
1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2922955,
IEEE/ACM Transactions on Computational Biology and Bioinformatics

 1

A Faster Algorithm for Computing the Kernel of
Maximum Agreement Subtrees

Biing-Feng Wang and Krister M. Swenson

Abstract—The maximum agreement subtree method determines the consensus of a collection of phylogenetic
trees by identifying maximum cardinality subsets of leaves for which all input trees agree. The trees induced by
these maximum cardinality subsets are maximum agreement subtrees (MASTs). A single MAST may be
misleading, since there can exist two MASTs which share almost no leaves; nevertheless, it may be impossible to
inspect all MASTs, since the number of MASTs can be exponential in the number of leaves. To overcome this
drawback, Swenson et al. suggested to further summarize the information common to all MASTs by their
intersection, which is called the kernel agreement subtree (KAST). The construction of the KAST is the focus of
this paper. Swenson et al. had an O(kn3 + n4 + nd+1) time algorithm for computing the KAST of k trees on n leaves,
in which at least one tree has maximum degree d. In this paper, an O(kn3 + nd)-time algorithm is presented. We
demonstrate the efficiency of our algorithm on simulated trees as well as on ribosomal RNA alignments, where
trees with 13,000 taxa took only hours to process, whereas the previous algorithm did not terminate after a week
of computation.

Index Terms— Algorithms, phylogenetic trees, consensus trees, agreement subtrees

1. Introduction

The reconstruction of evolutionary relationships among
sets of genes or sets of species is fundamental. These relation-
ships often take the form of a phylogenetic tree. When com-
bined with geographical data, phylogenies are essential to un-
derstanding the movements and interactions of populations
[12]. When combined with geographical and temporal data,
they are essential to understanding the spread of epidemics
[22]. While the utility of phylogenies is evident in areas like
phylogeography and epidemiology, they are also at the heart
of seemingly less related fields like functional genomics. In-
deed, large-scale studies linking a biological trait to a function
rely on phylogenetic relationships to differentiate between
"Selected Effect" and "Causal Role" [26].

It is, however, often difficult to find the true phylogenetic
tree for a set of taxa. Many methods for constructing phylo-
genetic trees have been proposed, and many different evolu-
tionary characters can be considered [11], [17], [23], [24],
[40]. The use of different methods or different evolutionary
characters, however, may result in different trees on the same
set of taxa. These trees need to be compared or summarized.

One approach is to calculate a numerical index of agree-
ment or a distance between rival trees. Many tree comparison
metrics have been proposed for this purpose, such as the co-
phenetic correlation coefficient [41], the path-difference dis-
tance [43], [47], the nearest-neighbor interchange (NNI) dis-
tance [14], [48], the Robinson-Foulds (RF) distance [15], [39],
the quartet distance [8], and the matching distance [33].

Another approach is to compute a new tree that represents
the information shared by the rival trees. Such an approach is
called a consensus method and the computed tree is called a

consensus tree. Since Adams [2] introduced the first consen-
sus method in 1972, a great variety of different consensus
methods have been developed and studied. Interested readers
may refer to [6], [9] for excellent surveys.

Most consensus methods assume that all the input trees
have equal taxon sets, and output a tree having the same taxon
set as the input trees. Two widely-used examples are the strict
consensus tree and the majority-rule consensus tree [36]. Re-
moving an edge from a phylogenetic tree yields a bipartition
of the entire taxon set. The strict consensus tree contains ex-
actly those bipartitions common to all input trees while the
majority-rule consensus tree contains exactly those biparti-
tions that appear in more than half of the input trees.

A rogue leaf in a collection of phylogenetic trees is one
whose position is obviously different from tree to tree. These
two consensus methods are susceptible to the presence of
rogue leaves. Even a small number of rogue leaves may sub-
stantially increase tree distances, and deteriorate the resolu-
tions (i.e. the number of internal edges) of the strict and ma-
jority-rule consensus trees [1], [38], [45], [49].

One way to overcome the problem caused by rogue leaves
is to use a consensus subtree method, which allows some taxa
to be removed from the input trees. The most popular of such
methods is the agreement subtree method, introduced by
Finden and Gordon [25]. This method determines the consen-
sus of a collection of trees by identifying maximum cardinal-
ity subsets of leaves for which all input trees agree. The trees
induced by these maximum cardinality subsets are maximum
agreement subtrees (MASTs). The problem of constructing
MASTs has been extensively studied in the literature [3], [7],
[13], [18]–[21], [25], [27], [29], [30], [32], [44].

The agreement subtree method avoids the problem caused
by rogue leaves. However, unlike the strict and majority-rule
consensus trees, MASTs of a collection of trees are not nec-
essarily unique. The number of MASTs can be exponential in
the number of leaves [30] and there can exist two MASTs
which share almost no leaves [45]. Therefore, the agreement
subtree method has the following disadvantage: using a single

————————————————
 B.-F. Wang is with the Department of Computer Science, National Tsing

Hua University Hsinchu, Taiwan 30013, Republic of China. E-mail:
bfwang@cs.nthu.edu.tw.

 K. M. Swenson is with LIRMM, Université Montpellier, CNRS, Montpel-
lier, France; and Institut de Biologie Computationnelle (IBC), Montpellier,
France. E-mail: swenson@lirmm.fr.

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2922955,
IEEE/ACM Transactions on Computational Biology and Bioinformatics

2

MAST to represent the information shared by rival trees can
be misleading, while it may be impossible to inspect all
MASTs.

Aiming at providing a baseline method to report a subtree
of high confidence that is not susceptible to rogue leaves,
Swenson et al. [45] suggested using the summary of the in-
formation common to all MASTs, as represented by their in-
tersection. This is called the kernel agreement subtree (KAST).
Like the agreement subtree, this new consensus subtree
method avoids the problem caused by rogue leaves. In addi-
tion, as with the strict consensus tree, it reports a single sub-
tree of highest confidence. Experimental results showed that
the KAST can be used as a baseline method to find subtrees
of confidence, to report subsets of input trees for which we
are confident, and to be an indicator of randomness in the in-
put [45]. In summary, the KAST is complementary to the
strict consensus tree, since it reports a leaf set of high confi-
dence while the strict consensus tree reports an edge set of
high confidence.

A fast algorithm for computing the KAST is of interest. In
the age of modern phylogenetic inference researchers are now
addressing datasets with thousands [5], [31], [35], or even
tens-of-thousands of taxa [34], and equally as many trees [50]
derived from diverse evolutionary characters [46]. Version
4.0a123 of the popular phylogenetic program PAUP* [46] in-
cludes an implementation of the KAST that does not scale to
datasets of these sizes.

The focus of this paper is speeding up the construction of
the KAST. Let T be a set of k phylogenetic trees on a set of n
taxa. Assume that at least one of the trees in T has degree
bounded by a constant d. The current best known algorithms
for finding a MAST of T are due to Farach et al. [19] and
Bryant [7], which require O(kn3 + nd) time. Although the num-
ber of all MASTs can be exponential, Swenson et al. [45]
showed that the KAST of T can be computed in polynomial
time through a modification of Bryant's MAST algorithm.
They did not analyze the complexity of their algorithm, yet
claimed a running time similar to that of Bryant’s by ignoring
the time necessary to compute set operations. In Section 4, a
detailed analysis is given, which shows that their algorithm
takes O(kn3 + n4 + nd+1) time. In this paper, a faster algorithm
is presented. The presented algorithm requires O(kn3 + nd)
time, which matches the current best upper bound for the
MAST problem.

The experimental section applies our algorithm to simu-
lated data, where rogue taxa are added to a fixed topology. On
a pair of trees with 2,000 taxa our new algorithm is on average
over 40 times faster than the previous, and uses more than an
order of magnitude less RAM. The importance of our innova-
tion is glaring when applying our algorithm to trees produced
from large ribosomal RNA alignments. Four of these tests did
not terminate using the old algorithm, after a week of compu-
tation using more than 100 gigabytes of RAM on a server. Our
new algorithm took at most 8 hours and 9 gigabytes of RAM
for all datasets. A positive side effect of our new algorithm
is significant savings in memory consumption.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces notation and definitions. Section 3 reviews
Bryant's MAST algorithm. Section 4 describes Swenson et
al.'s KAST algorithm. Section 5 gives a faster algorithm for

the KAST problem, which requires O(kn3 + n4 + nd) time. For
d 4, the algorithm in Section 5 is as fast as the current best
MAST algorithms. However, for the cases of d = 2 and 3, it is
slower by a factor of n. We note that these are the most im-
portant special cases, because in practice, phylogenetic trees
usually have very small degrees, typically no larger than three
[3]. Section 6 shows how to solve the KAST problem in O(kn3
+ nd) time. Section 7 presents our experimental results, while
Section 8 concludes the paper.

2. Notation and definitions

A phylogenetic tree is a tree in which the leaves are
uniquely labeled by a set of taxa. For convenience, a leaf of a
phylogenetic tree is simply identified with its label. A phylo-
genetic tree can be rooted or unrooted. In this paper, only
rooted trees are considered. The degree of a node is its num-
ber of children. We assume that the degree of every non-leaf
node is at least two, so that the number of non-leaf nodes is
bounded by the number of leaves. As in all MAST literature,
a node with degree d greater than two is considered a "hard
polytomy", the alternative being a "soft polytomy" which am-
biguously represents all possible tree topologies on the d chil-
dren.

Consider a phylogenetic tree T. If the path from a node a
to the root passes through a node b, we call b an ancestor of
a and call a a descendant of b. A proper descendant of a node
v is a descendant of v which is not v itself. A proper ancestor
is defined similarly. For any two nodes a, b of T, the lowest
common ancestor (LCA) of a and b is the ancestor of a and b
that is a descendant of all ancestors of a and b. For any subset
S of the leaves of T, we follow convention by denoting T|S as
the subtree of T induced by S. T|S is the tree with leaf set S and
interior node set {x : x is the LCA of some pair of leaves in S}
inheriting the ancestor relation from T (i.e. for all a, b S, the
LCAs of a, b in T and T|S are the same). Two trees T1 and T2

on the same label set are isomorphic if there is a 1-1 mapping
between their internal nodes such that the LCA of any two
leaves a, b in T1 is mapped to the LCA of a, b in T2.

Let T = {T1, T2, ..., Tk} be a set of phylogenetic trees on
the same set L of n labels. Throughout this paper, we assume
that at least one of the trees in T has maximum degree d,
where d 2 is a constant. An agreement subtree of T is a tree
T such that T, T1|S, T2|S, ..., and Tk|S are mutually isomorphic,
where S is the leaf set of T. The leaf set of an agreement sub-
tree is called an agreement set. The size of an agreement sub-
tree is the cardinality of its leaf set. A maximum agreement

c

T1

a b
(a) T1 and T2

(b) MASTs of T
Figure 1. The three MASTs of T = {T1, T2}.

c ed

f

a e d c

f

b ed

f

T2

a b ed c
f

a b ed

f

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2922955,
IEEE/ACM Transactions on Computational Biology and Bioinformatics

 3

subtree (MAST) is an agreement subtree of maximum size.
For example, for the set T = {T1, T2} in Figure 1(a), the three
MASTs of T are depicted in Figure 1(b). The MAST problem
is to find a MAST of T. The kernel agreement subtree (KAST)
of T, denoted by KAST(T), is the intersection of the leaf sets
of all MASTs of T. For example, in Figure 1, we have
KAST(T) = {a, b, d, e, f} ⋂	{a, c, d, e, f} ⋂	{b, c, d, e, f} = {d,
e, f}. The KAST problem is to compute the KAST of T.

In the following, we introduce some notation and defini-
tions that are used throughout this paper. Let T be a phyloge-
netic tree. The leaf set of T is denoted by L(T). For each node
v, the subtree rooted at v is denoted by T(v) and the subtrees
rooted at the children of v are called the subtrees of v. The
subtrees of the root are the maximal subtrees of T. Let a, b, c
be three leaves of T. Figure 2 depicts the four possible topol-
ogies of the subtree induced by {a, b, c}. For the first three
cases, we say that a, b, c form a rooted triple in T. We use
ab|c to denote the rooted triple in which the LCA of a, b is a
descendant of the LCA of a, c. For the last case, we say that
a, b, c form a fan triple in T and use (a, b, c) to denote the fan
triple. A set S L(T) is a fan set of T if in the induced tree T|S
all the leaves are children of the root. For example, in T2 of
Figure 1, both {a, b, c} and {a, d, f} are fan sets.

For a pair (a, b) L2, we use lcai(a, b) to denote the LCA
of a, b in a tree Ti T and use lca*(a, b) to denote the se-
quence (lca1(a, b), lca2(a, b), ..., lcak(a, b)). The set of all
rooted triples common to all trees in T is denoted by R and
the set of all fan triples common to all trees in T is denoted
by F. A set is called a fan set of T if it is a fan set of every
tree in T. Since at least one tree has maximum degree d, it is
easy to see that any fan set of T has size at most d.

3. Bryant's MAST algorithm

This section reviews Bryant's MAST algorithm. For brev-
ity, only the computation for the size of a MAST of T, denoted
by mast(T), is described. The following lemma provides the
basis of Bryant's algorithm.
Lemma 3.1. [7] A tree T is an agreement subtree of T if and
only if r(T) R and f(T) F, where r(T) and f(T) are, re-
spectively, the set of rooted triples and the set of fan triples in
T.

For each pair (a, b) L2, define the following:
A(a, b): the set of agreement subtrees of T in each of which

a, b are leaves and the LCA of a, b is the root;
m(a, b): the size of the largest trees in A(a, b); and
M(a, b): the set of largest trees in A(a, b).

Clearly, mast(T) is the maximum value of m(a, b) over all
(a, b) L2. Thus, to compute mast(T), it suffices to compute
m(a, b) for every (a, b) L2.

Bryant's algorithm computes all m(a, b) by dynamic pro-
gramming. It determines m(a, b) before m(a', b') if in T1 the
LCA of a, b is a proper descendant of the LCA of a', b'. We

proceed by discussing the computation for a fixed pair (a, b)
 L2. If a = b, we simply have m(a, b) = 1. Assume that a
b. Consider a tree Q M(a, b). Since the LCA of a, b is the
root of Q, we know that a and b are in different maximal sub-
trees of Q. Let Qa be the maximal subtree containing a, Qb be
the maximal subtree containing b, and Q1, Q2, ..., Qr be the
remaining maximal subtrees, if there are any. Note that r d
 2, since at least one tree in T has maximum degree d. For 1
 j r, let cj be any leaf of Qj.

For 1 i k, let i = lcai(a, b). By the definition of M(a,
b), Q is a largest agreement subtree of {Ti(i) : 1 i k} under
the condition that a and b should be contained in an agreement
subtree. Since {a, b, c1, c2, ..., cr} is a fan set of Q, according
to Lemma 3.1, we know that in each Ti, 1 i k, the leaves
a, b, c1, c2, ..., and cr are in different subtrees of i. As a result,
the sizes of Qa, Qb, Q1, Q2, ..., and Qr can be discussed indi-
vidually.

Consider the subtree Qa first. For 1 i k, let Ai be the
subtree containing a that is rooted at a child of i. Then, Qa is
a largest agreement subtree of {Ai : 1 i k} under the con-
dition that a should be contained in an agreement subtree. Let

X(a|b) = {x : ax|b R} ⋃ {a}.
Note that X(a|b) is the set of common labels of A1, A2, ..., Ak
and thus only the labels in X(a|b) can be leaves of an agree-
ment subtree of {Ai : 1 i k}. Clearly, under the condition
that a should be contained in an agreement subtree, a tree T is
an agreement subtree of {Ai : 1 i k} if and only if T A(a,
x) for some x X(a|b). Therefore, the size of Qa can be com-
puted as
 m(a|b) = max{m(a, x) : x X(a|b)}.
Similarly, the size of Qb can be computed as m(b|a) and the
size of each Qj, 1 j r, can be computed as m(cj|a) (or
m(cj|b)). Consequently, given c1, c2, ..., cr, the size of Q can be
computed as
 m(a|b) + m(b|a) + 1jr m(cj|a).

We proceed by deriving a recurrence for m(a, b). Let C(a,
b) = {c : (a, b, c) F}. If C(a, b) is empty, all trees in A(a,
b) are binary and thus we have

 m(a, b) = m(a|b) + m(b|a).
Assume that C(a, b) is not empty. Define G(a, b) to be a graph
in which for each c C(a, b) there is a vertex c with weight
m(c|a) and for every pair (u, v) of vertices, there is an edge
between u and v if and only if (a, u, v) F. A clique in a graph
is a subset of the vertices such that every two distinct vertices
in the clique are connected by an edge. By the definition of
G(a, b), a set U is a clique in G(a, b) if and only if {a, b}
U is a fan set of {Ti(i) : 1 i k}. As a result, it can be
concluded that the value of m(a, b) is m(a|b) + m(b|a) + w if
and only if w is the maximum total weight of any clique in
G(a, b). Therefore,

m(a, b) = m(a|b) + m(b|a) + cS m(c|a), (1)
where S is a maximum weight clique in G(a, b). Bryant's al-
gorithm for computing each m(a, b) is formally described as
follows.
Procedure FINDMAST(a, b)
input: (a, b) L2
output: m(a, b)
begin

(a, b, c)

a b

c
a b c

ab|c ac|b bc|a
Figure 2. Rooted and fan triples.

a c

b

b c
a

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2922955,
IEEE/ACM Transactions on Computational Biology and Bioinformatics

4

1. if a = b then return 1
2. m(a|b) max{m(a, x) : x X(a|b)}
3. m(b|a) max{m(b, x) : x X(b|a)}
4. for each c C(a, b) do
5. m(c|a) max{m(c, x) : x X(c|a)}
6. S a maximum weight clique in G(a, b)
7. m(a, b) m(a|b) + m(b|a) + cS m(c|a)
8. return m(a, b)
end

The time complexity of FINDMAST is analyzed as follows.
Lines 1-3 require O(n) time. Lines 4-5 require O(|C(a, b)| n)
= O(n2) time. The finding of a maximum weight clique in Line
6 is done by considering all subsets {c1, c2, ..., cl} of C(a, b),
where 0 l d 2. Since |C(a, b)| n and d is a constant, the
number of such subsets is at most 0ld2 = O(nd2). Each
subset can be checked in O(d2) = O(1) time. Thus, Line 6 re-
quires O(nd2) time. Line 7 requires O(d) = O(1) time. There-
fore, the time complexity of FINDMAST is O(n2 + nd2).

To solve the MAST problem, FINDMAST is called for
every (a, b) L2. As a result, a total of O(n2 (n2 + nd2)) =
O(n4 + nd) time is required. The n4 term is contributed by
Lines 4-5, which computes m(c|a) for each c C(c, b). This
term can be reduced to n3 by simply avoiding the work of re-
computing the value of m(c|a) for the same pair of (c, a).
Therefore, the total time spent on computing the values of all
m(a, b) is O(n3 + nd). The construction of R and F takes O(kn3)
time [7]. Consequently, the following is obtained.

Theorem 3.1. [7] The MAST problem on a set of k trees can
be solved in O(kn3 + nd) time, where n is the size of the trees
and at least one tree has maximum degree d.

4. Swenson et al.'s KAST algorithm

Swenson et al. solved the KAST problem through a mod-
ification of Bryant's MAST algorithm. Let M(,), m(,),
m(|), C(,) be defined the same as in Section 3. For each pair
(a, b) L2, define
 K(a, b) = ⋂QM(a, b) L(Q).
Then, the KAST of T is the intersection of all K(a, b) such
that m(a, b) = mast(T). Thus, the KAST problem can be
solved by computing K(a, b) for every (a, b) L2.

Consider the computation of K(a, b) for a fixed pair (a, b)
 L2. For convenience, define

 X*(a|b) = {x : x X(a|b), m(a, x) = m(a|b)} and
 K(a|b) = ⋂xX*(a|b) K(a, x). (2)
For example, consider the set T = {T1, T2}, where T1 = (((((((a,
w), x), p), y), z), q), (b, c)) and T2 = ((((((((a, w), z), y), q), x),
p), c), b). In this example, X(a|b) = {p, q, x, y, z, w}, m(a, w)
= 2, m(a, x) = m(a, y) = m(a, z) = 3, and m(a, p) = m(a, q) = 4.
Hence, m(a|b) = 4 and X*(a|b) = {p, q}. Since M(a, p) = {(((a,
w), x), p)} and M(a, q) = {(((a, w), y), q), (((a, w), z), q)}, we
have K(a, p) = {a, w, x, p} and K(a, q) = {a, w, y, q} {a, w,
z, q} = {a, w, q}. Thus, K(a|b) = K(a, p) K(a, q) = {a, w}.
 If a = b, we have K(a, b) = {a}. Assume that a b. By
definition, K(a, b) is the set of leaves common to all trees in
M(a, b). Consider the case that C(a, b) is empty. In this case,
all trees in M(a, b) are binary trees. Under the condition that
a should be contained in an agreement subtree, the set of all
maximum agreement subtrees of T on the leaf set X(a|b) is
 M(a|b) = {Q : Q M(a, x), x X*(a|b)}. (3)

Similarly, under the condition that b should be contained in
an agreement subtree, the set of all maximum agreement sub-
trees of T on the leaf set X(b|a) is M(b|a). It can be shown
that a tree Q A(a, b) is in M(a, b) if and only if one of its
maximal subtrees is in M(a|b) and the other is in M(b|a).
Since X(a|b) and X(b|a) are disjoint, we have

K(a, b)
= ⋂QM(a, b) L(Q)
= (⋂QM(a|b) L(Q)) ⋃ (⋂QM(b|a) L(Q))
= (⋂xX*(a|b)(⋂QM(a,x) L(Q))) ⋃ (⋂xX*(b|a)(⋂QM(b,x) L(Q)))
= (⋂xX*(a|b) K(a, x)) ⋃ (⋂xX*(b|a) K(b, x))
= K(a|b) ⋃ K(b|a).

We proceed by discussing the case where C(a, b) is not
empty. Let G(a, b) be defined the same as in Section 3. Let S
= {c1, c2, ..., cr} be a maximum weight clique in G(a, b). De-
fine Q*(S) to be the set of trees that can be constructed as fol-
lows: choose an arbitrary tree from each of M(a|b), M(b|a),
M(c1|a), M(c2|a), ..., and M(cr|a); and then create a new ver-
tex and make the roots of the chosen trees as its children. Ac-
cording to (1), any member of Q*(S) is a tree in M(a, b).

Consider the computation of ⋂QQ*(S) L(Q). For a set H of
trees, let L*(H) denote the union of the leaf sets of the trees
in H. By the definitions of M(|) and G(a, b), we know that
L*(M(a|b)), L*(M(b|a)), L*(M(c1|a)), L*(M(c2|a)), ..., and
L*(M(cr|a)) are pairwise disjoint. Furthermore, by the defini-
tion of Q*(S), any tree in the sets M(a|b), M(b|a), M(c1|a),
M(c2|a), ..., and M(cr|a) is necessarily contained in some tree
in Q*(S). Therefore,
	⋂QQ*(S) L(Q)

 = (⋂QM(a|b) L(Q)) ⋃ (⋂QM(b|a) L(Q)) ⋃		
	 	 	 	 ⋃cS (⋂QM(c|a) L(Q)))
= (⋂xX*(a|b)(⋂QM(a,x) L(Q))) ⋃ (⋂xX*(b|a)(⋂QM(b,x) L(Q))) ⋃
	 	 	 ⋃cS(⋂xX*(c|a) (⋂QM(c,x) L(Q))))
= (⋂xX*(a|b)K(a, x)) ⋃ (⋂xX*(b|a) K(b, x)) ⋃	
 ⋃cS(⋂xX*(c|a) K(c, x)))
= K(a|b) ⋃ K(b|a) ⋃	 ⋃cS K(c|a)).
Let S*(a, b) be the set of maximum weight cliques in G(a, b).
It can be shown that for any agreement subtree Q in M(a, b),
there exists at least a clique S in S* such that Q Q*(S). Con-
sequently, we have the following recurrence:
 K(a, b)
= ⋂QM(a, b) L(Q)
	 ⋂SS*(a, b) (⋂QQ*(S) L(Q))

= ⋂SS*(a, b) (K(a|b) ⋃ K(b|a) ⋃	 ⋃cS K(c|a)))
= K(a|b) ⋃ K(b|a) ⋃	(a, b), (4)
where	
 (a, b)	 	⋂SS*(a, b) ⋃cS K(c|a)). (5)

Swenson et al.'s algorithm for computing each K(a, b) is for-
mally described as the following procedure.
Procedure FINDKAST(a, b)
input: (a, b) L2
output: K(a, b)
begin
1. if a = b then return {a}
2. K(a|b) ⋂xX*(a|b) K(a, x)
3. K(b|a) ⋂xX*(b|a) K(b, x)
4. for each c C(a, b) do
5. K(c|a) ⋂xX*(c|a) K(c, x)

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2922955,
IEEE/ACM Transactions on Computational Biology and Bioinformatics

 5

6. (a, b) ⋂SS*(a, b) ⋃cS K(c|a))
7. K(a, b) K(a|b) ⋃ K(b|a) ⋃	(a, b)
8. return K(a, b)
end

Assume that R, F, and all m(a|b) and m(a, b), where (a, b)
 L2, have been computed by performing Bryant's algorithm.
The time complexity of FINDKAST is analyzed as follows.
Line 1 takes O(1) time. Lines 2-5 compute the following sets:
K(a|b), K(b|a), and K(c|a) of each c C(a, b). According
to (2), each of these sets needs a sequence of O(n) set inter-
section operations to compute. A set operation requires O(n)
time. Therefore, the running time of Lines 2-5 is O((|C(a, b)|
+ 2) n n) = O(n3). Lines 6 and 7 compute K(a, b) accord-
ing to (4) and (5). The computation of (a, b) in Line 6 needs
a sequence of O(d |S*(a, b)|) = O(nd2) set union and set in-
tersection operations. Therefore, Line 6 requires O(nd1) time.
Line 7 takes O(n) time. As a result, the overall running time
of Lines 6-7 is O(nd1).

To solve the KAST problem, FINDKAST is called for every
(a, b) L2. For convenience, we say that the total running
time of Lines 2-5 of FINDKAST(a, b) over all (a, b) L2 is
spent on computing all K(a|b) and the total running time of
Lines 6-7 of FINDKAST over all (a, b) L2 is spent on com-
puting all K(a, b). For a fixed pair (a, b), Lines 2-5 require
O(n3) time. However, the time spent on computing all K(a|b)
is O(n4), instead of O(n5), since we only need to compute
K(a|b) once for each distinct (a, b). For a fixed pair (a, b),
Lines 6-7 requires O(nd1) time. Therefore, the time spent on
computing all K(a, b) is O(nd+1). Bryant's algorithm for com-
puting R, F, and all m(a|b) and m(a, b) requires O(kn3 + nd)
time. Consequently, we obtain the following.
Theorem 4.1. [45] The KAST problem on a set of k trees can
be solved in O(kn3 + n4 + nd+1) time, where n is the size of the
trees and at least one tree has maximum degree d.

An important case of the KAST problem is the case when
the given trees are binary trees. For this case, the following is
obtained.
Corollary 4.1. [45] The KAST problem on a set of k binary
trees can be solved in O(kn3 + n4) time, where n is the size of
the trees.

5. An O(kn3 + n4 + nd)-time KAST algorithm

A bottleneck of the algorithm in Section 4 is the computa-
tion of (a, b) in Line 6 of FINDKAST. According to (5), com-
puting each (a, b) needs O(nd2) set operations. In this sec-
tion, we improve the upper bound of the KAST problem to
O(kn3 + n4 + nd) by showing that each (a, b) can be com-
puted by using amortized O(1) set operations.

Consider the computation of (a, b) for a fixed pair (a, b)
 L2. As in Section 3, for 1 i k, we define i to be lcai(a,
b). For a tree Ti(i), 1 i k, and a leaf l of Ti(i), we use (i,

l) to denote the subtree of i that contains l. For example, in
Figure 3, (1, x) = H1, (2, x) = I3, and (3, x) = J1. Let G(a,
b), S*(a, b) and Q*(S) be defined the same as in Section 4. Our
first intent is to avoid redundant set operations for computing
(a, b) by utilizing the topological structure of T1(1). We
start with the following two simple observations.
Lemma 5.1. Any clique in G(a, b) contains at most one leaf
of each subtree of 1.
Proof. Let S C(a, b) be a set containing two leaves, say u and
v, of a subtree of 1. In G(a, b), there is an edge between u and v
if and only if (a, u, v) F. Since uv|a is a rooted triple of T1, we
have (a, u, v) F. Thus, S is not a clique in G(a, b) and the
lemma holds.
Lemma 5.2. Let S be a clique in S*(a, b). A leaf l L can be
contained in a tree Q Q*(S) only if there is leaf s {a, b}
⋃ S such that l and s are in the same subtree of i for every i
= 1, 2, ..., k.
Proof. According to the construction of the trees in Q*(S), Q
is made up by taking a tree from M(a|b), a tree from M(b|a),
and a tree from M(s|a) for each s S. The trees in M(a|b) are
agreement subtrees of {(i, a) : 1 i k} and thus contain
only leaves common to all (i, a), 1 i k. Similarly, the trees
in M(b|a) contain only leaves common to all (i, b), 1 i k,
and for each s S the trees in M(s|a) contain only leaves com-
mon to all (i, s), 1 i k. Therefore, a leaf l L can be
contained in a tree Q Q*(S) only if there exists a leaf s {a,
b} ⋃ S such that l is in (i, s) for every i = 1, 2, ..., k. Thus,
the lemma holds.

For convenience, if a clique S in G(a, b) contains a leaf of
a subtree H of 1, we say that S uses H. For example, in Figure
3, S = {z, v} is a clique in G(a, b) and it uses H1 and H3. We
have the following.
Lemma 5.3. Let H be a subtree of 1 that contains neither a
nor b. If H is not used by all cliques in S*(a, b), then K(a, b)
does not contain any leaf of H.
Proof. Assume that H is not used by a clique S S*(a, b). By
definition, K(a, b) is the set of leaves common to all trees in
M(a, b). This lemma can be proved by showing that there
exists a tree Q M(a, b) that does not contain any leaf of H.
Let Q Q*(S) be a tree. Note that any member of Q*(S) is a
tree in M(a, b). Consider any leaf l of H. Since a and b are
not in H and H is not used by S, leaf l is not in (1, s) for all s
 {a, b} ⋃ S. As a result, by Lemma 5.2, Q does not contain
any leaf of H. Thus, the lemma holds.
 For each subtree H of 1, let C(a, b, H) be the set of leaves
in H that are contained in some clique in S*(a, b). That is,
 C(a, b, H) = ⋃SS*(a, b) (L(H) ∩ S).
For convenience, we say that some leaves of L are coherent
with respect to (a, b) if they are in the same subtree of i for
every i = 1, 2, ..., k. For example, in Figure 3, x and y are

y
a

T1 1

a
b

v
x y z Ha

H2

H3 H1

Hb

T2 2

a b
v

x y
z

I1
I2 I3

Ia Ib

T3 3

b

v
J1

J2 J3
Ja

Jb
x z

Figure 3. An illustration.

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2922955,
IEEE/ACM Transactions on Computational Biology and Bioinformatics

6

coherent; but x, y, and z are not, since in T2, they are not con-
tained in the same subtree of 2. According to Lemma 5.3, in
the computation of K(a, b), we can ignore any subtree of 1
that contains neither a nor b and is not used by all cliques in
S*(a, b). The following lemma allows us to identify more sub-
trees that can be ignored.
Lemma 5.4. Let H be a subtree of 1 that is used by all cliques
in S*(a, b). If C(a, b, H) contains two leaves that are not co-
herent with respect to (a, b), then the set K(a, b) does not
contain any leaf of H.
Proof. Assume that there are two leaves, say c and c', in C(a,
b, H) that are not coherent with respect to (a, b). In the fol-
lowing, we prove this lemma by showing that there are two
trees Q, Q' M(a, b) such that L(Q)	⋂	L Q') does not contain
any leaf in H.
 By the definition of C(a, b, H), there are two cliques, say
S and S', in S*(a, b) such that S contains c and S' contains c'.
Note that S S', since by Lemma 5.1 each of S and S' contains
at most one leaf of H. Let Q be a tree in Q*(S) and Q' be a tree
in Q*(S'). Consider a leaf l in H. By Lemma 5.1, c is the
unique leaf of S that is in H. Thus, c is the only leaf of S such
that c and l are in the same subtree of 1. Consequently, ac-
cording to Lemma 5.2, l can be contained in Q only if l and c
are coherent with respect to (a, b). Similarly, l can be con-
tained in Q' only if l and c' are coherent with respect to (a, b).
Since c and c' are not coherent with respect to (a, b), we know
that l cannot be a leaf of both Q and Q'. The lemma holds.

Let Valid(a, b) = {H : H is a subtree of 1 used by all
cliques in S*(a, b) and all leaves in C(a, b, H) are coherent}.
According to (4), K(a, b) is the union of three disjoint sets
K(a|b), K(b|a), and (a, b). The leaves of K(a|b) and K(b|a)
are contributed, respectively, by the subtree of 1 that con-
tains a and the subtree of 1 that contains b; and the leaves of
(a, b) are contributed by the subtrees of 1 that contain nei-
ther a nor b. By Lemmas 5.3 and 5.4, if a subtree H of 1
contains neither a nor b, K(a, b) contains a leaf of H only if
it is in Valid(a, b). Thus, it can be concluded that only the sub-
trees in Valid(a, b) can give leaves to (a, b). Therefore, the
right side of equation (5) can be simplified as follows:
 ⋂SS*(a, b) ⋃cS K(c|a))
= ⋂SS*(a, b) ⋃cS and (1, c)Valid(a, b) K(c|a))
= ⋂SS*(a, b) ⋃HValid(a, b), cS⋂L H 	K(c|a))
= ⋃HValid(a, b)	 ⋂SS*(a, b), cS⋂L H K(c|a))
 (since the subtrees of 1 are mutually disjoint)
= ⋃HValid(a, b)	 ⋂cC(a, b, H) K(c|a))
 (since C(a, b, H) = ⋃SS*(a, b) (L(H) ∩ S)).

Consequently, (5) can be written as
 (a, b)	= ⋃HValid(a, b)	a(C(a, b, H)), (6)	

where for any U L,
 a(U) = ⋂cU K(c|a). (7)

 Clearly, according to (6) and (7), the number of set opera-
tions required for computing each (a, b)	is reduced to O(n).
Consequently, the total number of set operations required to
compute (a, b) for all (a, b) L2 is O(n3). In the following,
by further utilizing the topological structure of each input tree,
we show that the total number of required set operations can
be reduced to O(n2). More specifically, we show that for each
a L, O(n) set operations are sufficient for computing (a,

b) for all b L.
 Consider a fixed a L. According to (6), to compute (a,
b) for all b L, it suffices to compute a(C(a, b, H)) for all
b L and all H Valid(a, b). If we compute (a, b) for all b
 L individually according to (4) and (5), it may happen that
a(U) is computed many times for the same set U. For in-
stance, consider the artificial example in Figure 4, in which k
= 3 and T1(1), T2(2), and T3(3) are isomorphic. In this ex-
ample, it is easy to see that for each b L(B), we have H
Valid(a, b) and C(a, b, H) = L(H); and if we compute all (a,
b) individually according to (4) and (5), a(L(H)) will be
computed |L(B)| times. Define a to be the following collec-
tion of sets:

{C(a, b, H) : b L, H Valid(a, b)}.
Then, to compute (a, b) for all b L, it suffices to compute
a(U) for all U a. Our intent is to avoid re-computing the
content of a(U) for the same set U and to show that O(n) set
operations are sufficient for computing a(U) for all U a.

 For convenience, we say that the subtrees in Valid(a, b)
are valid for (a, b). We need the following lemma.
Lemma 5.5. Let H be a subtree of 1 that is valid for (a, b).
The value of m(c|a) is the same for every c C(a, b, H).
Proof. We prove this lemma by contradiction. Suppose that
there are two leaves c, c' C(a, b, H) such that m(c|a) <
m(c'|a). By the definition of C(a, b, H), there is a clique S
S*(a, b) which contains c. Since H is valid for (a, b), we
know that c and c' are coherent with respect to (a, b). Thus,
for each x C(a, b), we have (a, c, x) F if and only if (a,
c', x) F. As a result, c and c' have the same neighborhood
in the graph G(a, b). Therefore, S {c} ⋃ {c'} is clique. Since
m(c|a) < m(c'|a), this clique, S {c} ⋃ {c'}, has larger total
weight than S, contradicting to that S is a maximum weight
clique in G(a, b). Therefore, the lemma holds
Lemma 5.6. Let a, b, b' be three leaves. If lca*(a, b) lca*(a,
b'), we have C(a, b) C(a, b') = .
Proof. Assume that lca*(a, b) lca*(a, b'). Since lca*(a, b)
lca*(a, b'), there is a tree Tg such that lcag(a, b) lcag(a, b'),
where 1 g k. Since lcag(a, b) lcag(a, b') and there is an
ancestor-descendant relationship between them, there is no
leaf l such that both (a, b, l) and (a, b', l) are fan triples in Tg.
By definition, if C(a, b) C(a, b') , there exists a leaf l
such that both (a, b, l) and (a, b', l) are fan triples in Ti for
every i = 1, 2, .., k. Therefore, it can be concluded that C(a, b)
 C(a, b') = . Thus, the lemma holds.
Lemma 5.7 Let a, b, b' be three leaves such that lca*(a, b) =
lca*(a, b'). Let H be a subtree of 1 = lca1(a, b). If H is valid
for both (a, b) and (a, b'), then either C(a, b, H) C(a, b',
H) = or C(a, b, H) = C(a, b', H).

1T1(1)

b
a

H
B

Figure 4. An example.

2 T2(2)

b
a

H
B

3T3(3)

b
a

H
B

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2922955,
IEEE/ACM Transactions on Computational Biology and Bioinformatics

 7

Proof. Note that since lca*(a, b) = lca*(a, b'), we know that b'
and a are in different subtrees of i = lcai(a, b) for every i =
1, 2, ..., k; but b' and b may be in the same subtree or in dif-
ferent subtrees of i. Since H is valid for (a, b), all leaves in
C(a, b, H) are in the same subtree of i for every i = 1, 2, ...,
k. Similarly, all leaves in C(a, b', H) are in the same subtree
of i for every i = 1, 2, ..., k. Two cases are considered.
Case 1. There is a tree Tg, 1 g k, such that the leaves in

C(a, b, H) and C(a, b', H) are in different subtrees of g.
(See Figure 5(a) for an illustration, in which g = 2.)
Since the leaves in C(a, b, H) and the leaves in C(a, b', H)
are contained, respectively, in two disjoint subtrees of g,
we have C(a, b, H) C(a, b', H) = .

Case 2. The leaves in C(a, b, H) and C(a, b', H) are in the
same subtree of i for every i = 1, 2, ..., k. (See Figure
5(b).)

 In the following, we prove that in this case C(a, b, H) =
C(a, b', H). First, we show that C(a, b, H) C(a, b', H).
Consider a leaf c in C(a, b, H). Since H is valid for (a,
b), there is a clique S S*(a, b) that contains c. Let S' be
any clique in S*(a, b'). Since H is valid for (a, b'), set S'
contains a leaf c' C(a, b', H). Note that c and c' are in
the same subtree of i for every i = 1, 2, ..., k. Recall that
a set U is a clique in G(a, b) if and only if {a, b} U is a
fan set of T. Thus, {a, b} S is a fan set of T. Since S
contains c and the two leaves c, c' are in the same subtree
of i for every i = 1, 2, ..., k, we know that {a, b} ⋃ (S
{c} ⋃ {c'}) is also a fan set of T. That is, S {c} ⋃ {c'}
is a clique in G(a, b). Consequently, we have m(c'|a)
m(c|a); otherwise this clique, S {c} ⋃ {c'}, has larger
total weight than S, contradicting to that S is a maximum
weight clique in G(a, b). Similarly, from the fact that S' is
a maximum weight clique in G(a, b'), it can also be de-
rived that S' {c'} ⋃ {c} is a clique in G(a, b') and m(c|a)
 m(c'|a). As a result, it can be concluded that m(c|a)
m(c'|a) and S' {c'} ⋃ {c} is a maximum weight clique in
G(a, b'). Therefore, c is contained in C(a, b', H). From the
above discussion, we know that C(a, b, H) C(a, b', H).
Similarly, it can be shown that C(a, b', H) C(a, b, H).
By combining these two statements, we have C(a, b, H) =
C(a, b', H), which completes the proof of this lemma.

By combining Lemmas 5.6 and 5.7, the following is ob-

tained.
Lemma 5.8. Let a, b, b' be three leaves. Let H be a subtree of
lca1(a, b) that is valid for (a, b) and H' be a subtree of lca1(a,
b') that is valid for (a, b'). Then, either C(a, b, H) C(a, b',
H') = or C(a, b, H) = C(a, b', H').
Proof. If lca*(a, b) lca*(a, b'), the lemma holds, since by
Lemma 5.6, we have C(a, b, H) C(a, b', H') C(a, b)
C(a, b') = . Assume that lca*(a, b) = lca*(a, b'). Two cases
are considered: H H' and H = H'. If H H', we know that H
and H' are two different subtrees of lca1(a, b), since lca1(a, b)
= lca1(a, b'). Thus, we have C(a, b, H) C(a, b', H') = . If
H = H', by Lemma 5.7, either C(a, b, H) C(a, b', H') =
or C(a, b, H) = C(a, b', H'), which completes the proof.
 We proceed to show that for each a L, O(n) set opera-
tions are sufficient for computing a(U) for all U a. Recall
that a = {C(a, b, H) : b L, H Valid(a, b)}. Let size(a)

be the total size of the sets in a. According to (7), for each U
 a, the number of set operations required for computing
a(U) is |U| 1. Therefore, the number of set operations re-
quired for computing a(U) for all U a is less than size(a).
The following lemma gives an upper bound on size(a).
Lemma 5.9. For any a L, size(a) n 1.
Proof. Clearly, a C(a, b, H) for any b L and H Valid(a,
b). By Lemma 5.8, any two sets in a are disjoint. Therefore,
size(a) |L {a}| n 1 and the lemma holds.
 According to (4), (6), (7), and Lemma 5.9, a more efficient
algorithm for computing K(a, b) is given as follows.
Procedure NEWKAST-1(a, b)
input: (a, b) L2
output: K(a, b)
begin
1. if a = b then return {a}
2. K(a|b) ⋂xX*(a|b) K(a, x)
3. K(b|a) ⋂xX*(b|a) K(b, x)
4. for each c C(a, b) do
5. K(c|a) ⋂xX*(c|a) K(c, x)
6. find Valid(a, b) and compute C(a, b, H) for each subtree

H Valid(a, b)
7. for each H Valid(a, b) do
8. a(U) ⋂cU K(c|a), where U = C(a, b, H)
9. (a, b) ⋃HValid(a, b) a(C(a, b, H))
10. K(a, b) K(a|b) ⋃ K(b|a) ⋃	(a, b)
11. return K(a, b)
end

The detailed implementation of NEWKAST-1 is described
as follows. Without loss of generality, assume that the maxi-
mum degree of T1 is d. The following lemma gives the time
complexity of Line 6.
Lemma 5.10. Given a pair (a, b) L2, we can find Valid(a,
b) and compute C(a, b, H) for each H Valid(a, b) in O(nd2)
time.
Proof. For d = 2, since Valid(a, b) is empty, the lemma holds
trivially. Assume that d 3. We prove this lemma by present-
ing an algorithm. Initially, all subtrees of 1 and all leaves in
T1(1) are unmarked. This initialization takes O(n) time. First,

Cb

H

1

a

b

Cb'

(a) Case 1, in which g = 2

(b) Case 2
Figure 5. An illustration for the proof of Lemma 5.7,

in which k = 3 and Cb and Cb' denote, respectively,
C(a, b, H) and C(a, b', H).

H

1

a

b

3

a

b

2

a b

2

a b
Cb

Cb'

3

a

b
Cb

Cb'

Cb

Cb'

Cb
Cb' Cb

Cb'

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2922955,
IEEE/ACM Transactions on Computational Biology and Bioinformatics

8

for each clique S S*(a, b), we mark all the leaves in S and
mark all the subtrees of 1 that are not used by S. Since the
degree of 1 and the size of a clique are both bounded by d,
this step requires O(d |S*(a, b)|) = O(nd2) time. Next, for
each subtree H of 1, we compute C(a, b, H) as the set of
marked leaves in H. This step requires O(|L(T1(1)|) = O(n)
time.
 To find the set Valid(a, b), we need to determine whether
each subtree of 1 is valid for (a, b). All marked subtrees
are not valid, since they are not used by all the cliques in S*(a,
b). Consider an unmarked subtree H. By definition, H is valid
if all leaves in C(a, b, H) are coherent with respect to (a, b).
Clearly, two leaves c, c' in H are coherent with respect to (a,
b) if and only if cc'|a R. Therefore, we determine whether
H is valid as follows: pick an arbitrary leaf c C(a, b, H) and
then check whether cc'|a R for all c' C(a, b, H) {c}.
The above checking requires O(|C(a, b, H)|) time. Conse-
quently, the set Valid(a, b) can be found in O(H |C(a, b, H)|)
= O(|L(T1(1)|) = O(n) time.
 The above algorithm requires O(nd2) time. Therefore, the
lemma holds.

We proceed to describe the implementation of Lines 7 and
8. By Lemma 5.9, O(n) set operations are sufficient for com-
puting a(U) for all U a. To avoid re-computation, for
each leaf a L, we maintain an array, TABLEa of n entries
to save the results of computed a(U) and implement the find-
ing of a(U) in Line 8 as follows: first check to see whether
a(U) has been already computed for U = C(a, b, H); if so,
use the result stored in TABLEa; if not, compute a(C(a, b,
H)) and then store the result in TABLEa. We need to establish
a relationship between the positions of TABLEa and the sets
in a. By Lemma 5.8, any two sets in a are disjoint. Thus,
each set in a can be uniquely identified by any of its elements.
We let each set in a be represented by its smallest element.
More specifically, when a(U) has been computed for a set
U, the result is stored in TABLEa[lmin], where lmin is the small-
est element in U. Accordingly, the corresponding position of
a given set U in TABLEa can be found in O(|U|) = O(n) time.

For a fixed a L, Lines 7-8 of NEWKAST-1 over all b
L require O(n) set operations. Therefore, the required set op-
erations of Lines 7-8 over all (a, b) L2 is O(n2). Conse-
quently, the total time of Lines 7-8 over all (a, b) L2 is O(n3).

By Lemma 5.10, the total time of Line 6 over all (a, b)
L2 is O(nd). As discussed in Section 4, the total time of Lines
1-5 and Line 10 over all (a, b) L2 is O(n4). Therefore, we
obtain the following.
Theorem 5.1. The KAST problem on a set of k trees can be
solved in O(kn3 + n4 + nd) time, where n is the size of the trees
and at least one tree has maximum degree d.

6. An O(kn3 + nd)-time KAST algorithm

In this section, we show how to further improve the upper
bound of the KAST problem to O(kn3 + nd).

To solve the KAST problem, the algorithm in Section 5
computes K(a, b) for all (a, b) L2. At the time of writing,
we are not aware of a more efficient way to compute all K(a,
b) explicitly. In the time complexity of Theorem 5.1, the n4

term comes from Lines 2-5 of NEWKAST-1, which computes
K(a|b) for all (a, b) L2. Recall that this straightforward

method for computing K(a|b) potentially requires a linear
number of set intersections on subsolutions K(a, x) such that
m(a, x) = m(a|b) and x X(a|b). Thus, for each pair in L2 we
must take potentially Ω(n2) time to perform all set intersec-
tions.

This section reduces the total number of set intersections
necessary by working with what we call refinements of K(a,
b) and K(a|b), denoted by K1(a, b) and K1(a|b), rather than
K(a, b) and K(a|b) themselves. A refinement of a set is a
subset that preserves all KAST leaves. We compute K1(a, b)
and K1(a|b) only for the pairs (a, b) that are relevant to the
computation of the KAST of T. The idea is to group compu-
tations for a fixed leaf a; all relevant pairs (a, b) have equiva-
lent K1(a|b) if they have the same value for m(a|b) and their
subsolutions are all computed from the same intersection of
sets K1(a, x) such that m(a, x) = m(a|b) and (a, x) are relevant.
The implication is that K1(a, x) appears only in a single set
intersection for a fixed a. This results in an algorithm that uses
a linear number of total set operations to compute refinements
of K1(a|b) for a fixed a, rather than Ω(n2). Consequently, the
n4 term in the time complexity of Theorem 5.1 is removed.
Since K1(a, b) preserves all KAST leaves of K(a, b), the
KAST of T is the intersection of all K1(a, b) such that m(a,
b) = mast(T).

Section 6.1 shows how to identify all relevant pairs (a, b).
Section 6.2 describes the computation of K1(a, b) and K1(a|b)
for each relevant pair.

6.1 Finding relevant pairs

Let (a, b) be a pair in L2. We say that (a, b) is relevant if
there exists a MAST of T that contains a tree in M(a, b) as a
subtree, and is irrelevant otherwise. That is, (a, b) is relevant
if M(a, b) contains a sub-solution to the problem of finding
the MASTs of T. Suppose that there is a MAST of T that con-
tains a tree X in M(a, b) as a subtree. If we modify the MAST
by replacing X with any other tree in M(a, b), it is easy to
concluded from Lemma 3.1 that the resulting tree is still a
MAST. Therefore, if (a, b) is relevant, every tree in M(a, b)
is a subtree of a MAST of T.

As discussed in Section 3, given a clique S S*(a, b), a
tree in M(a, b) can be constructed by taking a tree in M(a|b),
a tree in M(b|a), and a tree in M(c|a) for each c S. From
this, and the definition of M(a|b) in (3), it can be concluded
that if (a, b) is a relevant pair, all pairs in the following set are
relevant:

(a, b) = {(a, x) : x X*(a|b)} ⋃	{(b, x) : x X*(b|a)}	⋃	
	 	 ⋃SS*(a, b) ⋃cS{(c, x) : x X*(c|a)} 	

As a result, after m(a|b) and m(a, b) have been computed for
every (a, b) L2 by applying Bryant's dynamic programming
algorithm, all relevant pairs can be recognized by tracing back
the steps that led to each maximum table entry. More specifi-
cally, all relevant pairs can be recognized, in a top-down man-
ner, according to the following rules:
(i) if m(a, b) = mast(T), (a, b) is relevant (since all trees in

M(a, b) are MASTs); and
(ii) if (a, b) is relevant, all pairs in (a, b) are relevant.

Assume that R, F, and all m(a|b) and m(a, b), where (a,
b) L2, have been computed. A procedure that finds all rele-
vant pairs is given as follows.

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2922955,
IEEE/ACM Transactions on Computational Biology and Bioinformatics

 9

Procedure FINDREVELANT
/* find the set of relevant pairs
begin
1. REVELANT /* initialization
2. for each (a, b) L2 do /* initialization
3. compute X*(a|b) and mark X*(a|b) unexplored
4. for each (a, b) L2 do /* find relevant pairs recursively
5. if m(a, b) = mast(T) then ADDREVELANT(a, b)
6. return REVELANT
end
Procedure ADDREVELANT(a, b)
// add (a, b) and the pairs in (a, b) into REVELANT
begin
1. REVELANT REVELANT {(a, b)}
2. if X*(a|b) is unexplored then EXPLORE(X*(a|b))
3. if X*(b|a) is unexplored then EXPLORE(X*(b|a))
4. for each c ⋃SS*(a, b) S do
5. if X*(c|a) is unexplored then EXPLORE(X*(c|a))
end
Procedure EXPLORE(X*(p|q))
//add the pairs in X*(p|q) into REVELANT
begin
1. mark X*(p|q)} explored /* avoid re-exploring
2. for each x X*(p|q) do
3. if (p, x) REVELANT then ADDREVELANT(p, x)
end
Lemma 6.1. FINDREVELANT requires O(n3 + nd) time.
Proof. Each call to ADDREVELANT takes O(d|S*(a, b)|) =
O(nd2) time, excluding the time spent on the calls to EX-
PLORE. Each call to EXPLORE takes O(|X*(p|q)|) = O(n) time,
excluding the time spent on the calls to ADDREVELANT. The
number of calls to ADDREVELANT is bounded by the number
of relevant pairs, which is at most n2. The number of calls to
EXPLORE is bounded by the number of explored sets X*(p|q),
which is also bounded n2. Therefore, the total time of
FINDREVELANT is O(n3 + nd) and the lemma holds.

For ease of discussion, we call K(a, b) and K(a|b), respec-
tively, the K-set and the conditional K-set of (a, b). Accord-
ing to (2), (4), and (5), K(a, b) is determined from the K-sets
of the pairs in (a, b). Therefore, if (a, b) is relevant, all the
K-sets required for computing K(a, b) are also of relevant
pairs. As a result, it can be concluded that a set K(a, b) needs
to be computed only if (a, b) is relevant. In the remainder of
this section, we show that a set K(a|b) also needs to be com-
puted only if (a, b) is relevant.
Lemma 6.2. Let a, b, c be three leaves such that (a, b, c) F
and c is a leaf of a tree in M(a, b). If (a, b) is relevant, then
(a, c) is relevant.
Proof. Assume that (a, b) is relevant. Let X be a tree in M(a,
b) that contains the leaf c. Since (a, b) is relevant, there is a
MAST, say Z, that contains X as a subtree. Since (a, b, c)
F, tree X is an agreement subtree in which a, c are leaves and
the root is the LCA of a, c. Thus, X A(a, c). All trees in
A(a, c) are agreement subtrees of {Ti(i) : i = lcai(a, c), 1
i k}. Therefore, after modifying Z by replacing X with any
tree in A(a, c), the resulting tree is still an agreement subtree.
Consequently, X is a largest tree in A(a, c); otherwise, Z is
not a MAST. That is, X M(a, c). Since X is a subtree of a
MAST, (a, c) is relevant and the lemma holds.

According to (4) and (5), the following conditional K-sets

are required for the computation of the K-set of a relevant
pair (a, b):
 K(a|b), K(b|a), and K(c|a) of each c ⋃SS*(a, b) S.
The sets K(a|b) and K(b|a) are of relevant pairs (a, b) and (b,
a). Note that (b, a) is a relevant pair since M(b, a) = M(a, b).
Recall that given a set S S*(a, b), a tree in M(a, b) can be
constructed by taking a tree in M(a|b), a tree in M(b|a), and
a tree in M(c|a) for each c S. Therefore, each c ⋃SS*(a, b)
S is a leaf of a tree in M(a, b). In addition, each c ⋃SS*(a, b)
S is a leaf in C(a, b). As a result, it can be concluded from
Lemma 6.2 that (c, a) is relevant for each c ⋃SS*(a, b) S.
Based upon the above discussion, we know that K(a|b) also
needs to be computed only if (a, b) is relevant.

6.2 Computing refinements

In this section, we show that K1(a, b), which is a refine-
ment of K(a, b), can be computed for every relevant pair (a,
b) in O(kn3 + nd) time. Recall that the computation of K(a, b)
is based on computing K(a|b) = ⋂xX*(a|b) K(a, x), where
X*(a|b) = {x : x X(a|b), m(a, x) = m(a|b)}. Similarly, for each
relevant pair (a, b), the computation of K1(a, b) is based on
an analogue of K(a|b) called K1(a|b). The key observation
will be described by Lemma 6.7, which says that, for any two
relevant pairs (a, b) and (a, b'), K1(a|b) and K1(a|b') are equal
if m(a|b) = m(a|b'). Thus, for a fixed a we group computations
of K1(a|b) according to the value of m(a|b) so that we only
need to compute K1(a|b) once for all b with the same m(a|b).
As with K(a|b), K1(a|b) only depends on the relevant pairs
(a, x) with the same m(a, x). Therefore, each subsolution K1(a,
x) for relevant pair (a, x) is implicated in a set operation for
exactly one group. Thus, all K1(a|b) can be computed in
quadratic time for a fixed a, yielding an algorithm that com-
putes K1(a, b) for all relevant pairs in O(kn3 + nd) time.

A refinement of a set U L is any set obtained by deleting
from U none or some leaves that are not in KAST(T). For ex-
ample, if KAST(T) = {a, c, d} and U = {a, b, d, f}, then {a, d},
{a, b, d}, {a, d, f}, and {a, b, d, f} are all refinements of U;
but {a, b, f} is not, since it does not contain the KAST leaf d.
Recall that KAST(T) is the intersection of all K(a, b) with
m(a, b) = mast(T). Since a refinement of a K-set preserves
all the KAST leaves in the K-set, in the above computation
of the intersection, each K-set can be replaced by any of its
refinement. Therefore, to solve the KAST problem, it suffices
to find a refinement of K(a, b) for each relevant pair (a, b).

By the definition of a refinement, it is easy to obtain the
following.
Observation 6.3. Let U1, U'1, U2, U'2, .., Up, U'p be sets such
that for each i, 1 i p, U'i is a refinement of Ui. Then, U'1	⋃
U'2 ⋃ ... ⋃ U'p is a refinement of U1	⋃ U2 ⋃ ... ⋃ Up; and U'1	
⋂ U'2 ⋂ ... ⋂ U'p is a refinement of U1	⋂ U2 ⋂ ... ⋂ Up.
Lemma 6.4. Let (a, b) be a relevant pair and Q be any tree in
M(a, b). Then, for each Ti T, a leaf l of Ti(i) is in KAST(T)
only if Q contains l, where i = lcai(a, b).
Proof. Let Ti be a tree in T and l be a leaf of Ti(i). Since (a,
b) is relevant, there is a MAST, say Z, that contains Q as a
subtree. By definition, the leaf l is in KAST(T) only if it is
contained in every MAST of T. Assume that l L(Q). In the
following, we prove this lemma by showing that Z does not
contain l. Suppose by contradiction that Z contains l. From

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2922955,
IEEE/ACM Transactions on Computational Biology and Bioinformatics

10

Lemma 3.1, it is easy to conclude that any subset of an agree-
ment set is also an agreement set. Thus, L(Q) ⋃ {l} is an
agreement set and Ti|L(Q)⋃{l} is an agreement subtree. Since l
is a leaf of Ti(i) and Q A(a, b), we know that in Ti|L(Q)⋃{l},
a, b are leaves and the LCA of a, b is the root. Therefore,
Ti|L(Q)⋃{l} is in A(a, b), contradicting to that Q is a largest tree
in A(a, b). Thus, the lemma holds.

For ease of description, we define a valid filter of a set U
 L to be a set containing all the KAST leaves in U. For ex-
ample, if KAST(T) = {a, c, d} and U = {a, b, d, f}, then {a, d},
{a, b, c, d}, are {a, c, d, g} are all valid filters of U; but {a, c,
f} is not, since {a, c, f} does not contain the KAST leaf d.
Note that a refinement of U is also a valid filter of U, but the
reverse may not be true. For example, {a, b, c, d} is a valid
filter of U, but it is not a refinement of U, since it is not a
subset of U. A valid filter of a set U can be used to remove
from U some leave that are not in KAST(T). More specifically,
if U' is a valid filter of U, then U' U is a refinement of U
Lemma 6.5. Let (a, b) be a relevant pair. Then, for each Ti
T, K(a, b) is a valid filter of any subset of L(Ti(i)), where i
= lcai(a, b).
Proof. We first show that K(a, b) is a valid filter of L(Ti(i)).
Let l be any leaf of Ti(i). By Lemma 6.4, l is in KAST(T)
only if it is in every tree in M(a, b). Thus, l is in KAST(T) only
if l is in K(a, b). Therefore, K(a, b) is a valid filter of
L(Ti(i)). Clearly, a valid filter of a set U is a valid filter of
any subset of U. Thus, the lemma holds.
 For each relevant pair (a, b), define a variant of X*(a|b):

 X1
*(a|b) = {x : (a, x) is relevant, m(a, x) = m(a|b)}.

We have the following.
Lemma 6.6. For any relevant pair (a, b), X*(a|b) X1

*(a|b).
Proof. Let x be any leaf in X*(a|b). Recall that X*(a|b) = {x : x
 X(a|b), m(a, x) = m(a|b)}. Since x X*(a|b), we have m(a,
x) = m(a|b). In addition, since (a, b) is relevant and {(a, x) : x
 X*(a|b)} (a, b), we know that (a, x) is relevant. There-
fore, it can be concluded that each x X*(a|b) is contained in
X1

*(a|b). Thus, the lemma holds.

Before presenting an algorithm that computes a refine-
ment for the K-set of each relevant pair, we describe the idea
behind our approach. Consider the computation of K(a|b) for
a relevant pair (a, b). By definition, K(a|b) = ⋂xX*(a|b) K(a,
x). Essentially, our idea is to compute ⋂xX1*(a|b) K(a, x) to
take the place of K(a|b). Let Z = X1

(a|b) X(a|b). Since
X*(a|b) X1

(a|b), this set, ⋂xX1(a|b) K(a, x), can be consid-
ered as the set obtained from K(a|b) by removing leaves not

in K(a, z) for every z Z. Consider a leaf z Z. Since m(a,
z) = m(a|b), we know that az|b R; otherwise z X*(a|b).
That is, az|b is not a rooted triple in at least one of the trees in
T. Without loss of generality, assume that az|b is not a rooted
triple in T1. Since az|b is not a rooted triple in T1, we know
that 1 = lca1(a, b) is a descendant of '1 = lca1(a, z). There
are two cases: 1 = '1, and 1 is a proper descendant of '1.
(See Figure 6.) In either case, we have L(T1('1)) L(T1(1)).
Since K(a|b) contains a leaf l only if al|b R, we know that
K(a|b) is a subset of L(T1(1)) and thus is a subset of
L(T1('1)). Hence, by Lemma 6.5, K(a, z) is a valid filter of
K(a|b). Therefore, ⋂xX1*(a|b) K(a, x) preserves all KAST
leaves in K(a|b) and thus is a refinement of K(a|b).

Based upon the above idea, by replacing X*(a|b) with
X1

*(a|b) in the definition of K(a|b), we define K1(a, b) as fol-
lows: if a = b, K1(a, b) = {a}; otherwise

K1(a, b) = K1(a|b) ⋃ K1(b|a) ⋃		
	 	 	 ⋂SS*(a, b) ⋃cS K1(c|a))), (8)

where
K1(a|b) = ⋂xX1*(a|b) K1(a, x). (9)	

Our algorithm uses K1(a|b) to replace K(a|b). As mentioned,
essentially, our idea is to compute ⋂xX1*(a|b) K(a, x) to take
the place of K(a|b). We remark that according to the defini-
tion in (9), K1(a|b) may not be the same as ⋂xX1*(a|b) K(a, x).

Before showing that K1(a, b) is a refinement of K(a, b),
we describe the advantage of replacing X*(a|b) with X1

*(a|b)
in the definition of K(a|b).
Lemma 6.7. Let a, b, and b' be leaves such that (a, b) and (a,
b') are both relevant, and m(a|b) = m(a|b'). Then, K1(a|b) =
K1(a|b').
Proof. Since m(a|b) = m(a|b'), according to the definition of
X1

*(,), we have X1
*(a|b) = X1

*(a|b'). Thus, K1(a|b) = K1(a|b')
and the lemma holds.

In the time complexity of Theorem 5.1, the n4 term comes
from Lines 2-5 of NEWKAST-1, which computes K(a|b) for
all (a, b) L2. Lemma 6.7 indicates that for a fixed a L and
size t < mast(T), K1(a|b) only needs to be computed once for
all b with m(a|b) = t. Later, we will show that this property
allows K1(a|b) to be computed for all relevant pairs (a, b) in
O(n3) time.

We proceed by showing that for each relevant pair (a, b),
K1(a, b) is a refinement of K(a, b). The proof is done by in-
duction on on the size m(a, b). The following lemma is needed.
Lemma 6.8. Let (a, b) be a relevant pair. Suppose that K1(a,
x) is a refinement of K(a, x) for each x X1*(a|b). Then,
K1(a|b) is a refinement of K(a|b).
Proof. Recall that, previous to Lemma 6.7, we explained that
⋂xX1*(a|b) K(a, x) is a refinement of K(a|b). The proof of this
lemma is similar. By Lemma 6.6, X*(a|b) X1

*(a|b). Thus, we
can write K1(a|b) = U1 ⋂	U2, where
 U1 = ⋂xX*(a|b) K1(a, x) and U2 = ⋂zX1*(a|b)X*(a|b)K1(a, z).
Since K1(a, x) is a refinement of K(a, x) for each x X*(a|b),
by Observation 6.3, ⋂xX*(a|b) K1(a, x) is a refinement of
⋂xX*(a|b) K(a, x). That is, U1 is a refinement of K(a|b). In the
following, we show that U2 is a valid filter of K(a|b).
 Consider a fixed z X1*(a|b) X*(a|b). Since m(a, z) =
m(a|b) and z X*(a|b), we know that az|b is not a rooted triple
in at least one of the trees in T. Without loss of generality,

Case 2. 1 '1

L(T1(1)) = L(T1('1))

Case 1. 1 = '1

T1 1 = '1

X
*
(a|b) z b

a

Figure 6. A leaf z X1
(a|b) X(a|b) such that

az|b is not a rooted triple in T1.

z

L(T1(1))
L(T1('1))

T1

X
*
(a|b)

b

1
'1

a

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2922955,
IEEE/ACM Transactions on Computational Biology and Bioinformatics

 11

assume that az|b is not a rooted triple in T1. Since az|b is not
a rooted triple in T1, we know that 1 = lca1(a, b) is a descend-
ant of '1 = lca1(a, z). (See Figure 6.) Since K(a|b) L(T1(1))
 L(T1('1)), by Lemma 6.5, K(a, z) is a valid filter of K(a|b).
In addition, since K1(a, z) is a refinement of K(a, z), it is easy
to see that K1(a, z) is also a valid filter of K(a|b). Clearly, the
intersection of valid filters is also a valid filter. Therefore, U2
is a valid filter of K(a|b).
 In summary, U1 is a refinement of K(a|b) and U2 is a valid
filter of K(a|b). From this, it is easy to conclude that U1 ⋂	U2
is a refinement of K(a|b), which completes the proof of this
lemma.

Our new algorithm is designed based upon the following.
Theorem 6.1. For any relevant pair (a, b), K1(a, b) is a re-
finement of K(a, b).
Proof. We prove the theorem by induction on the size m(a, b).
First, consider the case m(a, b) = 1. In this case, we have a =
b; otherwise, |M(a, b)| |{a, b}| 2. Since a = b, by definition,
we have K1(a, b) = K(a, b) = {a} and thus the theorem holds.

Consider the case m(a, b) > 1. Suppose, by induction, that
this theorem is true for all K(a', b') such that (a', b') is rele-
vant and m(a', b') < m(a, b); we will show that this theorem
holds for (a, b) as well. Recall that

K(a, b) = K(a|b) ⋃ K(b|a) ⋃		
	 	 	 	 	 ⋂SS*(a, b) ⋃cS K(c|a))), and
K1(a, b) = K1(a|b) ⋃ K1(b|a) ⋃		
	 	 	 	 	 ⋂SS*(a, b) ⋃cS K1(c|a))).

According to Observation 6.3, to prove that K1(a, b) is a re-
finement of K(a, b), it suffices to show the following:
(i) K1(a|b) is a refinement of K(a|b);
(ii) K1(b|a) is a refinement of K(b|a); and 	
(iii)	 K1(c|a) is a refinement of K1(c|a) for any c S and S

S*(a, b).
In the following, only the proof of (i) is given. The proofs of
(ii) and (iii) are similar. Consider an x X1*(a|b). Note that
according to the definition of X1*(a|b), (a, x) is relevant and
m(a, x) = m(a|b). According to (1), we have m(a|b) < m(a, b)
and thus m(a, x) = m(a|b) < m(a, b). Consequently, by the in-
duction hypothesis, K1(a, x) is a refinement of K(a, x) for
any x X1*(a|b). As a result, by Lemma 6.8, K1(a|b) is a
refinement of K(a|b), which completes the proof of this the-
orem.
 Due to the similarity between the recurrences of K(a, b)
and K1(a, b), K1(a, b) can be computed by slightly modified
NEWKAST-1 as follows.
Procedure NEWKAST-2(a, b)
input: (a, b) L2 is a relevant pair
output: K1(a, b)
begin
1. if a = b then return {a}
2. K1(a|b) ⋂xX1*(a|b) K1(a, x) /* (a, b) is relevant
3. K1(b|a) ⋂xX1*(b|a) K1(b, x) /* (b, a) is relevant
4. for each c C(a, b) do
5. if (c, a) is relevant then K1(c|a) ⋂xX1*(c|a) K1(c, x)
6. find Valid(a, b) and compute C(a, b, H) for each subtree

H Valid(a, b)
7. for each H Valid(a, b) do
8. a(U) ⋂cU K1(c|a), where U = C(a, b, H)
9. (a, b) ⋃HValid(a, b) a(C(a, b, H))

10. K1(a, b) K1(a|b) ⋃ K1(b|a) ⋃	(a, b)
11. return K1(a, b)
end

To solve the KAST problem, procedure NEWKAST-2 is
called for every relevant pair (a, b), in non-decreasing order
of m(a, b). The overall time complexity is analyzed as follows.
As shown in Section 5, Lines 1 and 6-10 of NEWKAST-2 can
be implemented such that their execution requires O(nd) time
over all relevant pairs (a, b). In the following, we show that
Lines 2-5 of NEWKAST-2 can be implemented such that their
execution takes O(n3) time over all relevant pairs (a, b).

The purpose of Lines 2-5 is to compute K1(a|b) for all
relevant pairs (a, b). According to Lemma 6.7, for any two
relevant pairs (a, b) and (a, b'), K1(a|b) and K1(a|b') are the
same if m(a|b) = m(a|b'). For each a L and positive integer
t < mast(T), define

K1
(t)(a) = ⋂x{x : (a, x) is relevant, m(a, x) = t} K1(a, x).

Then, K1(a|b) = K1
(m(a|b))(a) for each relevant pair (a, b),

Thus, our problem is to compute K1
(t)(a) for all a L and all

t [1, mast(T)).
Consider the computation of K1

(t)(a) for a fixed a L and
all t [1, mast(T)). Let (t) be the number of relevant pairs
(a, x) with m(a, x) = t. For each t [1, mast(T)), the compu-
tation of K1

(t)(a) requires (t) 1 set operations. Since t (t)
= n, we know that O(n) set operations are sufficient for com-
puting K1

(t)(a) for a fixed a L and all t [1, mast(T)). As
a result, computing K1

(t)(a) for all a L and all t [1,
mast(T)) requires O(n2) set operations. Consequently, the ex-
ecution time of Lines 2-5 of NEWKAST-2 over all relevant
pairs (a, b) is O(n3). In summary, we obtain the following.
Theorem 6.2. The KAST problem on a set of k trees can be
solved in O(kn3 + nd) time, where n is the size of the trees and
at least one tree has maximum degree d.

For binary trees, the following is obtained.
Corollary 6.1. The KAST problem on a set of k binary trees
can be solved in O(kn3) time, where n is the size of the trees.

7. Experiments

We tested our C implementations of Bryant’s MAST algo-
rithm (FINDMAST), the original KAST algorithm (FIND-
KAST), and our new KAST algorithm (NEWKAST-2). The
Swenson et al. [45] paper already conducted a thorough study
on the utility of the KAST, therefore, the focus of our new
experiments was on running time. We timed our implementa-
tions on both simulated data and on real data where we com-
pared independently inferred binary trees. Our results on
rRNA alignments show that comparison of even the largest
trees can be performed on a modern laptop in one work day.
Our simulated datasets show an average 43 fold speedup on
trees with 2000 taxa. The low KAST values between different
Maximum Likelihood trees highlight the importance of the
KAST for reporting high-confidence subtrees.

7.1 Running Time on RNA Alignments

Hand-curated RNA alignments at the Comparative RNA
Web (CRW) site [10], a Living Tree Project (LTP) alignment

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2922955,
IEEE/ACM Transactions on Computational Biology and Bioinformatics

12

[37], a GreenGenes alignment [16], as well as an RNA align-
ment from [4], were used to test the advantages and the limits
of our algorithm. Alignments with up to 13,000 taxa were
downloaded and maximum likelihood (ML) phylogenies
were reconstructed using RAxML [42]. Sets of most likely
RAxML trees were reconstructed and then compared for sim-
ilarity using our algorithms.

Results are summarized in Table 1. For trees with less than
2,000 leaves NEWKAST-2 takes less than 2 minutes and very
little memory, while FINDKAST takes 8 to 12 minutes and a
few gigabytes of RAM. For larger datasets the advantage of
NEWKAST-2 is clear: for FINDKAST, the dataset with 5,088
leaves takes more than an hour and many gigabytes of RAM
while NEWKAST-2 uses only 15-20 minutes and about 1
gigabyte of RAM. All other datasets failed to terminate after
a week of computation (on a server with hundreds of
gigabytes of RAM) for FINDKAST, while taking hours and
under 10 gigabytes of RAM for NEWKAST-2.

7.2 Running Time on Simulated Data

Our simulations started with the construction of a rooted
binary birth-death tree T1 (with parameter 1 for birth and ½
for death, but with a fixed number of leaves). We constructed
k copies of T1 and then added 0.10 × L(T1) leaves uniformly
at random to each of the trees. The expected size of the MAST,
therefore was |L(T1)| for each set of trees.

Both FINDKAST and NEWKAST-2 have FINDMAST at
their core, therefore we report times as a proportion of the
FINDMAST compute time. The advantage of our new algo-
rithm is clear when there are few rooted trees (e.g. k = 2).
NEWKAST-2 is always 2.7 times slower than FINDMAST
while FINDKAST is already 10 times slower at n = 100 and
more than 100 times slower at n = 1600. (Figure 7(a).) At n =
2000, NEWKAST-2 takes under seven minutes while FIND-
KAST takes about five hours.

When the number of trees is larger (e.g. k = 100),
NEWKAST-2 is three times faster (taking 2.1 hours) than
FINDKAST (taking 6.1 hours) on trees with 2000 leaves (Fig-
ure 7(b)).

Although the computation of the unrooted KAST has yet
to be directly studied in the literature, we can compute it by
running the rooted version n times, each time rooting the input
at a leaf that is assumed to be part of the solution. For the
unrooted case, our implementations of NEWKAST-2 and
FINDKAST scale similarly to the rooted case, where a tree on
900 leaves takes over 71 hours for FINDKAST but under four
hours for NEWKAST-2. (Figure 7(c).)

7.3 Availability of code and data
Our implementation of FINDMAST, FINDKAST, and
NEWKAST-2 is available at https://bitbucket.org/thekswen-
son/kast, along with the RAxML trees inferred from the rRNA
alignments and the scripts to reproduce our plots.

8. Concluding remarks

The MAST algorithms in [7], [19] work for any k and d.
For some special cases, more efficient solutions exist. For ex-
ample, there is an O(n lg n)-time algorithm for k = d = 2 [13];
there is an O(n lg n)-time algorithm for k = 2 and constant d
[28]; and there is an O(n1.5)-time algorithm for k = 2 and ar-
bitrary d [28]. Clearly, a leaf is a KAST leaf of T if and only
if its removal from each tree of T reduces the size of MASTs
by one. That is, whether a leaf l L is a KAST leaf can be
determined by performing a MAST algorithm to check
whether mast(T') < mast(T), where T' is the set obtained by
removing l from each tree in T. As a result, the set of KAST
leaves can be identified by simply running a MAST algorithm
n times. By applying this simple approach to the algorithms
in [13], [28], the KAST problem is solved in O(n2 lg n) time
for k = d = 2, in O(n2 lg n) time for k = 2 and constant d, and

Table 1. Running Time on rRNA Alignments.

Dataset k n KAST NEWKAST-2 FINDKAST
Time RAM Time RAM

Bacteria/Archea ssuRNA
(RAxML D1604)

2 1,604 1,033 51s 143 M 12.2m 3.5 G
5 698 1.3m 140 M 8.3m 2.3 G

Bacteria/Archea lsuRNA
(LTP)

2 1,614 1,186 56s 154 M 8.9m 3.3 G
5 984 1.4m 157 M 12.5m 3.4 G

Bacteria/Archea ssuRNA
(Greengenes)

2 5,088 1321 15.5m 1 G 2h 43m 30 G
5 479 20m 1.2 G 1h 22m 10 G

Bacteria/Archea/Eukaryot
e ssuRNA

2 6,116 5,838 1h 10m 4.2 G > 1 week -
5 2,614 1h 1.9 G > 1 week -

Bacteria ssuRNA 2 13,073 9,667 8h 9m 9.4 G > 1 week -
5 1,274 6h 35m 6.7 G > 1 week -

Figure 7. Average timing ratios for FINDKAST/FINDMAST and NEWKAST-2/FINDMAST

(a) 2 rooted trees (c) 2 unrooted trees (b) 100 rooted trees

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2922955,
IEEE/ACM Transactions on Computational Biology and Bioinformatics

 13

in O(n2.5) time for k = 2 and arbitrary d. These simple results
are better than the time complexity in Theorem 6.2. One di-
rection for further study is to design more efficient KAST al-
gorithms for these special cases. To beat our KAST algorithm
for arbitrary k and d, however, further innovation may have to
be made for the general MAST problem.

ACKNOWLEDGMENTS
This research is supported by the National Science Council

of the Republic of China under grant MOST-106-2221-E-
007-022-MY3.

REFERENCES
[1] J. Aberer and A. Stamatakis, "A simple and accurate

method for rogue taxon identification," in Proceedings
of the 2011 IEEE International Conference on Bioinfor-
matics and Biomedicine, Atlanta, pp. 118–122, 2011.

[2] E. N. Adams, "Consensus techniques and the compari-
son of taxonomic trees," Systematic Zoology, vol. 21,
pp. 390–397, 1972.

[3] Amir and D. Keselman, "Maximum agreement subtree
in a set of evolutionary trees: metrics and efficient al-
gorithms," SIAM Journal on Computing, vol. 26, pp.
1656–1669, 1997.

[4] S. A. Berger, D. Krompass, and A. Stamatakis, "Perfor-
mance, accuracy, and web server for evolutionary
placement of short sequence reads under maximum
likelihood," Systematic Biology, vol. 60, no. 3, pp. 291–
302, 2011.

[5] O. R. P Bininda-Emonds, et al., "The delayed rise of
present-day mammals," Nature, vol. 446, no. 7135, pp.
507–511, 2007.

[6] P. Bonizzoni, G. D. Vedova, R. Dondi, and G. Mauri,
"The comparison of phylogenetic networks: algorithms
and complexity," Bioinformatics Algorithms: Tech-
niques and Applications, Wiley InterScience, pp. 143–
173, 2008.

[7] D. Bryant, Building trees, hunting for trees, and com-
paring trees: theory and methods in phylogenetic anal-
ysis, Ph.D. thesis, Department of Mathematics, Univer-
sity of Canterbury, pp. 174–182, 1997.

[8] D. Bryant, et al., "Computing the quartet distance be-
tween evolutionary trees," in Proceedings of the elev-
enth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, vol. 9, no. 11, 2000.

[9] D. Bryant, "A Classification of Consensus Methods for
Phylogenetics," Theoretical Computer Science, vol. 61,
pp. 163–184, 2002.

[10] J. J. Cannone, S. Subramanian, M. N. Schnare, J. R.
Collett, L. M. D'Souza, Y. D, B. Feng, N. Lin, L. V.
Madabusi, K. M. Müller, N. Pande, Z. Shang, N. Yu,
and R. R. Gutell, "The comparative RNA web (CRW)
site: an online database of comparative sequence and
structure information for ribosomal, intron, and other
RNAs," BMC Bioinformatics, vol. 3, no. 1, pp. 2, 2002.

[11] L. L. Cavallip-Sforza and A. W. F. Edwards, "Phyloge-
netic analysis: models and estimation procedures,"
American Journal of Human Genetics, vol. 19, pp. 233–
257, 1967.

[12] J. Chiaroni, P. A. Underhill, and L. L. Cavalli-Sforza,
"Y chromosome diversity, human expansion, drift, and
cultural evolution," in Proceedings of the National
Academy of Sciences, vol. 106, no. 48, pp. 20174–
20179, 2009.

[13] R. Cole, M. Farach, R. Hariharan, T. Przytycka, and M.
Thorup, "An O(n log n) algorithm for the maximum
agreement subtree problem for binary trees," SIAM
Journal on Computing, vol. 30, pp. 1385–1404, 2000.

[14] B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, L. Zhang
L, "On computing the nearest neighbor interchange dis-
tance," in Proceedings of the DIMACS Workshop on Dis-
crete Problems with Medical Applications, 1997, pp. 125–
43.

[15] W.H.E. Day, "Optimal algorithm for comparing trees
with labeled leaves," Journal of Classification, vol. 2,
pp. 7–28, 1985.

[16] T. Z. DeSantis, P. Hugenholtz, N. Larsen, M. Rojas, E.
L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu, B. B.
Andersen, “Greengenes, a chimera-checked 16S rRNA
gene database and workbench compatible with ARB,”
Applied and environmental microbiology, vol. 72, no. 7,
pp. 5069–5072, 2006.

[17] R. V. Eck and M. O. Dayoff, Atlas of Protein Sequence
and Structure, National Biomedical Research Founda-
tion, 1966.

[18] M. Farach, T. Przytycka, and M. Thorup, "The maxi-
mum agreement subtree problem for binary trees," in
Proceedings of the 2nd European Symposium on Algo-
rithms, Corfu, Greece, 1995, pp. 381–393.

[19] M. Farach, T. Przytycka, and M. Thorup, "On the agree-
ment of many trees," Information Processing Letters,
vol. 55, pp. 297–301, 1995.

[20] M. Farach and M. Thorup, "Fast comparison of evolu-
tionary trees," Information and Computation, vol. 123,
pp. 29–37, 1995.

[21] M. Farach and M. Thorup, "Sparse dynamic program-
ming for evolutionary-tree comparison," SIAM Journal
on Computing, vol. 26, pp. 210–230, 1997.

[22] N. R. Faria, et al., "Zika virus in the Americas: early
epidemiological and genetic findings," Science, vol.
352, no. 6283, pp. 345–349, 2016.

[23] J. Felsenstein, "Evolutionary trees from DNA se-
quences: a maximum likelihood approach," Journal of
Molecular Evolution, vol. 17, pp. 368–376, 1981.

[24] J. Felsenstein, Inferring Phylogenies, Sinauer Associ-
ates, Inc., 2004.

[25] R. Finden and A. D. Gordon, "Obtaining common
pruned trees," Journal of Classification, vol. 2, pp.
255–276, 1985.

[26] D. Graur, et al., "On the immortality of television sets:
“function” in the human genome according to the evo-
lution-free gospel of ENCODE," Genome Biology and
Evolution, vol. 5, no. 3, pp. 578–590, 2013.

[27] M.-Y. Kao, "Tree contractions and evolutionary trees,"
SIAM Journal on Computing, vol. 27, pp. 1592–1616,
1998.

[28] M.-Y. Kao, T.-W. Lam, W.-K. Sung, and H.-F. Ting,
"An even faster and more unifying algorithm compar-
ing trees via unbalanced bipartite matchings," Journal

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2922955,
IEEE/ACM Transactions on Computational Biology and Bioinformatics

14

of Algorithms, vol. 20, no. 2, pp. 212–233, 2001.
[29] Kubicka, G. Kubicki, and F. R. McMorris, "An algo-

rithm to find agreement subtrees," Journal of Classifi-
cation, vol. 12, pp. 91–100, 1995.

[30] Kubicka, G. Kubicki, and F. McMorris, "On Agreement
Subtrees of Two Binary Trees," Congressus numeran-
tium, vol. 88, pp. 217–224, 1992.

[31] J. M. Lang, A. E. Darling, and J. A. Eisen, "Phylogeny
of bacterial and archaeal genomes using conserved
genes: supertrees and supermatrices," PloS One, vol. 8,
no. 4, e62510, 2013.

[32] C.-M. Lee, L.-J. Hung, M.-S. Chang, C.-B. Shen, and
C.-Y. Tang, "An improved algorithm for the maximum
agreement subtree problem," Information Processing
Letters, vol. 94, pp. 211–216, 2005.

[33] Y. Lin, V. Rajan, and B. M. E. Moret, "A metric for
phylogenetic trees based on matching," IEEE/ACM
Transactions on Computational Biology and Bioinfor-
matics, vol. 9, no. 4, pp. 1014–1022, 2012.

[34] K. Liu, C. R. Linder, and T. Warnow, "Multiple se-
quence alignment: a major challenge to large-scale phy-
logenetics," PLoS Currents, vol. 2, RRN1198, 2010.

[35] K. Liu, C. R. Linder, and T. Warnow, "RAxML and
FastTree: comparing two methods for large-scale max-
imum likelihood phylogeny estimation," PloS One, vol.
6, no. 11, e27731, 2011.

[36] R. McMorris, D. B. Meronk, and D. A. Neumann, "A
view of some consensus methods for trees," Numerical
Taxonomy (J. Felsenstein, ed.), Springer-Verlag, 1983,
pp. 122–125.

[37] R. Munoz, P. Yarza, W. Ludwig, J. Euzéby, R. Amann,
K.H. Schleifer, F. O. Glöckner, and R. Rosselló-Móra,
“Release LTPs104 of the All-Species Living Tree,”
Systematic and Applied Microbioly, vol. 34, pp.169–
170, 2011.

[38] Ni. D. Pattengale, A. J. Aberer, K. M. Swenson, A. Sta-
matakis, and B. M. E. Moret, "Uncovering hidden phy-
logenetic consensus in large data sets," IEEE/ACM
Transactions on Computational Biology and Bioinfor-
matics, vol. 8, no. 4, pp. 902–911, 2011.

[39] D. F. Robinson and L. R. Foulds, "Comparison of phy-
logenetic trees," Mathematical Biosciences, vol. 53, no.
1–2, pp. 131–147, 1981.

[40] N. Saitou and M. Nei, "The neighbor-joining method: a
new method for reconstructing phylogenetic trees,"
Molecular Biology and Evolution, vol. 4, pp. 406–425,
1987.

[41] R. R. Sokal and F. J. Rohlf, "The comparison of den-
drograms by objective methods," Taxon, vol. 11, pp.
33–40, 1962.

[42] 42 A. Stamatakis, "RAxML Version 8: A tool for Phy-
logenetic Analysis and Post-Analysis of Large Phylog-
enies," Bioinformatics, vol. 30, no. 9, pp. 1312–1313,
2014.

[43] M. Steel and D. Penny, "Distribution of tree comparison
metrics–some new results," Systematic Biology, vol. 42,
no. 2, pp. 126–141, 1993.

[44] M. Steel and T. Warnow, "Kaikoura tree theorems:
Computing the maximum agreement subtree," Infor-
mation Processing Letters, vol. 48, pp. 77–82, 1993.

[45] K. M. Swenson, E. Chen, N. D. Pattengale, and D.
Sankoff, "The kernel of maximum agreement subtrees,"
IEEE/ACM Transactions on Computational Biology
and Bioinformatics, vol. 9, no. 4, pp. 1023–1031, 2012.

[46] D. L. Swofford, PAUP*: Phylogenetic Analysis Using
Parsimony (* and Other Methods), Sinauer Associates,
Inc., 2002.

[47] B.-F. Wang and C.-Y. Li, "Fast algorithms for compu-
ting path-difference distances," IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics,
accepted.

[48] M.S. Waterman and T. F. Smith, "On the similarity of
dendrograms," Journal of Theoretical Biology, vol. 73,
no. 4, pp. 789–800, 1978.

[49] M. Wilkinson, "Common cladistic information and its
consensus representation: reduced Adams and reduced
cladistic consensus trees and profiles," Systematic Biol-
ogy, vol. 43, no. 3, pp. 343–368, 1994.

[50] X. Zhou, X.-X. Shen, C. T. Hittinger, A. Rokas, "Eval-
uating fast maximum likelihood-based phylogenetic
programs using empirical phylogenomic data sets,"
Molecular Biology and Evolution, vol. 35, no. 2, pp.
486–503, 2018.

Biing-Feng Wang received the BS
degree in computer science from Na-
tional Chiao Tung University, Taiwan,
in June 1988 and the PhD degree in
computer science from National Tai-
wan University in June 1991. In Au-
gust 1993, he joined the Faculty of Na-
tional Tsing Hua University, where he
is a professor in the Department of
Computer Science. His current re-

search interests include design and analysis of algorithms and
parallel computation. He received the Academia Sinica's
Young Scholar Paper Award and the K.T. Li Young Re-
searcher Award in 1999, the ISI Citation Classic Award in
2001, and the National Science Council's Outstanding Re-
search Award in 2002 and 2018. He served as the Chairman
of the Department of Computer Science from 2003 to 2006.
He was awarded as a Tsing Hua Distinguished Professor in
2006 and as a Tsing Hua Chair Professor in 2018.

Krister M. Swenson received his BS
degree in computer science from Uni-
versity of New Hampshire, and his
PhD degree in computer science from
Ecole Polytechnic Federal de Lau-
sanne, Switzerland, in 2009. He did
postdoctoral work in Canada at Uni-
versity of Ottawa, University of Que-
bec at Montreal (UQAM), University
of Montreal, and McGill University.

In 2013 he moved to France as a postdoctoral fellow at the
University of Montpellier. He is currently an Associate
Scientist at the Centre National de la Recherche Scientifique
(CNRS), assigned to the Laboratoire d’Informatique, de
Robotique, et de Microelectronique de Montpellier (LIRMM),
University of Montpellier.

