) = t} K1(a, x). 

Then, K1(a|b) = K1
(m(a|b))(a) for each relevant pair (a, b), 

Thus, our problem is to compute K1
(t)(a) for all a  L and all 

t  [1, mast(T)).  
Consider the computation of K1

(t)(a) for a fixed a  L and 
all t  [1, mast(T)). Let (t) be the number of relevant pairs 
(a, x) with m(a, x) = t. For each t  [1, mast(T)), the compu-
tation of K1

(t)(a) requires (t)  1 set operations. Since t (t) 
= n, we know that O(n) set operations are sufficient for com-
puting K1

(t)(a) for a fixed a  L and all t  [1, mast(T)). As 
a result, computing K1

(t)(a) for all a  L and all t  [1, 
mast(T)) requires O(n2) set operations. Consequently, the ex-
ecution time of Lines 2-5 of NEWKAST-2 over all relevant 
pairs (a, b) is O(n3). In summary, we obtain the following. 
Theorem 6.2. The KAST problem on a set of k trees can be 
solved in O(kn3 + nd) time, where n is the size of the trees and 
at least one tree has maximum degree d. 

For binary trees, the following is obtained. 
Corollary 6.1. The KAST problem on a set of k binary trees 
can be solved in O(kn3) time, where n is the size of the trees. 
 
7. Experiments 

We tested our C implementations of Bryant’s MAST algo-
rithm (FINDMAST), the original KAST algorithm (FIND-
KAST), and our new KAST algorithm (NEWKAST-2). The 
Swenson et al. [45] paper already conducted a thorough study 
on the utility of the KAST, therefore, the focus of our new 
experiments was on running time. We timed our implementa-
tions on both simulated data and on real data where we com-
pared independently inferred binary trees. Our results on 
rRNA alignments show that comparison of even the largest 
trees can be performed on a modern laptop in one work day. 
Our simulated datasets show an average 43 fold speedup on 
trees with 2000 taxa. The low KAST values between different 
Maximum Likelihood trees highlight the importance of the 
KAST for reporting high-confidence subtrees. 
 
7.1 Running Time on RNA Alignments 

Hand-curated RNA alignments at the Comparative RNA 
Web (CRW) site [10], a Living Tree Project (LTP) alignment 
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[37], a GreenGenes alignment [16], as well as an RNA align-
ment from [4], were used to test the advantages and the limits 
of our algorithm. Alignments with up to 13,000 taxa were 
downloaded and maximum likelihood (ML) phylogenies 
were reconstructed using RAxML [42]. Sets of most likely 
RAxML trees were reconstructed and then compared for sim-
ilarity using our algorithms. 

Results are summarized in Table 1. For trees with less than 
2,000 leaves NEWKAST-2 takes less than 2 minutes and very 
little memory, while FINDKAST takes 8 to 12 minutes and a 
few gigabytes of RAM. For larger datasets the advantage of 
NEWKAST-2 is clear: for FINDKAST, the dataset with 5,088 
leaves takes more than an hour and many gigabytes of RAM 
while NEWKAST-2 uses only 15-20 minutes and about 1 
gigabyte of RAM. All other datasets failed to terminate after 
a week of computation (on a server with hundreds of 
gigabytes of RAM) for FINDKAST, while taking hours and 
under 10 gigabytes of RAM for NEWKAST-2. 

  
7.2 Running Time on Simulated Data 

Our simulations started with the construction of a rooted 
binary birth-death tree T1 (with parameter 1 for birth and ½ 
for death, but with a fixed number of leaves). We constructed 
k copies of T1 and then added 0.10 × L(T1) leaves uniformly 
at random to each of the trees. The expected size of the MAST, 
therefore was |L(T1)| for each set of trees. 

Both FINDKAST and NEWKAST-2 have FINDMAST at 
their core, therefore we report times as a proportion of the 
FINDMAST compute time. The advantage of our new algo-
rithm is clear when there are few rooted trees (e.g. k = 2). 
NEWKAST-2 is always 2.7 times slower than FINDMAST 
while FINDKAST is already 10 times slower at n = 100 and 
more than 100 times slower at n = 1600. (Figure 7(a).) At n = 
2000, NEWKAST-2 takes under seven minutes while FIND-
KAST takes about five hours. 

When the number of trees is larger (e.g. k = 100), 
NEWKAST-2 is three times faster (taking 2.1 hours) than 
FINDKAST (taking 6.1 hours) on trees with 2000 leaves (Fig-
ure 7(b)). 

Although the computation of the unrooted KAST has yet 
to be directly studied in the literature, we can compute it by 
running the rooted version n times, each time rooting the input 
at a leaf that is assumed to be part of the solution. For the 
unrooted case, our implementations of NEWKAST-2 and 
FINDKAST scale similarly to the rooted case, where a tree on 
900 leaves takes over 71 hours for FINDKAST but under four 
hours for NEWKAST-2. (Figure 7(c).) 
 
7.3 Availability of code and data 
Our implementation of FINDMAST, FINDKAST, and 
NEWKAST-2 is available at https://bitbucket.org/thekswen-
son/kast, along with the RAxML trees inferred from the rRNA 
alignments and the scripts to reproduce our plots. 
 
8. Concluding remarks 

The MAST algorithms in [7], [19] work for any k and d. 
For some special cases, more efficient solutions exist. For ex-
ample, there is an O(n lg n)-time algorithm for k = d = 2 [13]; 
there is an O(n lg n)-time algorithm for k = 2 and constant d 
[28]; and there is an O(n1.5)-time algorithm for k = 2 and ar-
bitrary d [28]. Clearly, a leaf is a KAST leaf of T if and only 
if its removal from each tree of T reduces the size of MASTs 
by one. That is, whether a leaf l  L is a KAST leaf can be 
determined by performing a MAST algorithm to check 
whether mast(T') < mast(T), where T' is the set obtained by 
removing l from each tree in T. As a result, the set of KAST 
leaves can be identified by simply running a MAST algorithm 
n times. By applying this simple approach to the algorithms 
in [13], [28], the KAST problem is solved in O(n2 lg n) time 
for k = d = 2, in O(n2 lg n) time for k = 2 and constant d, and 

Table 1. Running Time on rRNA Alignments. 

Dataset k n KAST NEWKAST-2 FINDKAST 
Time RAM Time RAM 

Bacteria/Archea ssuRNA 
(RAxML D1604)

2 1,604 1,033 51s 143 M 12.2m 3.5 G 
5 698 1.3m 140 M 8.3m 2.3 G 

Bacteria/Archea lsuRNA 
(LTP) 

2 1,614 1,186 56s 154 M 8.9m 3.3 G 
5 984 1.4m 157 M 12.5m 3.4 G 

Bacteria/Archea ssuRNA 
(Greengenes) 

2 5,088 1321 15.5m 1 G 2h 43m 30 G 
5 479 20m 1.2 G 1h 22m 10 G 

Bacteria/Archea/Eukaryot
e ssuRNA 

2 6,116 5,838 1h 10m 4.2 G > 1 week - 
5 2,614 1h 1.9 G > 1 week - 

Bacteria ssuRNA 2 13,073 9,667 8h 9m 9.4 G > 1 week - 
5 1,274 6h 35m 6.7 G > 1 week - 

Figure 7. Average timing ratios for FINDKAST/FINDMAST and NEWKAST-2/FINDMAST 

(a) 2 rooted trees (c) 2 unrooted trees  (b) 100 rooted trees 
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in O(n2.5) time for k = 2 and arbitrary d. These simple results 
are better than the time complexity in Theorem 6.2. One di-
rection for further study is to design more efficient KAST al-
gorithms for these special cases. To beat our KAST algorithm 
for arbitrary k and d, however, further innovation may have to 
be made for the general MAST problem. 
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