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Abstract. This paper generalizes previous studies on genome rearrange-
ment under biological constraints, using double cut and join (DCJ). We
propose a model for weighted DCJ, along with a family of optimization
problems called ϕ-MCPS (Minimum Cost Parsimonious Scenario),
that are based on edge labeled graphs. After embedding known results in
our framework, we show how to compute solutions to general instances of
ϕ-MCPS, given an algorithm to compute ϕ-MCPS on a circular genome
with exactly one occurrence of each gene. These general instances can
have an arbitrary number of circular and linear chromosomes, and arbi-
trary gene content. The practicality of the framework is displayed by
generalizing the results of Bulteau, Fertin, and Tannier on the Sort-

ing by wDCJs and indels in intergenes problem, and by generaliz-
ing previous results on the Minimum Local Parsimonious Scenario

problem.
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1 Introduction

1.1 Context

The practical study of genome rearrangement between evolutionarily distant
species has been limited by a lack of mathematical models capable of incorpo-
rating biological constraints. Without such constraints the number of parsimo-
nious (shortest length) rearrangement scenarios between two gene orders grows
exponentially with respect to the minimum number of rearrangements between
genomes [11]. A natural way to mitigate this problem is to develop models that
weight rearrangements according to their likelihood of occurring; a breakpoint
may be more likely to occur in some intergenic regions than others.

To this end, the study of length-weighted reversals was started in the late
nineties by Blanchette, Kunisawa, and Sankoff [9]. Baudet, Dias, and Dias
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present a summary of work done in this area, along with work on reversals cen-
tered around the origin of replication [2]. Recently, Tannier has published a series
of papers focused on weighting intergenic regions by their length in nucleotides.
In [7], Biller, Guéguen, Knibbe, and Tannier pointed out that, according to
the Nadeau-Taylor model of uniform random breakage [17,18], a breakpoint is
more likely to occur in a longer intergenic region. Subsequent papers by Fertin,
Jean, and Tannier [15], and Bulteau, Fertin, and Tannier [12] present algorithmic
results for models that take into account the length of intergenic regions. Using
Hi-C data [16], Veron et al. along with our own study, have pointed out the
importance of weighting pairs of breakpoints according to how close they tend
to be in physical space [19,24]. In order to use this physical constraint, we par-
titioned intergenic regions into co-localized areas, and developed algorithms for
computing distances that minimize the number of rearrangements that operate
on breakpoints between different areas [22,23].

Much of this work is based on the mathematically clean model for genome
rearrangement called Double Cut and Join, or DCJ [4,25]. Genomes are parti-
tioned into n orthologous syntenic blocks that we will simply call genes. Each
gene is represented by two extremities, and each chromosome is represented by an
ordering of these extremities. Those extremities that are adjacent in this ordering
are paired, and transformations of these pairs occur by swapping extremities of
two pairs. DCJ can naturally be interpreted as a graph edit model with the use
of the breakpoint graph, where there is an edge between gene extremities a and
b for each adjacent pair. A DCJ operation replaces an edge pair

{
{a, b}, {c, d}

}

of the graph by
{
{a, c}, {b, d}

}
or

{
{a, d}, {b, c}

}
. This edge edit operation on a

graph is called a 2-break.
This paper establishes a general framework for weighting rearrangements.

The results are based on the problem of transforming one edge-labeled graph
into another through a scenario of operations, each weighted by an arbitrary
function ϕ. The problem, called ϕ-Minimum Cost Parsimonious Scenario

(or ϕ-MCPS), asks for a scenario with a minimum number of 2-breaks, such
that the sum of the costs for the operations is minimized.

1.2 Applications of Our Framework

While our framework is general, we use it to render two previous studies more
practical. The first study is our work relating the likelihood of rearrangement
breakpoints to the physical proximity in the nucleus [23]. This work is based on
the hypothesis that two breakpoints could be confused when they are physically
close. The model in this study labels the breakpoint graph edges (corresponding
to intergenic regions) with fixed “colors”, and the cost of a DCJ has a weight of
one if the labels are different and a weight of zero if they are the same. Using
that cost function, we colored intergenic regions by grouping them according to
their physical proximity, as inferred by Hi-C data. Although this technique of
grouping proved to make biological sense [19,22], it is far from ideal since much
of the information given by the Hi-C data is lost in the labeling, and it is not
immediately clear how to best compute the grouping. Our results here bypass
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the complexity of grouping by allowing each DCJ to be weighted by the values
taken directly from the Hi-C contact maps. We give an algorithm for ϕ-MCPS

on a breakpoint graph with an arbitrary ϕ and fixed edge labels, that runs in
O(n5) time in the worst case but has better parameterized complexity in practice
(see Example 1). We give in Sect. 10.1 other reasons why the running times for
this algorithm should remain practical.

The second study that we improve is that of Bulteau, Fertin, and Tannier [12].
Their biological constraint is based on the number of nucleotides in the inter-
genic regions containing breakpoints; they compute parsimonious scenarios that
minimize the number of nucleotides inserted and deleted in intergenic regions.
Their algorithm is restricted to instances where the breakpoint graph has only
cycles (and no paths — sometimes referred to as co-tailed genomes). Using their
O(n log n) algorithm, our framework gives an O(n3) algorithm on any breakpoint
graph (see Example 3).

This is an example of how our framework simplifies algorithm design on
weighted DCJs. For a weight function adhering to our general criteria of Sect. 4,
future algorithm designers now need only to concentrate on developing an effi-
cient algorithm that works on a single cycle of a breakpoint graph. Thanks to
Theorem 4, they will get a polynomial time algorithm that works on a gen-
eral instance for free. Section 8 shows that the same is true for approximation
algorithms.

This paper is based on general results we obtain on weighted transformations
of edge-labeled multi-graphs. The permitted transformations can change the
connectivity of the graph through a 2-break, or change the edge labels, or both.
This model not only proves to be powerful enough to subsume the previously
mentioned results, but also offers other advantages. It is flexible enough so that
DCJ costs can be based on the labels of edges in the breakpoint graph, or on
the vertices, or a combination of both. Also, since single-gene insertions and
deletions can be represented as “ghost” adjacencies [20], all of this paper applies
to genomes where genes could be missing in one genome or the other. Most
results can be applied to genomes with duplicate genes (as depicted in Fig. 1).

1.3 Our Model and General Results

The foundation of this paper is a renewed understanding of scenarios of 2-breaks
on Eulerian graphs, a subject that has been studied not only in a restricted
setting for genome rearrangement [1,4], but also in the more general settings of
network design [5,6]. Although our results are about the transformation of one
arbitrary Eulerian multi-graph G into another one H having the same vertex
set, we find it convenient to reason in an equivalent but different setting. In
the alternative setting we are given an Eulerian 2-edge-colored multi-graph with
black and gray edges, the black edges being from G and the gray from H. We
transform the connectivity of the black edges into the connectivity of the gray
edges. Therefore, whenever we use the word graph, path (resp. cycle), we are
referring to an Eulerian 2-edge-colored multi-graph, a path (resp. cycle) that
alternates between black and gray edges. Naturally, a cycle decomposition of a
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Fig. 1. Eulerian 2-edge-color multi-graphs for genomes A =
(
{3t, 1t}, {1h, 2h},

{2t, 3h}
)
,

(
{4t}, {4h, 1t}, {1h}

)
, B =

(
{1h, 2h}, {2t, 1t}

)
,

(
{3t, 2h}, {2t, 1h}, {1t, 3h}

)
,

and A′ =
(
{3t, 2h}, {2t, 1t}, {1h, 2h}, {2t, 3h}

)
,

(
{4t}, {4h, 1t}, {1h}

)
. Edges adjacent

to a special vertex ◦ represent the endpoints of linear chromosomes (e.g. black edges
{1h, ◦} and {4t, ◦}). Extra edges are added for the missing genes (e.g. the black edge
{2t, 2h} and the gray edge {4h, 4t}), called ghost adjacencies in [20]. In the genomes A
and A′, gene 1 is repeated twice, and the operation transforming A into A′ is an inser-
tion of a gene 2, corresponding to the 2-break G(A, B) → G(A′, B). A DCJ scenario
transforming A′ into the linear genome B includes a deletion of a gene 4.

graph is a partition of the edges of an Eulerian 2-edge-colored multi-graph into
a set of alternating cycles. A breakpoint graph is a graph with a vertex for each
gene extremity — each incident to exactly one gray and one black vertex —
along with one chromosome endpoint vertex ◦ that could have degree as high as
2n (see Fig. 2). Section 2 introduces the breakpoint graph in detail, and defines
the Double Cut and Join (DCJ) model.

Our model for weighting operations is primarily based on a labeling L of the
edges, a set O of valid operations, and a weight function ϕ : O → R+. Roughly
speaking, a labeled input graph can be transformed through a series of operations
in O, where an operation can change the connectivity of the black edges of the
graph, and/or change the labels of the edges. Any weight function ϕ defines an
optimization problem ϕ-MCPS, which asks for a scenario that minimizes the
total weight of the operations. This model subsumes many previously studied
weighted DCJ models, as described in Sect. 4.1.

The spine of our results is built from successive theorems that speak to the
decomposability into subproblems of a ϕ-MCPS instance. Theorem 1 shows that
a parsimonious scenario of 2-breaks transforming the black edges into the gray
implies a Maximum Alternating Edge-disjoint Cycle Decomposition

(or MAECD) [13]. Theorem 2 says that an optimal solution to ϕ-MCPS can be
found using solutions to the MAECD problem, so that if ϕ-MCPS can be solved
on a simple alternating cycle, then it can be solved on any instance. Theorem 3
says that an optimal solution to ϕ-MCPS on a simple alternating cycle can be
found using a solution to the ϕ-MCPS problem on what we call a circle, that
is, an alternating cycle that does not visit the same vertex twice (see Fig. 4).

Under the common genome model, where each gene occurs exactly once in
each genome, a relationship exists between parsimonious DCJ scenarios and
solutions to MAECD on a breakpoint graph [4,10]. We exploit this link in
Sect. 7. Theorem 4 ties everything together; an amortized analysis shows that,
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given an O(rt) algorithm for computing ϕ-MCPS on a circle with r edges, ϕ-
MCPS can be calculated on a breakpoint graph in O(nt+1) time.

Under a more general genome model, that allows for changes in copy numbers
of genes (e.g. insertions, deletions, and duplications), the spine of our results still
holds due to the convenient representation of missing genes as ghost adjacencies
in an Eulerian 2-edge-colored multi-graph [20] (See Fig. 1). All of our results
hold for pairs of genomes with non-duplicated genes, but unequal gene content.
Indeed, a breakpoint graph (i.e. graph with limited degree for most nodes) can
still represent the pair of genomes in this case.

Caprara proved that MAECD is NP-Hard for Eulerian 2-edge-colored multi-
graphs where each vertex is incident to at most two gray and two black edges
(which is the case when there are two copies of each gene) [13]. We present a
simple integer linear program (or ILP) that solves ϕ-MCPS for these types of
graphs, given a method to solve ϕ-MCPS on a circle. This ILP is likely to be
unwieldy in general, since the number of variables is exponential in the number
of simple alternating cycles. In the case of breakpoint graphs on specific genomes,
this may not always be intractable, as the number of duplicate genes may be
limited. See Sect. 10.1 for a discussion of these practical matters.

2 DCJ Scenarios for Genomes and Breakpoint Graphs

A genome consists of chromosomes that are linear or circular orders of genes
separated by potential breakpoint regions. In Fig. 2 the tail of an arrow represents
the tail extremity, and the head of an arrow represents the head extremity of a
gene. We can represent a genome by a set of adjacencies between the gene
extremities. An adjacency is either internal : an unordered pair of the extremities
that are adjacent on a chromosome, or external : a single extremity adjacent to
one of the two ends of a linear chromosome. In what follows we will suppose that
two genomes A and B are partitioned into n genes each occurring exactly once
in each genome, and our goal will be to transform A into B using a sequence of
DCJs.

Fig. 2. Genomes A and B with their respective sets of adjacencies
{
{1t}, {1h, 2t},

{2h, 3h}, {3t}
}

and
{
{1t}, {1h, 2h}, {2t, 3h}, {3t}

}
. A DCJ {1h, 2t}, {2h, 3h} →

{1h, 2h}, {2t, 3h} transforms A into B. The transformation G(A, B) → G(B, B) is
a 2-break and G(B, B) is a terminal graph.
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Definition 1 (double cut and join). A DCJ cuts one or two breakpoint
regions and joins the resulting ends of the chromosomes back in one of the
four following ways: {a, b}, {c, d} → {a, c}, {b, d}; {a, b}, {c} → {a, c}, {b};
{a, b} → {a}, {b}; and {a}, {b} → {a, b}.

We represent the pairs of the genomes with a help of a breakpoint graph
[1,25].

Definition 2 (breakpoint graph). G(A,B) for genomes A and B is a 2-edge-
colored Eulerian undirected multi-graph. V consists of 2n gene extremities and
an additional vertex ◦. For every internal adjacency {a, b} ∈ A (resp. {a, b} ∈
B) there is a black (resp. gray) edge {a, b} in G(A,B) and for every external
adjacency {a} ∈ A (resp. {a} ∈ B) there is a black (resp. gray) edge {a, ◦}
in G(A,B). There is a number of black and gray loops {◦, ◦} ensuring that
db(G(A,B), ◦) = dg(G(A,B), ◦) = 2n.

3 2-break Scenarios for 2-edge-colored Graphs

In this paper a graph is an Eulerian 2-edge-colored undirected multi-graph with
edges colored black or gray as in Fig. 1. A graph with equal multi-sets of black
and gray edges is called terminal, and our goal is to transform a given graph
into a terminal one using 2-breaks.

Definition 3 (2-break scenario). A 2-break replaces two black edges {x1, x2}
and {x3, x4} by either {x1, x3} and {x2, x4} or {x1, x4} and {x2, x3}. A 2-break
scenario of length m is a sequence of m 2-breaks transforming a graph into a
terminal one.

Definition 4 (Eulerian graph and alternating cycle). G is Eulerian if
every vertex has equal black and gray degrees. A cycle is alternating if it is Eule-
rian. All use of the word cycle in this paper will be synonymous with alternating
cycle.

Define a Maximum Alternating Edge-disjoint Cycle Decomposition

(MAECD) of a graph G as a decomposition of G into a maximum number of
edge-disjoint alternating cycles. Denote the size of a MAECD of G by c(G) and
the number of its black edges by e(G). We make a distinction between simple
cycles and circles (look at Fig. 4 to see a simple cycle that is not a circle).

Definition 5 (simple cycle and circle). A graph G is a simple cycle if the
size of a MAECD, c(G) = 1. If in addition to that degb(G, v) = degg(G, v) = 1
for every vertex v, then G is called a circle.
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3.1 Parsimonious 2-break Scenarios

The problem of finding a minimum length (or parsimonious) 2-break scenario
was treated in several unrelated settings using different terminology. Lemma 1,
proven in the appendix, was treated in [6] where the authors also showed that
finding a minimum length 2-break scenario is NP-hard due to the NP-hardness
of finding a MAECD of a graph. A variant of the problem for Eulerian digraphs
where all the gray edges are loops was solved in [8].

Lemma 1 (Bienstock et al. in [6]). The minimum length of a 2-break scenario
on a graph G is d2b(G) = e(G) − c(G).

Since finding a MAECD for a breakpoint graph is easy, Lemma 1 leads
to a linear time algorithm for finding a parsimonious DCJ scenario [25]. The
algorithm is based on Lemma 2, proven in the appendix.

Lemma 2 (Yancopoulos et al. in [25]). The minimum length of a DCJ
scenario transforming genome A into B is equal to d2b(G(A,B)) = e(G(A,B))−
c(G(A,B)).

3.2 Decomposition of a 2-break Scenario

In this section we will show how a 2-break scenario ρ of length m can be parti-
tioned into subscenarios ρ1, . . . , ρk and G can be decomposed into edge-disjoint
Eulerian subgraphs H1, . . . , Hk where ρi is a scenario for Hi, and k ≥ e(G)−m.
We will use this decomposition in Sect. 5 to show that ϕ-MCPS on a graph can
be solved by solving ϕ-MCPS on its simple cycles.

For a graph G and a 2-break scenario ρ we define a directed 1-edge-colored
edge-labeled graph D(G, ρ), akin to the trajectory graph introduced by Shao,
Lin, and Moret [21]. Denote the sequence of the first l 2-breaks of ρ by ρl

and the graph obtained from G after these 2-breaks by Gl. Define D(G, ρ0)
in the following way: for each black edge e of G we have two new vertices con-
nected by a directed edge labeled by e (see Fig. 3). For the l-th 2-break of ρ,
{x1, x2}, {x3, x4} → {x1, x3}, {x2, x4}, merge the endpoints of the edges labeled
{x1, x2} and {x3, x4} in D(G, ρl−1). Proceed by adding two new vertices to
D(G, ρl−1) and two edges labeled {x1, x3} and {x2, x4} from the merged vertex
to the newly added ones to obtain D(G, ρl). Continue until D(G, ρm) is obtained,
where m is the length of ρ, and denote it by D(G, ρ).

Shao, Lin, and Moret [21] characterize the connected components of a tra-
jectory graph for a parsimonious scenario. Using similar techniques we prove the
following theorem in the appendix.

Theorem 1. IfD(G, ρ) has k connected components then ρ can be partitioned into
k subscenarios ρi and G can be partitioned into k edge-disjoint Eulerian subgraphs
Hi in such a way that ρi is a scenario for Hi for every i ∈ {1, . . . , k}. If ρ is
parsimonious, then k = c(G) and C(ρ) = {H1, . . . , Hk} is a MAECD of G.
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Fig. 3. A 2-break {a, b}, {d, c} → {a, d}, {b, c} transforming a graph G into a terminal
one is depicted on the left. A directed graph D(G, ρ) is obtained from D(G, ρ0) on the
right for this scenario ρ of length 1. The endpoints of the edges labeled {a, b} and {d, c}
are merged and two new edges labeled {a, d} and {b, c} are introduced. D(G, ρ) has 2
connected components that correspond to the 2 simple cycles of G.

4 Labeled 2-breaks and Their Costs

In this section we outline our model for assigning costs to 2-breaks on a graph
G. We associate labels to edges, and then describe a set of valid operations O
where each operation may transform the connectivity of G, the labeling of G, or
both. Our cost function is defined on O. This model is general enough to treat
the edge labeled DCJ problems of [12] and [23].

For a set of vertices V and a set of labels L a labeled edge is an unordered
pair of vertices plus a label, denoted ({a, b}, x) for a, b ∈ V and x ∈ L. A
label change ({a, b}, x) → ({a, b}, y) changes the label of an edge. A labeled 2-
break ({a, b}, x), ({c, d}, y) → ({a, c}, z), ({b, d}, t) is a 2-break that replaces two
labeled edges. Take a set O containing labeled 2-breaks and label changes, and
a graph G with a labeling of its edges λ : E → L. An O-scenario ρO for (G,λ),
is a sequence of operations in O transforming (G,λ) into (Ḡ, λ̄) such that Ḡ is
terminal, and the multi-sets of black and gray labeled edges of Ḡ are equal. The
number of 2-breaks in ρO will be called the 2-break-length of the scenario. If a
ρO exists for (G,λ), then d2bO(G,λ) denotes the minimum 2-break-length of an
O-scenario.

An O-scenario does not necessarily exist for a given (G,λ), however if it
exists, then the inequality d2bO(G,λ) ≥ d2b(G) holds, where d2b(G) is the mini-
mum length of a 2-break scenario on a graph G. In this paper we deal with the
sets O that have the necessary operations to parsimoniously transform (G,λ)
into (Ḡ, λ̄).

Definition 6 (p-sufficient O for (G,λ)). A set O is parsimonious-sufficient
or p-sufficient for (G,λ) if we have d2bO(G,λ) = d2b(G).

The cost function that we consider is ϕ : O → R+. The cost of an O-scenario
is the sum of the costs of its constituent operations. If O is p-sufficient for
(G,λ), then MCPSϕ(G,λ) is the minimum cost of an O-scenario of the 2-break-
length equal to d2b(G), otherwise MCPSϕ(G,λ) is ∞. We consider the following
problem:

Problem 1 (ϕ-Minimum Cost Parsimonious Scenario or ϕ-MCPS).

INPUT : A graph G, and a labeling of its edges λ.

OUTPUT : MCPSϕ(G,λ).
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4.1 Examples of the Weighted DCJ Problems in the Literature

Example 1 (Minimum Local Parsimonious Scenario). In [23] we suppose
the adjacencies of genome A to be partitioned into spatial regions represented
by different colors. We then develop a polynomial time algorithm for finding
a parsimonious DCJ scenario minimizing the number of rearrangements whose
breakpoints appear in different regions. The problem, as it is stated in [23], differs
slightly from ϕ-MCPS as in that study we do not have colors for the adjacencies
of genome B. However, we can bridge this gap as follows.

Take a set of labels L = Lc ∪{τ} consisting of the colors Lc representing the
different spatial regions of a genome and an additional terminal label τ . Define O
as containing the labeled 2-breaks ({a, b}, x), ({c, d}, y) → ({a, c}, x), ({b, d}, y)
for a, b, c, d ∈ V and x, y ∈ Lc, and a label change ({a, b}, x) → ({a, b}, τ) for
a, b ∈ V and x ∈ Lc. The cost ϕc of a labeled 2-break in O is 0 if the labels of
the edges being replaced are equal and 1 otherwise. The cost of a label change
is 0.

In [23] we presented an O(n4) time algorithm solving ϕc-MCPS for a labeled
breakpoint graph with the gray edges labeled by τ . In [22] we demonstrated
that finding a minimum cost O scenario for such a breakpoint graph, when the
parsimonious criteria is disregarded, is NP-hard, and proposed an algorithm that
is exponential in the number of colors but not in the number of genes.

In Sect. 9 we use the same O. We fix a symmetric function Φ : L2 → R+ and
define ϕf (({a, b}, x), ({c, d}, y) → ({a, c}, x), ({b, d}, y)) = Φ(x, y). This drasti-
cally enriches the model introduced in [23]. In Sect. 7 we provide an O(n5) time
algorithm solving ϕf -MCPS for a labeled breakpoint graph.

Example 2 (DCJ weighted by Hi-C). In [19] we weight each DCJ by the
value taken directly from the Hi-C contact map. In this model every intergenic
region of genome A gets assigned an interval corresponding to its genomic coor-
dinates on a chromosome. The weight of a DCJ acting on two intergenic regions
is then equal to the average Hi-C value for their corresponding intervals. In [19]
we provide an algorithm greedily maximizing the weight of a parsimonious sce-
nario and find that the obtained weight is significantly higher than the weight
of a random parsimonious scenario.

Take a set of labels consisting of the genomic intervals corresponding to the
intergenic regions of a genome A plus an additional terminal label. Keep the
same O as in Example 1. Define ΦHiC(x, y) on two genomic intervals to be
their average Hi-C value. The problem that maximizes Hi-C values can be easily
transformed into a minimization problem by setting the cost of a labeled 2-break
({a, b}, x), ({c, d}, y) → ({a, c}, x), ({b, d}, y) to Φmax − ΦHiC(x, y), where Φmax

is the maximum ΦHiC(x, y) over all x, y.
In [19] the optimality of the proposed greedy algorithm is not discussed, but

our work presented in Sect. 9 of this paper provides us with a polynomial time
algorithm for solving this problem exactly.

Example 3 (Sorting by wDCJs and indels in intergenes). Bulteau,
Fertin, and Tannier [12] introduce a problem where adjacencies of genomes are
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labeled with their genetic length (number of nucleotides). A wDCJ is a labeled
DCJ that preserves the sum of the genetic lengths of the adjacencies and an
indel δ is a label change that increases or decreases the genetic length of an
adjacency by δ. The cost of a wDCJ is 0 and the cost of an indel δ is |δ|. A
scenario of wDCJs and indels for (G,λ) is said to be valid if its wDCJ-length is
d2b(G). The paper presents an O(n log n) algorithm for finding a minimum cost
scenario among the valid ones, for the genomes with circular chromosomes and
n genes.

Translating this into our formalism yields the following ϕ-MCPS problem.
The labels L would be the natural numbers, while O contains labeled 2-breaks
({a, b}, w1), ({c, d}, w2) → ({a, c}, w3), ({b, d}, w4) for every a, b, c, d ∈ V , and
wi ∈ L satisfies w1 +w2 = w3 +w4. O also contains label changes ({a, b}, w1) →
({a, b}, w2) for every a, b ∈ V and wi ∈ L. O is p-sufficient for any (G,λ) since G
can be first transformed into a terminal graph using any parsimonious 2-break
scenario and then its labels can be adjusted. The cost ϕl of a labeled 2-break is
0 and the cost ϕl of a label change ({a, b}, w1) → ({a, b}, w2) is |w1 − w2|.

In [12] the authors present an O(r log r) time algorithm for solving ϕl-MCPS

on a circle with r vertices. Combining this algorithm with our results from Sect. 7
gives an algorithm solving ϕl-MCPS in O(n3) time for a labeled breakpoint
graph. The ILP defined in Sect. 5 solves ϕl-MCPS for any labeled graph.

Example 4 (wDCJ-dist). Fertin, Jean, and Tannier [15] treat a problem
wDCJ-dist where wDCJs without indels are allowed, and the sums of the
genetic lengths of the adjacencies of two genomes are equal.

In this case we keep the same L and O as in Example 3 except that the
label changes are excluded from O. A labeled graph is said to be balanced if the
sums of the labels of black and gray edges are equal. wDCJ-dist is the problem
of finding d2bO for a balanced graph whose connected components are circles.
The authors show that wDCJ-dist is strongly NP-complete. However they also
prove that d2bO(O, λ) = d2b(O) for a balanced circle and that O is p-sufficient
for a graph whose connected components are balanced circles.

Example 5. Although ignored in the previous examples, the weighting of oper-
ations based on the vertices is also possible under our framework. For exam-
ple, take L = {τ}, O containing labeled 2-breaks ({a, b}, τ), ({c, d}, τ) →
({a, c}, τ), ({b, d}, τ) and any cost function ϕv : O → R+. The costs of the
labeled 2-breaks in O could be a function of the genomic coordinates of the
participating gene extremities.

Note that the set O is implicit, rather than explicit. In Example 3, O would
be too large to represent explicitly since every pair of genetic lengths for every
pair of edges would exist.

5 ϕ-MCPS for a Graph

Theorem 2. Denote the ϕ-cost of a MAECD as the sum of the MCPSϕ on
its cycles. MCPSϕ for a graph is equal to the minimum ϕ-cost of its MAECD.
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Proof. For a cycle S of a labeled graph (G,λ), λS denotes the labeling of the
edges of S according to λ. We suppose that min(∅) = ∞ and prove the following:

MCPSϕ(G,λ) = min
{ ∑

S∈C

MCPSϕ(S, λS)
∣
∣ C is a MAECD of G

}
.

Suppose that there exists a MAECD C of G consisting of the simple
cycles for which O is p-sufficient. For every S ∈ C take an O-scenario ρS

O of
cost MCPSϕ(S, λS) and 2-break-length d2b(S). By performing these scenar-
ios one after another we obtain an O-scenario ρO for (G,λ) of 2-break-length∑

S∈C d2b(S) = d2b(G) and of cost
∑

S∈C MCPSϕ(S, λS). This yields a scenario
such that MCPSϕ(G,λ) ≤

∑
S∈C MCPSϕ(S, λS).

On the other hand, suppose that O is p-sufficient for (G,λ) and take an
O-scenario ρO for (G,λ) of length d2b(G). For ρ, a 2-break scenario obtained
from ρO when the labels of the edges are neglected, a decomposition C(ρ) cor-
responding to ρ is a MAECD of G due to Theorem 1. A subsequence ρS

O of
ρO, consisting of the operations acting on the edges of a cycle S ∈ C(ρ), is
an O-scenario for (S, λS) of 2-break-length d2b(S). A sequence of operations
ρ̂O obtained by performing the subsequences ρS

O one after another for each
S ∈ C(ρ) is an O-scenario for (G,λ). By construction the 2-break-length of
ρ̂O is equal to the 2-break-length of ρO. The costs of ρO and ρ̂O are also equal,
as they consist of exactly the same operations that are performed in different
orders, thus the cost of ρO is greater or equal to

∑
S∈C(ρ) MCPSϕ(S, λS) ≥

min
{ ∑

S∈C MCPSϕ(S, λS)
∣
∣ C is a MAECD of G

}
. 
�

Take the set S of simple labeled cycles of (G,λ). If one can solve ϕ-MCPS for
every S ∈ S, then Theorem 2 provides a straightforward way to solve ϕ-MCPS

for (G,λ) as a set packing problem. First compute c(G) by solving the ILP in the
left column. Then proceed by solving the other ILP to compute MCPSϕ(G,λ).

Maximize
∑

S∈S xS

Subject to
∑

S:e∈S xS ≤ 1 for each edge e of G

and xS ∈ {0, 1} for simple cycle S ∈ S.

Minimize
∑

S∈S xSMCPSϕ(S, λS)

Subject to
∑

S:e∈S xS ≤ 1 for each edge e of G,
∑

S∈S xS = c(G)

and xS ∈ {0, 1} for simple cycle S ∈ S.

The size of S may be exponential in the size of G, which might make these ILPs
intractable in general. For graphs representing genomes with duplicate genes, the
number of simple cycles can grow exponentially as a function of the number of
duplicate genes. For breakpoint graphs, the number grows quadratically.

6 ϕ-MCPS for a Simple Cycle

The decomposition theorem of Sect. 5 reduces the computation of ϕ-MCPS on
a graph to the computation of ϕ-MCPS on a simple alternating cycle. In this
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Fig. 4. Two simple cycles having a vertex v of degree two are depicted in the first
column. Their sets of the corresponding circles obtained by splitting v into v1 and v2
are depicted in the second column. This set is of size 1 for the upper simple cycle
containing the gray loop {v, v}, and of size 2 for the lower simple cycle. An O-scenario
for a simple cycle provides a scenario of the same cost and length transforming the
graphs in the second column to the ones that become terminal once v1 and v2 are
merged. One possible outcome of such a scenario is presented in the third column.

section we further decompose the problem into simpler versions of cycles, called
circles, which are alternating cycles that contain a vertex only once.

Denote deg2(G) for a graph G as the number of vertices with black and gray
degree equal to two. It is easy to check that degb(S, v) = degg(S, v) ≤ 2 for any
vertex v of a simple cycle S. If deg2(S) = 0, then S is a circle. See the first
column of Fig. 4 for examples of simple cycles that are not circles.

Take a simple cycle S on vertices V , a labeling of its edges λ and denote S0

as {(S, λ)}. Choose a vertex of degree two in S. If it is incident to a gray loop,
then split it into two vertices, as depicted on the top row of Fig. 4, to obtain a
set S1 consisting of a single simple cycle. Otherwise split it into two vertices, as
depicted on the bottom row of Fig. 4, to obtain a set S1 consisting of two simple
cycles. The simple cycles in S1, by construction, share the same set of vertices,
that we denote V̂ , and the same multi-set of labeled black edges. O and a cost
function ϕ defined for vertices V can be extended in a natural way to Ô and ϕ̂
defined for vertices V̂ . For example if a vertex v was split into v1 and v2, then
ϕ̂(({v1, u}, x) → ({v1, u}, y)) = ϕ(({v, u}, x) → ({v, u}, y)) for u ∈ V ∩ V̂ and
labels x, y. In the appendix we prove the following lemma.

Lemma 3. MCPSϕ(S, λ) = min{MCPSϕ̂(Ŝ, λ̂)| (Ŝ, λ̂) ∈ S1}

Simple cycles in S1 share the same set of vertices of degree two. Choose
such a vertex and split it simultaneously in all the cycles in S1 as previously to
obtain a set S2 of at most 4 simple cycles sharing the same set of vertices and
the same multi-set of labeled black edges. Continue this procedure until the set
circ(S, λ) = Sdeg2(S) of the labeled circles is obtained. We denote V as the set
of vertices of these circles. O and a cost function ϕ defined for vertices V can be
extended in a natural way to O and ϕ defined for vertices V .

Theorem 3. MCPSϕ for a simple cycle (S, λ) is equal to the minimum of the
MCPSϕ among the circles in circ(S, λ).

Proof. We prove MCPSϕ(S, λ) = min{MCPSϕ̄(O, λO)| (O, λO) ∈ circ(S, λ)},
which is clearly true for deg2(S) = 0. We suppose it to be true for deg2(S) < t
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and prove it for deg2(S) = t by induction. By Lemma 3 we get MCPSϕ(S, λ) =
min{MCPSϕ̂(Ŝ, λ̂)| (Ŝ, λ̂) ∈ S1}. Since, for a simple cycle (Ŝ, λ̂) ∈ S1 we have
deg2(Ŝ) = t − 1, we use the inductive hypothesis to obtain MCPSϕ̂(Ŝ, λ̂) =
min{MCPSϕ̄(O, λO)| (O, λO) ∈ circ(Ŝ, λ̂)}. Further, we know that circ(S, λ) =
∪(Ŝ,λ̂)∈S1

circ(Ŝ, λ̂) by construction. Combining these results we obtain that the
theorem is true for deg2(S) = t. 
�

7 ϕ-MCPS for a Breakpoint Graph

In this section we suppose that there exists an algorithm for computing MCPSϕ

on a labeled circle (e.g. the algorithm of Sect. 9). Using this algorithm as a
subroutine we will construct an algorithm for finding MCPSϕ for a labeled
breakpoint graph. This is a generalization of the work first presented in [23].

Take genomes A and B partitioned into n genes where each gene occurs
exactly once in each genome, and a labeling λ of the edges of G(A,B). For all
the vertices v = ◦ we have degg(G(A,B), v) = degb(G(A,B), v) = 1. Thus, if
there is a circle in G(A,B) containing an edge then this circle is the only simple
cycle containing this edge. This means that every MAECD of G(A,B) includes
all of its circles. These set aside we are left with G(A,B)′, which is a union of
alternating paths starting and ending at ◦ with end edges of the same color. If
this color is black we call the path AA, and BB otherwise.

We proceed by constructing a complete weighted bipartite graph H having
the AA and BB paths of G(A,B)′ as vertices. Every simple cycle of G(A,B)′ is a
union of an AA path and a BB path. An edge joining these paths in H will have
the weight equal to MCPSϕ for a union of these paths. A MAECD of G(A,B)′

provides us with a maximum matching of H and every such matching provides
a MAECD of G(A,B)′. Denote λ′ as the labeling of the edges of G(A,B)′

according to λ. Using Theorem 2 we obtain that MCPSϕ(G(A,B)′, λ′) is equal
to the minimum weight of a maximum matching of H. There is an equal number
p of AA and BB paths. Let P denote the total number of edges in G(A,B)′.
Using this notation we obtain the following lemma proven in the appendix.

Lemma 4. For a function f and an O(f(r)) time algorithm for ϕ-MCPS on a
labeled circle on r vertices, there exists an O(p2f(P ) + p3 + f(n)) time algorithm
for ϕ-MCPS on a labeled breakpoint graph. If f(r) = O(rt) for some constant t ≥
1, then ϕ-MCPS on a labeled breakpoint graph can be solved in O(pP t +p3 +nt)
time.

Both p and P are O(n), thus Lemma 4 leads to the following theorem.

Theorem 4. Given a constant t ≥ 2 and an O(rt) time algorithm for ϕ-MCPS

on a labeled circle on r vertices, ϕ-MCPS on a labeled breakpoint graph can be
solved in O(nt+1) time.

Corollary 1. Using the O(r4) algorithm from Sect. 9 we obtain an O(n5) algo-
rithm for solving ϕf -MCPS on a labeled breakpoint graph with fixed labels.
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Corollary 2. Using the O(r log r) algorithm from [12] for the Sorting by

wDCJs and indels in intergenes problem on a circle (see Example 3), we
obtain an O(n3) algorithm for solving the problem on a breakpoint graph.

8 α-approximation for ϕ-MCPS

Theorems 2 and 3 demonstrate how ϕ-MCPS for any labeled graph can be
solved if one is able to solve ϕ-MCPS for a labeled circle. This is exploited in
Theorem 4 to solve ϕ-MCPS for a breakpoint graph. Analogous results hold
if instead of an exact algorithm one has an α-approximation for ϕ-MCPS for
a labeled circle. This is illustrated with the following theorem proven in the
appendix.

Theorem 5. For a constant t ≥ 2 and an O(rt) time α-approximation algo-
rithm for ϕ-MCPS on a labeled circle on r vertices, there exists an O(nt+1)
time α-approximation algorithm for ϕ-MCPS on a labeled breakpoint graph.

9 ϕf -MCPS for a Circle with Fixed Labels

Here we define ϕf -MCPS, a particular instance of a ϕ-MCPS problem, and solve
it for a circle. ϕf -MCPS generalizes our previous work presented in Example
1 and 2.

For a set V of vertices and a set L ∪ {τ} of labels, define a set O consisting
of labeled 2-breaks ({a, b}, x), ({c, d}, y) → ({a, c}, x), ({b, d}, y) for a, b, c, d ∈
V and x, y ∈ L, and label changes ({a, b}, x) → ({a, b}, τ) for a, b ∈ V and
x ∈ L. Fix a symmetric function Φ : L2 → R+ and define a cost function
ϕf (({a, b}, x), ({c, d}, y) → ({a, c}, x), ({b, d}, y)) = Φ(x, y) and ϕf (({a, b}, x) →
({a, b}, τ)) = 0.

We will provide a polynomial time algorithm for ϕf -MCPS on a labeled circle
with the gray edges labeled by a terminal label τ . Without loss of generality we
can suppose that all of the black edges of a circle have different labels; if two
edges are labeled with the same label x, then we simply replace one of these
labels with a new label x̂ and set Φ̂(x̂, y) = Φ(x, y) and Φ̂(y, z) = Φ(y, z) for
y, z ∈ L.

For a labeled circle having r black edges, define a set VL of r vertices cor-
responding to their labels. For an O-scenario ρO we define a 1-edge-colored
undirected graph T (ρO) with vertices VL and an edge {x, y} for every labeled
2-break in ρO replacing the edges labeled with x and y (See Fig. 5). The cost of
an edge {x, y} is defined to be Φ(x, y) and the cost of a T (ρO) is the sum of the
costs of its edges. The costs of ρO and T (ρO) are equal by construction.

Fix a circular embedding of VL respecting the order of the black edges on
the labeled circle (See Fig. 5). A graph with vertices VL is said to be planar on
the circle if none of its edges cross in this embedding. In the appendix we prove
Lemma 5 linking planar trees and parsimonious scenarios.
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Fig. 5. On the top: 4 steps of a parsimonious O-scenario for a circle are depicted
together with each T corresponding to the scenario at that point colored in yellow.
Vertices of T are superimposed on the corresponding edges of a circle providing their
circular embedding. All of the T are planar trees. On the bottom: For a given planar
tree T (dashed yellow) we provide a scenario ρO such that T (ρO) = T .

Lemma 5. If ρO is a minimum 2-break-length O-scenario for a labeled circle
(O, λ), then T (ρO) is a planar tree on (O, λ). In addition to that, for a planar
tree T on (O, λ) there exists an O-scenario ρO such that T (ρO) = T .

Farnoud and Milenkovic in [14] pose the problem of sorting permutations
by cost-constrained mathematical transpositions and provide a dynamic pro-
gramming algorithm for finding a minimum cost planar tree on a circle. In the
appendix we provide their proof for a following lemma which, together with
Lemma 6, leads to Theorem 6.

Lemma 6 (Farnoud et al. in [14]). A minimum cost planar tree on a circle
can be found in O(r4) time, where r is the number of vertices of a tree.

Theorem 6. ϕf -MCPS for a labeled circle on r vertices can be solved in O(r4)
time.

10 Conclusions and Future Directions

10.1 Practical Matters

Our algorithm for ϕf -MCPS on a breakpoint graph with fixed labels has a run-
ning time of O(n5) in the worst case. Note that the running time is dominated,
however, by the maximum bipartite matching step in Sect. 7. The size of this
graph is determined by the number of AA paths which is bounded by the num-
ber of chromosomes, so in practice it can be treated as a constant. Thus, the
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algorithm scales like O(n4) on real data. Further, since n is the number of syn-
tenic blocks — and not literally the genes as we call them — there are few
blocks. Our analyses of Drosophila genomes yield no AA paths, and less than
100 blocks [19]. Although about 13,000 blocks between human and mouse are
reported in the files associated to Baudet et al., many of them can be merged
because they are co-linear in the two species [3]. The effective number of blocks
for this pair is closer to 600.

For graphs with higher degree nodes, like those graphs that represent genomes
with duplicated genes, the number of simple cycles can grow rapidly. Although
this relationship is not immediately evident, we expect that fixed parameter
algorithms could be developed to handle biological data in the future.

10.2 Future Direction

Our cost framework is liberal, and in our examples we have explored only a
small portion of its capacities. Edges can be labeled by complex objects such as
vectors or trees that encode the biological information of extant genomes and its
modification throughout a scenario. Costs can be a function of a combination of
the edge labels and vertices. We hope that a closer study of the graph D(G, ρ)
from Sect. 3.2 will lead to polynomial time algorithms for ϕ-MCPS on circles
for a large family of problems.

While all of our results apply to genomes with insertions or deletions of sin-
gle genes, further study is required in order to increase efficiency on genomes
with duplicate genes. Other improvements to our work could consider non-
parsimonious 2-break scenarios.

Acknowledgments. This work is partially supported by the IBC (Institut de Biolo-
gie Computationnelle) (ANR-11-BINF-0002), by the Labex NUMEV flagship project
GEM, and by the CNRS project Osez l’Interdisciplinarité.

A Proofs

A.1 Lemma 1

Lemma. The minimum length of a 2-break scenario on a graph G is d2b(G) =
e(G) − c(G).

Proof. A 2-break can increase the size of a MAECD by at most 1 and the
size of a MAECD of a terminal graph is e(G). This leads to an inequality
d2b(G) ≥ e(G) − c(G).

In this paragraph the length of a cycle will be its number of black edges. For
any cycle c of length l > 1 there is a 2-break transforming c into a union of
length 1 and length l−1 cycles. This way we obtain a scenario of length l−1 for
c, and can transform every cycle of a MAECD of G independently, obtaining a
2-break scenario of length e(G) − c(G). Thus, d2b(G) ≤ e(G) − c(G). 
�
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A.2 Lemma 2

Lemma. The minimum length of a DCJ scenario transforming genome A into
B is equal to d2b(G(A,B)) = e(G(A,B)) − c(G(A,B)).

Proof. G(A,B) is constructed in such a way that for every DCJ A → A′ the
transformation G(A,B) → G(A′, B) is a 2-break. Notably, a DCJ {a, b} →
{a}, {b} results in a transformation {a, b}, {◦, ◦} → {a, ◦}, {b, ◦}, as the construc-
tion of a breakpoint graph guarantees that there are enough black loops {◦, ◦}
to realize such a 2-break. For any 2-break G(A,B) → G′ with G′ = G(A,B)
there exists a DCJ A → A′ such that G(A′, B) = G′. Since G(B,B) is termi-
nal, it follows that the minimum length of a scenario transforming A into B is
d2b(G(A,B)) and we conclude using Lemma 1. 
�

A.3 Theorem 1

Theorem. If D(G, ρ) has k connected components then ρ can be partitioned into
k subscenarios ρi and G can be partitioned into k edge-disjoint Eulerian subgraphs
Hi in such a way that ρi is a scenario for Hi for every i ∈ {1, . . . , k}. If ρ is
parsimonious, then k = c(G) and C(ρ) = {H1, . . . , Hk} is a MAECD of G.

Proof. Take a connected component C of D(G, ρ). It has an equal number of
vertices of indegree 0 and vertices of outdegree 0. Its edges incident to the vertices
of indegree 0 are labeled with the black edges of G and its edges incident to the
vertices of outdegree 0 are labeled with the gray edges of G. Together these
labels define a subgraph H of G that we will prove to be Eulerian.

Define Cl to be a subgraph of D(G, ρl) consisting of its connected components
containing the vertices of indegree 0 of C. This way Cm = C. Define Hl to be a
subgraph of Gl containing the gray edges of H and the black edges of Gl labeling
the edges of Cl incident to the vertices of outdegree 0. This way H0 = H and
Hm is a terminal graph.

We prove that H is Eulerian by induction. Hm is Eulerian as it is terminal.
Suppose that Hl is Eulerian. By construction the two edges of Gl replaced by
the l-th 2-break of ρ either both belong to Hl−1 or both are outside of Hl−1. In
the first case, Hl is obtained from Hl−1 via a 2-break and as Hl is Eulerian this
means that Hl−1 is also Eulerian. In the second case, Hl = Hl−1, thus the latter
stays Eulerian. Thus H = H0 is Eulerian and we obtain a subsequence of ρ that
is a scenario for H.

D(G, ρ0) has e(G) connected components. The l-th 2-break of ρ merges two
vertices of D(G, ρl−1), thus reduces the number of the connected components
by at most 1. This means that the number k of the connected components of
D(G, ρ) is greater or equal to e(G) − m.

If ρ is parsimonious, then its length m is e(G) − c(G) using Lemma 1. This
means that k ≥ c(G) and G can be partitioned into k edge-disjoint Eulerian
subgraphs. Due to the maximality of c(G), we have that k = c(G) and all of the
obtained edge-disjoint Eulerian subgraphs of G are simple cycles. 
�
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A.4 Lemma 3

Lemma. MCPSϕ(S, λ) = min{MCPSϕ̂(Ŝ, λ̂)| (Ŝ, λ̂) ∈ S1}

Proof. For a labeled graph (H,μ) on vertices V̂ we denote r(H,μ) as the labeled
graph obtained from (H,μ) by merging the two vertices that were split in S.
For (Ŝ, λ̂) ∈ S1 we have r(Ŝ, λ̂) = (S, λ) by construction. An operation in Ô
transforms (Ŝ, λ̂) into such (Ŝ′, λ̂′) that there exists unique operation in O of the
same cost transforming (S, λ) into r(Ŝ′, λ̂′). This leads to an observation that
for an Ô-scenario for (Ŝ, λ̂) there exists an O-scenario of the same cost and the
same 2-break-length for (S, λ).

On the other hand, for an operation in O transforming (S, λ) into (S′, λ′)
there exists an operation in Ô of the same cost transforming every (Ŝ, λ̂) ∈ S1

into (Ŝ′, λ̂′) such that r(Ŝ′, λ̂′
S) = (S′, λ′). This leads to an observation that

an O-scenario for (S, λ) provides us with a sequence ρ̂Ô of Ô operations of the

same cost and 2-break-length transforming every (Ŝ, λ̂) ∈ S1 into such (Ŝ, λ̂) for
which r(Ŝ, λ̂) is a terminal graph with equal multi-sets of labeled gray and black
edges. As the later graph is obtained by merging two vertices of degree one of
the former, we know that its structure is as well fairly simple. We can check all
the possible cases by hand and show that there is (Ŝ, λ̂) ∈ S1 such that (Ŝ, λ̂) is
itself a terminal graph with equal multi-sets of labeled gray and black edges.

If S1 is of size 1, then there is a single choice for (Ŝ, λ̂) such that r(Ŝ, λ̂) is
a terminal graph with equal multi-sets of labeled gray and black edges (see the
right upper corner of Fig. 4). If S1 is of size 2, then there are more cases, but
they are all easy to check and one of them is given in the right bottom corner
of Fig. 4. 
�

A.5 Lemma 4

Lemma. For a function f and an O(f(r)) time algorithm for ϕ-MCPS on a
labeled circle on r vertices, there exists an O(p2f(P ) + p3 + f(n)) time algorithm
for ϕ-MCPS on a labeled breakpoint graph. If f(r) = O(rt) for some constant t ≥
1, then ϕ-MCPS on a labeled breakpoint graph can be solved in O(pP t +p3 +nt)
time.

Proof. The p2 edges of a bipartite graph H can be weighted in O(p2f(P ))
time due to Theorem 3 and the fact that the simple cycles of G(A,B) have
at most 1 vertex of degree 2. A minimum weight maximum matching of H can
be found in O(p3) time using the Hungarian algorithm. Finally, MCPSϕ for
the labeled circles in G(A,B) can be computed in O(f(n)) time. Combining
these results we obtain an O(p2f(P ) + p3 + f(n)) time algorithm for computing
MCPSϕ(G(A,B), λ).

Now suppose that f(r) = O(rt) for some constant t ≥ 1. Let a1, . . . , ap and
b1, . . . , bp denote the number of edges in AA and BB paths with

∑p
i=0 ai = PA,∑p

j=0 bj = PB and P = PA + PB.
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MCPSϕ for a union of an AA path and a BB path having a and b edges
respectively can be obtained by computing MCPSϕ for at most two circles on
a + b vertices due to Theorem 3. This can be done in less than c(a + b)t steps
for some constant c using the O(rt) time algorithm for computing MCPSϕ for a
circle. MCPSϕ for every pair of AA and BB paths of G(A,B)′ can be computed
in a number of steps bounded by:
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Thus, the weighting of H can be performed in O(pP t) time. This provides us
with an O(pP t + p3 + nt) time algorithm for computing MCPSϕ(G(A,B), λ).
�

A.6 Theorem 5

Theorem. For a constant t ≥ 2 and an O(rt) time α-approximation algorithm
for ϕ-MCPS on a labeled circle on r vertices, there exists an O(nt+1) time
α-approximation algorithm for ϕ-MCPS on a labeled breakpoint graph.

Proof. In Theorem 3, MCPSϕ on a simple cycle is expressed as the minimum
of the MCPSϕ for a set of corresponding circles. In Theorem 2, MCPSϕ on a
graph is expressed as the minimum of the sums of the MCPSϕ for the simple
cycles. We prove an auxiliary lemma establishing the following:

1. An α-approximation for MCPSϕ on a simple cycle can be obtained by taking
the minimum of the α-approximations for the corresponding circles.

2. An α-approximation for MCPSϕ on a graph can be obtained by taking the
minimum of the sums of the α-approximations for MCPSϕ on the simple
cycles.

Lemma. Take k ∈ N and two sets of positive numbers {q∗
1 , . . . , q

∗
k} and

{q1, . . . , qk} with qi ≤ αq∗
i for every i. The following inequalities hold:

1. min{qi|i ∈ {1, . . . , k}} ≤ αmin{q∗
i |i ∈ {1, . . . , k}}

2.
∑k

i=0 qi ≤ α
∑k

i=0 q∗
i
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Proof. Take u and v such that q∗
u = min{q∗

i |i ∈ {1, . . . , k}} and qv = min{qi|i ∈
{1, . . . , k}}. By construction qv ≤ qu ≤ αq∗

u which proves the first inequal-
ity. For the second inequality it suffice to observe that

∑k
i=0 qi ≤

∑k
i=0 αq∗

i =
α

∑k
i=0 q∗

i 
�

A simple cycle of a breakpoint graph has at most one vertex of degree 2. This
means that it has at most two corresponding circles (see Theorem 6). Taking
the minimum of the α-approximations for MCPSϕ on these circles provides us
with an α-approximation for the simple cycle due to Theorem 6 and the first
part of the lemma above. This way we obtain an α-approximation algorithm for
ϕ-MCPS on a simple cycle of a breakpoint graph that runs in O(rt) time where
r is the number of the vertices in the simple cycle.

We can reuse the structure of a bipartite graph H presented in Sect. 7 with
the weights of the edges now being the α-approximations for the MCPSϕ on
the corresponding simple cycles. Following the same reasoning as in Sect. 7, we
know that the minimum cost maximum matching of H leads to a MAECD of a
breakpoint graph minimizing the sum of the α-approximations for the MCPSϕ

on its simple cycles. Combining Theorem 2, both parts of the lemma above, and
the proof of Lemma 4, we obtain an O(nt+1) time α-approximation algorithm
for ϕ-MCPS on a breakpoint graph. 
�

A.7 Lemma 5

Lemma. If ρO is a minimum 2-break-length O-scenario for a labeled circle
(O, λ), then T (ρO) is a planar tree on (O, λ). In addition to that, for a pla-
nar tree T on (O, λ) there exists an O-scenario ρO such that T (ρO) = T .

Proof. We prove the first statement by induction. It is trivially true if O has 2
vertices. We suppose it to be true for all the circles having less than 2l vertices
and prove it for a circle having 2l vertices. Fix a minimum 2-break-length scenario
ρO. Its length is l−1 due to Lemma 1. The first labeled 2-break of ρO transforms
(O, λ) into two vertex disjoint labeled circles (O1, λ1) and (O2, λ2) both having
less vertices than O. The rest of the scenario ρO can be partitioned into ρ1O acting
on the edges of O1 and ρ2O acting on the edges of O2. As ρO is a minimum 2-break-
length scenario, ρ1O and ρ2O must also be minimum 2-break-length scenarios. By
the inductive hypothesis, T (ρ1O) and T (ρ2O) are planar trees on (O1, λ1) and
(O2, λ2) respectively. T (ρO) can be easily obtained from T (ρ1O) and T (ρ2O) by
taking the union of their edges and adding an edge corresponding to the first
2-break of ρO. This way we obtain a planar tree T (ρO) on (O, λ) proving the
first statement of the lemma.

Now define the distance of an edge {x, y} in T as the minimum number of
vertices between x and y in the fixed circular embedding of T . For example, in
the rightmost tree on the top of Fig. 5 the distance of the edge {w, z} is one,
because t is in between w and z, while the distance of the edge {x, y} is 0. An
edge is said to be short if its distance is 0. We prove an auxiliary lemma.

Lemma. A planar tree T on (O, λ) has a short edge incident to a leaf.
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Proof. Choose a leaf x in T incident to an edge of the minimum distance d. If
d = 0, then in between the leaf and the vertex that it is adjacent to, there are d
other vertices. Since T is planar on (O, λ), it is easy to see that there is at least
one other leaf among these d vertices, which contradicts the minimality of x. 
�

Now take a short edge {x, y} incident to a leaf x in T . Take the black
edges {a, b} and {c, d} in (O, λ) labeled with x and y respectively and sepa-
rated by a gray edge {b, c}. Perform a labeled 2-break ({b, a}, x), ({c, d}, y) →
({b, c}, x), ({a, d}, y). This 2-break results in two labeled circles. One of them
is a terminal graph having two edges {b, c} with the black one labeled with x.
Remove the edge {x, y} from T . This way we have reduced the size of the prob-
lem. The number of the vertices in the circle was reduced by two and the number
of the edges in the tree was reduced by 1. We iterate this procedure to construct
a required scenario. See the bottom part of Fig. 5 for an example. 
�

A.8 Lemma 6

Lemma. A minimum cost planar tree on a circle can be found in O(r4) time,
where r is the number of vertices of a tree.

Proof. Farnoud and Milenkovic pose the problem of sorting permutations by
cost-constrained mathematical transpositions (a sorting scenario is called a
decomposition) [14]. They define a cost function on the set of transpositions
and treat the problem, called MIN-COST-MLD, of finding a minimum cost
decomposition among the minimum length transposition decompositions of a
permutation. They reduce this problem to finding a minimum cost planar tree
on a circle, and propose the following O(r4) time dynamic programming algo-
rithm for a tree having r vertices.

Enumerate the vertices 1 to r while respecting their order on the circle.
Define cost(i, j) as the minimum cost of a planar tree on the vertices {i, . . . , j}
for 1 ≤ i < j ≤ r and set cost(i, i) = 0 for 1 ≤ i ≤ r.

Take a planar tree T on the vertices {1, . . . , r}. If deg(1) = 1 and 1 is on the
edge {1, q}, then the cost of T is equal to Φ(1, q) plus the costs of the subgraphs
of T induced by the vertices {2, . . . , q} and {q + 1, . . . , r}. If deg(1) > 1, then
take q = max({u|{1, u} belongs to T }) and s = max({u| there is a path in T
joining 1 and u but not visiting q}). The cost of T is equal to Φ(1, q) plus the
costs of the subgraphs of T induced by the vertices {1, . . . , s}, {s+1, . . . , q} and
{q, . . . , r}. This observation provides us with the following equality:

cost(i, j) = max(cost(i, s) + cost(s + 1, q) + cost(q, j) + Φ(i, q)| i ≤ s < q ≤ j)

for 1 ≤ i < j ≤ r, that leads to an O(r4) time dynamic programming algorithm
for finding cost(1, r). 
�
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