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Abstract. Traditionally, the merit of a rearrangement scenario between
two genomes has been measured based on a parsimony criteria alone; two
scenarios with the same number of rearrangements are considered equally
good. In this paper, we acknowledge that each rearrangement has a cer-
tain likelihood of occurring based on biological constraints, e.g. physi-
cal proximity of the DNA segments implicated, or repetitive sequences.
Accordingly, we propose optimization problems with the objective of max-
imizing overall likelihood, by weighting the rearrangements. We study a
binary weight function suitable to the representation of sets of genome
positions that are most likely to have swapped adjacencies. We give a
polynomial-time algorithm for the problem of finding a minimum weight
double cut and join (DCJ) scenario among all minimum length scenarios.
In the process, we solve an optimization problem on colored noncrossing
partitions which is a generalization of the Maximum Independent Set
problem on circle graphs.

1 Introduction

A huge body of work exists on modeling the evolution of whole chromosomes [10].
The main difference between such models is the set of rearrangements that they
allow. The moves of interest are usually inversion, transposition, translocation,
chromosome fission and fusion, deletion, insertion, and duplication.

Almost all versions of the problemareNP-Hard if contentmodifying operations
such at duplication, loss, and insertion are allowed [6,14]. Fortunately, amodel that
considers genomes with equal content (i.e. no duplications or insertions/deletions)
is quite pertinent, particularly in eukaryotes, since syntenic blocks of genes can be
assigned between genomes so that each block occurs exactly once in each genome.
For two genomes with equal content, double cut and join (DCJ) has been the model
of choice since it elegantly includes inversion, translocation, chromosome circular-
ization and linearization, as well as chromosome fission and fusion [3,27].

One of the most important problems in comparative genomics is the infer-
ence of ancestral gene orders, i.e. paleogenetics. Given a realistic model of evo-
lution, one can infer ancestral adjacencies of high confidence from present-day
genomes [4,15,20]. However, methods that attempt to infer deeper structure
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for ancestral species suffer due to the huge number of parsimonious scenarios
between genomes [1,13,22].

The apparent difficulty of the ancestral inference problem — because of the
potentially astronomical number of parsimonious sorting scenarios — highlights
the importance of methods that infer scenarios that conform to some extra bio-
logical constraints. Yet, aside from methods that weight inversions based on their
length [2,5,11,17,21], to our knowledge no work exists in this direction.

In this paper we use a weight function on rearrangements suitable for mod-
eling positional constraints, i.e. sets of positions in the genome that are likely to
swap adjacencies. Two examples of constraints that fit this paradigm are: (1) the
physical 3D location of DNA segments in a nucleus and, (2) repetitive sequences
that are the cause or consequence of rearrangement mechanisms. We illustrate
the utility of our model with 3D constraints in Sect. 1.4.

We propose a general optimization problem that minimizes the sum of weights
over the moves in a scenario. A more constrained version of the problem asks for
such a scenario out of all possible unweighted parsimonious scenarios. Our algo-
rithm solves this version of the problem in polynomial time given a binary weight
function, despite an exponential growth of the number of parsimonious DCJ sce-
narios with respect to the distance [7,19]. The commutation properties of DCJ
moves as studied in [19] link certain DCJ scenarios to noncrossing partitions. Our
algorithm relies on solving a new optimization problem on colored noncrossing
partitions, called Minimum Noncrossing Colored Partition. It is a general-
ization of the Maximum Independent Set problem on circle graphs [12,18,25].

1.1 Genomes as Sets of Signed Integers

A gene, or more generally a syntenic block of genes, will be represented by a
signed integer. A chromosome is a sequence of blocks, and a genome is a set
of chromosomes. Thus, we write a genome in list notation where a block is a
positive integer if read in one direction in the genome, and a negative integer if
read in the opposite direction. For example, a genome A can be written as

{(◦, 5,−1,−2, 6,−4,−8, ◦), (◦,−3, 7, ◦), (9, 10)},

where ◦ represents a telomere at the end of a linear chromosome. Genome A has
two linear chromosomes and a circular chromosome (9, 10).

Alternatively, the organization of the blocks on the chromosomes can be given
by the set of adjacencies between the extremities of consecutive blocks. A block b
has a tail extremity, written bt, and a head extremity, written bh. Thus, the adja-
cency between 5 and −1 in A is {5h, 1h}. A block that is on the end of a linear
chromosome implies a telomeric adjacency . The first chromosome has two such
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adjacencies: {◦, 5t} and {8t, ◦}. A circular chromosome has no telomeres, i.e. the
last block is adjacent to the first. We can write genome A using adjacencies as

A =
{{{◦, 5t}, {5h, 1h}, {1t, 2h}, {2t, 6t}, {6h, 4h}, {4t, 8h}, {8t, ◦}},
{{◦, 3h}, {3t, 7t}, {7h, ◦}},
{{9h, 10t}, {10h, 9t}

}}
.

1.2 DCJ and Sorting DCJs

Double cut and join (DCJ) is an operation on a genome that cuts one or two
adjacencies, and glues the resulting ends back together according to the following
rules [3]:

1. If a single adjacency is cut, then add new telomeres to the resulting ends
(resulting in two new telomeric adjacencies).

2. If two adjacencies are cut, then glue the adjacencies back in one of two new
ways.

Application of a single DCJ corresponds to diverse genomic operations such
as inversion, chromosome linearization and circularization, transposition, and
excision of a circular chromosome.

The DCJ distance between genomes A and B is the minimum number of
DCJ moves needed to transform A into B. DCJs that move A closer to B, called
sorting DCJs, can be found using a graph. The colored adjacency graph for A
and B is a graph G(A,B, col) whose vertices are the extremities and telomeres
of A and B, and whose edges are colored by the color function col. For each
adjacency in A or B an adjacency edge links the corresponding nodes of the
adjacency, and a cross edge links non-telomere vertices from A to vertices with
the same label in B. The graph for genomes

A =
{{{◦, 5t}, {5h, 1h}, {1t, 2h}, {2t, 6t}, {6h, 4h}, {4t, 8h}, {8t, ◦}},
{{◦, 3h}, {3t, 7t}, {7h, ◦}}}

, and

B =
{{{◦, 1t}, {1h, 2t}, {2h, 3t}, {3h, 4t}, {4h, 5t}, {5h, 6t}, {6h, ◦}},
{{◦, 7t}, {7h, 8t}, {8h, ◦}}}

is given in Fig. 1. It is easy to confirm that the adjacency and cross edges each
form a matching, so that each connected component of the graph will be either
a cycle or a path. Note that connected components of the graph are only loosely
related to the chromosomes; connected components can span multiple chromo-
somes.

We denote a cross edge by the label of the vertices that they connect. We
denote the connected components of the graph by the set of cross edges that
comprise them. The connected components of the graph in Fig. 1 are {5t, 4h, 6h},
{5h, 6t, 2t, 1h}, {1t, 2h, 3t, 7t}, {8t, 7h}, and {3h, 4t, 8h}. The length of a path or
a cycle is the number of cross edges it has.
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A :

B :

5  1  2 6  4  8  3 7

1 2 3 4 5 6 7 8

- - - - -

Fig. 1. The colored adjacency graph G(A, B, col). Black edges are adjacency edges and
gray edges are cross edges. The color function col maps adjacency edges of genome A
to the alphabet {a, b, c, d}.

To find sorting DCJs, we categorize the connected components by length. In
Fig. 1 there is one cycle, two even-length paths, and two odd-length paths. The
formula for the DCJ distance is

dDCJ(A,B) = N − (C + I/2) (1)

where N is the number of blocks, C is the number of cycles, and I is the num-
ber of odd-length paths in G(A,B) [3]. Figure 2 depicts a comprehensive list of
the possible sorting DCJs on an adjacency graph, and describes the conditions
under which they may be applied. See Proposition 1 of [19] for a more thorough
treatment. G(A,A), for some genome A, will always have 2M paths of length
one and N − M cycles of length two, where M is the number of chromosomes
and N is the number of blocks.

Fig. 2. All possible DCJs that move one genome closer to the other. Adjacency edges
are contracted, so that only the cross edges are shown in the connected components.
Endpoints that are affected by the DCJ are circled. In the top row, extracting a cycle
from (a) an even-length path, (b) an odd-length path, and (c) a cycle are depicted.
Even-length paths can be combined to form two odd-length paths if one of the paths
has endpoints in genome A and the other in genome B, as depicted in (d). An even-
length path can be split into two odd length paths if the split is done in the genome
with fewer vertices in the path, as depicted in (e).
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1.3 The Minimum Weighted Rearrangements Problem

Consider a genome Ai made of a set of linear or circular chromosomes. Each
rearrangement on this genome may have a certain likelihood of occurring. In
Sect. 1.5 we will describe a DCJ move on G(Ai, B) as a reconnection of two adja-
cency edges of G(Ai, B); the resulting graph G(Ai+1, B) is identical to G(Ai, B)
aside from the connectivity of two adjacency edges. Therefore there is a bijection
between edges of G(Ai, B) and edges of G(Ai+1, B), so we can weight all pairs of
genome adjacencies occurring in a sorting scenario by weighting all pairs of adja-
cency edges in G(A,B). For the set P of all pairs of adjacency edges in genome A,
the weight function for a pair is w : P �→ R+, where R+ denotes the non-negative
real numbers. The higher the value of w the less likely the rearrangement is to
occur, e.g. a value of 0 represents a most likely rearrangement.

A sequence of rearrangements ρ1, ρ2, . . . , ρd such that (· · · ((Aρ1)ρ2) · · · ρd) =
B is called a sorting scenario. The weight of a scenario is the sum of the
weights of all the rearrangements in the scenario, i.e.

∑d
i=1 w(ρi). The Mini-

mum Weighted Rearrangements problem is the following.

Problem 1. Minimum Weighted Rearrangements

INPUT: Genomes A and B and a weight function w.
OUTPUT: A scenario of rearrangements turning A into B.
MEASURE: The weight of the scenario.

1.4 Positional Constraints as Colored Adjacencies

Although chromosomes are represented as linear or circular sequences of syntenic
blocks, in reality they correspond to molecules whose conformation within the
nucleus is complex. Recent technological advances, called Hi-C, allow the mapping
of chromosome conformation in various cell types and species [8,9,16,23,28]. The
positional constraints introduced here are based on the principle that rearrange-
ments (DCJ moves) involving pairs of adjacencies that are close in 3D space are
more frequent than others. This model is supported by the pioneering work of
Véron, et al. [26], who showed that loci that are distant in the linear ordering of
the human chromosome yet close in the ordering of the mouse chromosome, are
physically close (in 3D) in the human chromosome. Recently we have conducted
a study on rearrangement scenarios showing that breakpoint pairs comprising a
rearrangement are closer than expected by chance for intrachromosomal and inter-
chromosomal rearrangements. This is true for multiple cell types from multiple
laboratories [24]. In this paper, we use the observation that many moves are local
to constrain the rearrangement scenarios that we compute. We call this the posi-
tional constraint.

We incorporate the constraint by grouping adjacencies of the genome into
classes that are more likely to swap endpoints. This idea is illustrated in Fig. 3,
where the physical (3D) structure of genome A is drawn and the adjacencies
are grouped into colored localities. According to Véron et al. [26] and our recent
results [24], rearrangements are more likely to occur between adjacencies at the
same position.



248 K.M. Swenson and M. Blanchette

Fig. 3. (a) A 2D cartoon of a possible 3D configuration for genome A. Adjacencies
between syntenic blocks are classified by physically close regions, which are marked by
dashed circles and labeled by the alphabet {a, b, c, d}. (b) Genome A after a reciprocal
translocation has occurred at position b. (c) Genome A after an excision has occurred
at position b.

Fig. 4. The update of colors by a DCJ. (a) Adjacency edges with colors x and y
are reconfigured in two different ways for the same DCJ operation. In this case the
reconfigurations are achieved by swapping either both right-hand endpoints or both
left-hand endpoints of the adjacency edges. (b) The adjacency edge with color x is
split to make two adjacencies of color x with two new telomeres.

1.5 Locality and the Adjacency Graph

Each adjacency edge in G corresponds to an adjacency in genome A or B. The
color of an adjacency is given to the adjacency edge it corresponds to. Figure 1
shows a coloring for the adjacencies of genome A that matches the localities in
Fig. 3. The application of a DCJ operation to a genome has the effect of swapping
the endpoints of two adjacency edges, or splitting an adjacency edge as in the
case of Fig. 4(e).

Throughout a DCJ sorting scenario, adjacency edges always keep the same
color. Thus, each DCJ operation corresponds to one of two possible updates of
the same pair of adjacency edges, as depicted in Fig. 4(a).

1.6 A Positional Weight Function

Categorize rearrangements into two sets: those that are likely, and those that are
not. Such a categorization of rearrangements is powerful enough to encapsulate
the positional property discussed earlier.

A DCJ ρ acts on one or two adjacencies. Our model labels each adjacency
with some color from an alphabet Σ, and weights a DCJ based on the colors
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that are acted upon. Call iρ and jρ the adjacencies affected by ρ; iρ = jρ if
the DCJ acts on only a single adjacency, e.g. case (e) in Fig. 2. The color of an
adjacency iρ is written col(iρ). Given a DCJ ρ, our weight function is

w(ρ) =
{

0 if iρ = jρ or col(iρ) = col(jρ)
1 otherwise.

We call those DCJ moves that have zero weight likely, while we call all others
rare. It is trivial to evaluate our weight function for a given DCJ; simply check
the colors of the two adjacency edges that are affected.

Two restricted versions of the general problem are now described. The prob-
lem Minimum Local Scenario is exactly Minimum Weighted Rearrange-
ments with the positional weight function w.

Problem 2 (MLS). Minimum Local Scenario

INPUT: Genomes A and B and positional weight function w.
OUTPUT: A scenario of rearrangements turning A into B.
MEASURE: The weight of the scenario.

The problem Minimum Local Parsimonious Scenario introduces the con-
straint that the scenario output is also a parsimonious scenario, i.e. a scenario
of minimum length.

Problem 3 (MLPS). Minimum Local Parsimonious Scenario

INPUT: Genomes A and B and positional weight function w.
OUTPUT: A parsimonious scenario of rearrangements turning A into B.
MEASURE: The weight of the scenario.

2 Minimum Local Parsimonious Scenario

Since a solution to Minimum Local Parsimonious Scenario is limited to
sorting moves, most connected components of G(A,B, col) must be sorted inde-
pendently of each other, the exception being for even-length paths; all but one
DCJ in Fig. 2 act on a single connected component. We first give a method for
computing the number of rare operations per connected component when no
pair of even-length paths exist, as in Fig. 2(d). We then show in Sect. 2.2 how to
solve the problem when such pairs exist.

2.1 Colored Partitions

Consider a connected component C of the graph G(A,B, col). If C is monochro-
matic, i.e. has adjacency edges of a single color, then the component can be
sorted with likely DCJs according to the listed moves in Fig. 2; the move that
operates on more than one component in Fig. 2(d) need not be used since each
path can be split on its own with a local move, as in Fig. 2(e). If C is polychro-
matic then DCJs must be performed to separate the colors, since a fully sorted
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Fig. 5. Colored partitions for the set [1, 8] where col(1) = b, col(2) = a, col(3) = b,
col(4) = c, col(5) = a, col(6) = d, col(7) = a, and col(8) = c. Vertices are cir-
cles numbered by their order in the set [1, 8] and labeled by their color. Thick black
lines are drawn between vertices that are in the same class of the partition. (a) The
crossing partition {{1, 3}, {2, 5, 7}, {4, 8}, {6}}. (b) The optimal noncrossing partition
{{1, 3}, {2}, {4, 8}, {5, 7}, {6}}. (c) The instance embedded on a line.

genome has components that each have only a single colored adjacency edge in
genome A.

Recall that AA-paths and BB-paths are paths that start and end in the
same genome. In this subsection, we assume that there does not exist both
an AA-path and a BB-path in the graph (Fig. 2(d)). Ouangraoua and Bergeron
established that the DCJs in a sorting scenario can be done in any order for such a
graph and that every component will be sorted independently, thereby defining a
noncrossing partition on each component (see Sects. 3 and 4 of [19]). Later in this
section we show that Minimum Local Parsimonious Scenario on a single
component is equivalent to the following problem concerning a generalization of
noncrossing partitions. A partition of a set is a collection of pairwise disjoint
subsets whose union is the entire set. The subsets are called classes. [1, n] is the
set of integers from 1 to n.

Definition 1. A noncrossing partition is a partition P of [1, n] such that for
any classes Si, Sj ∈ P if we have p < q < p′ < q′ for p, p′ ∈ Si and q, q′ ∈ Sj,
then Si = Sj. A noncrossing colored partition is a noncrossing partition where
for any p, p′ ∈ Si, col(p) = col(p′).

Another way to define a noncrossing partition is on a convex polygon. A non-
crossing partition is a partition of the vertices of an n-gon with the property
that if you draw a line between all pairs of vertices in the same class, for all
classes, then no two lines from different classes intersect. A colored partition has
colored vertices, and respects the property that any pair of vertices in the same
class of the partition have the same color (see Figs. 5(a) and (b)).

Problem 4 (MNCP). Minimum Noncrossing Colored Partition

INPUT: Set size n, color set Σ, and color function col : [1, n] → Σ.
OUTPUT: A noncrossing colored partition.
MEASURE: The cardinality of the partition.
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Wepresent apolynomial-timealgorithm for theMinimumNoncrossingCol-
ored Partition problem, which according to Lemma 2 (later in this section)
gives a solution to Minimum Local Parsimonious Scenario on a single com-
ponent. We describe the algorithm on an instance that has been embedded on a
line where the left-most vertex 1 represents the smallest element of the set, as
shown in Fig. 5(c). For an interval [i, j], let NCP (i, j) be the number of classes in
the MNCP on that subproblem. Thus, NCP (1, n) corresponds to the Minimum
Noncrossing Colored Partition of [1, n].

For any interval [i, j] we have NCP (i, i) = 1, and the following recurrence.

NCP (i, j) = min

⎧
⎨

⎩

NCP (i, j − 1) + 1 for i < j,
NCP (i, j − 1) for i < j and col(i) = col(j)
NCP (i, k − 1) + NCP (k, j) for all k where i < k < j

The first case corresponds to the creation of a new class with the single element j.
The second case is applicable when element j is the same color as element i; in this
case i and j become part of the same class, all the other classes staying the same.
The third case tests combinations of subproblems; this case is pertinent when the
col(i) = col(k−1) or col(k) = col(j). It is easy to confirm that any feasible solution
to MNCP is scored by the recurrence. This dynamic program runs in O(n3) time
in the worst case.

We now show the link between MLPS and MNCP. Consider component C to
be sorted. Pick an arbitrary vertex of C if it is a cycle, or either endpoint of C if
it is a path, and consider an ordering of the vertices of genome A based on a tra-
versal of the edges of C from that vertex. Embed the vertices of the component on
a circle with respect to that ordering, and the edges so that they remain inside
the circle. Call this a circular embedding of the component. Consider a sorting
scenario for C that corresponds to a sequence of adjacency graphs C0, C1, . . . , Cd

(C = C0). Call C◦
i the graph Ci with vertices embedded according to the circular

embedding of C0.

Lemma 1 ([19]). C◦
i has no pair of crossing adjacency edges for any i.

Proof. By construction, all adjacency edges in C◦
0 connect adjacent vertices on the

circle, so none of them cross. Assume that C◦
j has crossing adjacency edges and

C◦
j−1 does not. This implies that the jth DCJ did not split a component. This is

a contradiction since every sorting move on C splits a component, never creating
both an AA-path and BB-path. ��
Lemma 2. Given a connected component C, Minimum Local Parsimonious
Scenario on C can be solved by MinimumNoncrossing Colored Partition.

Proof. First, transform an instance ofMLPS on a single component to an instance
ofMNCP. Given a cycle C representing genomes A and B, map the set of elements
[1, n] from the set of adjacency edges of A ordered according to a circular embed-
ding of C. The color function col maps each element to its corresponding adjacency
edge’s color.
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Now transform an optimal solution of MNCP into an optimal solution for
MLPS. Clearly, any partition of [1, n] corresponds to a partition of adjacency edges
of genome A. We show that there always exists a scenario of DCJs whose prefix sep-
arates C into connected components according to the partition. Any two edges of
the same component can be chosen for a DCJ [19] and the DCJs on a cycle can be
done in any order (Lemma 1). Since the ordering of the edges on the cycle corre-
sponds to the ordering on [1, n], an edge partition of size k can be achieved with
k − 1 DCJs. Since k is minimum over all feasible partitions and the remaining
DCJs of the scenario are likely, the constructed scenario has a minimum number of
rare DCJs. ��
In fact, the two problems are equivalent. We omit the reduction in the other direc-
tion since it is out of the scope of this paper.

2.2 Even-length Paths

AMinimumNoncrossingColoredPartition can be computed in polynomial
time for a single component independent of all others. Yet it is possible to merge
components in a parsimonious DCJ scenario. As described in Fig. 2, the only parsi-
monious DCJs thatmerge components are those that act on one edge from an AA-
path and one edge from a BB-path. Call AA (BB respectively) the set of AA-paths
(BB-paths respectively) in the adjacency graph. The key observation is that once
a path has been merged with another, the result is always two odd-length paths
which subsequently cannot be merged with any other. Thus we devote this section
to the computation of which pairs (a, b) ∈ AA × BB will be merged in an optimal
solution, and which paths will remain unmerged.

Any pair (a, b) can be merged in several ways. For all possible DCJs that merge
them,we compute theMNCP on the resulting components.TheminimumMNCP
over all merges is the cost in rare moves for merging the two paths. To compute the
pairs of paths to be merged in an optimal solution, we use the inverse of these costs
— the number of likely moves — as weights in a bipartite graph.

Take the elements of AA and BB as vertices in a complete bipartite graph, and
label each edge (a, b) with the maximum number of likely DCJs for the merge of
paths a and b. Any even-length path could alternatively be used independently of
any other, so there is a vertex q′ for each q ∈ AA ∪ BB with a single edge (q, q′)
labeled by the number of likely moves on q alone (computed using the MNCP on
that component). Algorithm 1 computes the minimum number of rare DCJs in a
parsimonious scenario. It is easy to modify the algorithm to give the list of DCJs.

The function MNCPonComp(a, col) computes the Minimum Noncrossing
Colored Partition on the given component a. In other words it builds the color
function col according to the component a and then calls MNCP (1, n, col) where
n is the number of adjacency edges on the A side of the component a. The function
maxMerge(a, b) computes the maximum number of likely DCJs over all possible
DCJs that use one edge from a and one edge from b. The function d(AA) computes
the sum of DCJ distances from each component in AA using Formula 1. The func-
tion maxMatching(VA, VB , w) builds the bipartite graph with vertices VA on one
side and vertices VB on the other, and the edges described by the weight function w.
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Algorithm 1. MLPS(A,B)
Input: genomes A and B.
Output: cost of parsimonious scenario with a minimum number of rare DCJs.

� Sort the graph components by type:
C ← set of cycles in G(A, B, col)
P ← set of odd-length paths in G(A, B, col)
AA ← set of AA-paths in G(A, B, col)
BB ← set of BB-paths in G(A, B, col)

� Compute the cost of the cycles and odd-length paths:
cost ← 0
for c ∈ C do

cost ← cost + MNCPonComp(c, col) − 1
end for
for p ∈ P do

cost ← cost + MNCPonComp(p, col) − 1
end for

� Compute the cost of the even-length paths:
for a ∈ AA do � Compute weights for not merging AA vertices:

VA ← VA ∪ {a, a′}
w(a, a′) ← MNCPonComp(a, col) − 1

end for
for b ∈ BB do � Compute weights for not merging BB vertices:

VB ← VB ∪ {b, b′}
w(b, b′) ← MNCPonComp(b, col) − 1

end for
for a ∈ AA do � Compute weights for merges:

for b ∈ BB do
w(a, b) ← maxMerge(a, b)

end for
end for

� Build the bipartite graph and compute the matching:
cost ← cost + d(AA) + d(BB) − maxMatching(VA, VB , w)
return cost

To summarize, any path can be merged at most once in a parsimonious sce-
nario. Potential merges, as well as potential non-merges, are encoded into a bipar-
tite graphwith edgesweighted by the cost of amerge.Amaximumweightmatching
in this graph corresponds to a scenario that minimizes the number of rare moves
on the paths. All other connected components of the graph are sorted using the
Minimum Noncrossing Colored Partition on the component.

The running time of our algorithm is dominated by the weighting of the edges
on the bipartite graph. Consider all merges done between elements of AA and ele-
ments of BB. A particular adjacency edge e from a given path a ∈ AA will take
part in exactly one DCJ with every edge f from a path b ∈ BB throughout the
weighting process. Therefore for each pair (e, f), e being an edge from a path in
AA and f being an edge from a path in BB, we will compute the MNCP on the
resulting merge. If the number of edges in the pathsAA (respectively BB) is n(AA)
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(respectivelyn(BB)), then the running timeof our algorithm isO(n(AA)n(BB)n3).
In the worst case, half of the edges are used in AA-paths and half in BB-paths,
yielding a running time of O(n5). We conjecture that in practice even-length paths
are rare, yielding a running time of O(n3).

3 Conclusion

The number of parsimonious DCJ scenarios between two genomes is exponential
in the distance between them. However, many of the scenarios are probably unre-
alistic in the biological sense. This paper takes a step towards modeling realistic
scenarios by posing optimization problems that take into account positional con-
straints. An example of such a positional constraint is the 3D proximity of genome
segments given by Hi-C experiments.

An O(n5) algorithm is proposed for computing a parsimonious DCJ scenario
that is most likely, given a function that classifies DCJ as “likely” or “unlikely”. In
practice the algorithm will be O(n3) since we expect long even-length path to be
rare in nature. For example, the adjacency graph for the mouse/human syntenic
map built by Véron, et al. [26] from one-to-one orthologs in Biomart has only 182
edges in even-length paths out of a total of 13302 edges. The largest connected
component has 35 edges.

From a biological perspective, a solution to Minimum Local Parsimonious
Scenario corresponds to finding a maximum likelihood scenario in a situation
where likely and unlikely scenarios are both rare, and the difference between the
likelihoods of likely and unlikely moves is not very large. In this situation, a most
parsimonious scenario made of k unlikely moves is more likely than a non-
parsimonious scenario made of k + 1 likely moves. Thus the maximum likelihood
scenario is the most parsimonious scenario that involves the smallest number of
unlikely moves.

We introduce the Minimum Noncrossing Colored Partition problem —
a generalization of the Maximum Independent Set problem on circle graphs
— for weighting the edges of a bipartite graph, on which we obtain a maximum
matching. While this technique is essential to our algorithm for finding DCJ
scenarios, we believe it will also come in handy for an algorithm that finds likely
inversion scenarios (e.g. for handling the infamous “hurdles”). A multitude of bio-
logically relevant variations on this problemexist, includingvariations on themodel
of genome rearrangement, a variant where edges have multiple colors, and a bi-
directional sorting variant where edges are weighted on both genomes according
to the chromatin conformation on each. Models that incorporate uncertainty or
evolution in the Hi-C data would also be relevant.We hope that this work provokes
further study from both the algorithmic and the biological perspectives.
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