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Reconciliation consists in mapping a gene tree T into a species tree S , and explaining the
incongruence between the two as evidence for duplication, loss and other events shaping
the gene family represented by the leaves of T . When S is unknown, the Species Tree
Inference Problem is to infer, from a set of gene trees, a species tree leading to a minimum
reconciliation cost. As reconciliation is very sensitive to errors in T , gene tree correction
prior to reconciliation is a fundamental task. In this paper, we investigate the complexity
of four different combinatorial approaches for deleting misplaced leaves from T . First, we
consider two problems (Minimum Leaf Removal and Minimum Species Removal) related to
the reconciliation of T with a known species tree S . In the former (latter respectively) we
want to remove the minimum number of leaves (species respectively) so that T is “MD-
consistent” with S . Second, we consider two problems (Minimum Leaf Removal Inference and
Minimum Species Removal Inference) related to species tree inference. In the former (latter
respectively) we want to remove the minimum number of leaves (species respectively)
from T so that there exists a species tree S such that T is MD-consistent with S . We
prove that Minimum Leaf Removal and Minimum Species Removal are APX-hard, even when
each label has at most two occurrences in the input gene tree, and we present fixed-
parameter algorithms for the two problems. We prove that Minimum Leaf Removal Inference
is not only NP-hard, but also W[2]-hard and inapproximable within factor c lnn, where n
is the number of leaves in the gene tree. Finally, we show that Minimum Species Removal
Inference is NP-hard and W[2]-hard, when parameterized by the size of the solution, that
is the minimum number of species removals.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Duplication followed by modification is a major mechanism driving evolution [28]. The footprint in present-day genomes
is the presence of many copies of the same gene in a single genome. Inferring duplication and loss histories for a gene
family is crucial for deciphering the evolutionary relationship between gene copies, with important implication towards
the annotation and functional specificity of genes. In 1979 Goodman et al. [20] introduced gene tree and species tree
reconciliation as a method to infer such a history. A typical reconciliation study first constructs a gene family by identifying
genes among a set of genomes that share certain sequence similarity [19]. Such genes are assumed to be homologs, i.e.
originating from a single ancestral gene. A gene tree T that best reflects the evolution of the sequences is then constructed.

✩ A preliminary version of this paper appeared in Dondi and El-Mabrouk (2012) [15].
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A reconciliation consists in “embedding” this gene tree into the species tree, and interpreting the incongruence between the
two as a description of gene family evolution through duplication, loss and other events such as horizontal gene transfer [1],
incomplete lineage sorting [14] and hybridization [38]. Probabilistic [3] or combinatorial [26] criteria are used to choose the
right “reconciliation”. When no preliminary knowledge on the species tree is given, a natural problem, known as the Species
Tree Inference Problem, is to infer, from a set of gene trees, a species tree leading to a most parsimonious evolutionary
scenario [12,26]. The species tree inference problem is known to be NP-hard [26], even when the number of input gene
trees is bounded by 5 [7].

A strict prerequisite for reconciliation is to have a gene tree free from error, as a few misplaced leaves can lead to a
completely different history, possibly with significantly more duplications and losses [24,32]. Consequently, various practical
solutions have been considered such as manually curating some orthologs (TreeFam [25]), manually correcting gene trees
(PANTHER [36]), or avoiding reconciliation by integrating the orthology identification procedure or the species tree infor-
mation in the construction of gene trees [3,5,9,31,35,37]. Another strategy is to explore the space of gene trees obtained
from the original one by performing rearrangements around weakly-supported edges and select the tree giving rise to the
minimum reconciliation cost [13]. This method has been generalized in [21] to unrooted gene trees.

A different strategy for preprocessing a gene tree T prior to reconciliation or species tree inference, is to prune misplaced
leaves. Criteria for identifying such leaves were given in [12]. The duplication nodes of T with respect to a species tree S can
be subdivided into apparent (called “observed” in [33]) and non-apparent duplication (NAD) nodes, where the latter class
has been flagged as potentially resulting from the misplacement of leaves in the gene tree. The reason is that each one of
the NAD nodes reflects a phylogenetic contradiction with the species tree that is not due to the presence of duplicated gene
copies. In [16], we considered the Minimum Leaf Removal Problem which consists in removing, from a given gene tree, the
minimum number of leaves leading to an MD (Minimum Duplication) tree, e.g. a tree without any NAD node with respect
to S . An exact polynomial-time algorithm has been described for two special classes of gene trees, and a polynomial-time
heuristic with no guarantee of optimality, has been presented for the general case. In [34], we presented heuristics for a
generalized version of the problem, the Minimum Species Removal Problem, which consists in removing from T the minimum
number of leaf labels (species) leading to an MD-tree.

As for species tree inference, it has been shown in [12] that deciding whether a gene tree T is MD-consistent with
at least one species tree, i.e. there is a species tree S such that T has no NAD nodes when mapped in S , can be done
in polynomial time, as well as computing such a species tree. In the case that a tree T is not an MD-tree, a natural
problem is to find the minimum number of leaves/species that have to be removed from T to become an MD-tree. The
Minimum Leaf Removal Inference (Minimum Species Removal Inference respectively) is the problem of removing the minimum
number of leaves (species respectively) from T , so that there exists a species tree S such that T is MD-consistent with S .
Heuristics for these two problems have been presented in [34]. In this paper, we study the computational, parameterized
and approximation complexity of the four problems stated above. We recall that APX is the class of those problems that
can be approximated within constant factor. Moreover, when a problem is APX-hard, it does not admit a Polynomial Time
Approximation Scheme (PTAS). A PTAS is an algorithm that, given as input an instance I of a problem and an error parameter
ε > 0, computes in polynomial time a solution within a factor 1 + ε from the value of an optimal solution in case of
minimization problem, and within factor 1 − ε from the value of an optimal solution in case of maximization problem.

First, we prove in Section 3 that Minimum Leaf Removal and Minimum Species Removal are APX-hard even if each label
is associated with at most two leaves of the gene tree. Then, we prove in Section 4 that Minimum Leaf Removal Inference
is not only NP-hard, but also W[2]-hard (when parameterized by the size of the solution, that is the minimum number of
leaf removals) and inapproximable within factor c ln n, for any c > 0, where n denotes the number of leaves of the input
gene tree. We also prove that Minimum Species Removal Inference is NP-hard and W[2]-hard when parameterized by the
size of the solution, that is the minimum number of label (species) removals. On the positive side, in Section 5 we present
fixed-parameter algorithms for Minimum Leaf Removal and Minimum Species Removal, where the parameters are the size of
the solution (minimum number of leaf/label removals) and the number of genomes containing multiple gene copies.

2. Preliminary definitions

2.1. Trees

Let Γ = {1,2, . . . , γ } be a set of labels representing γ different species (genomes). We consider two kinds of rooted
binary trees leaf-labelled by the elements of Γ : a species tree S is a tree where each element of Γ labels exactly one
leaf, while a gene tree T is a tree where each element of Γ may label more than one leaf (Fig. 1(a) and (b)). A gene tree
represents a gene family, where each leaf labelled x represents a gene copy located on genome x.

Given a tree U , we denote by L(U ) the set of its leaves and by V (U ) the set of its nodes. For a species tree S leaf-labelled
by Γ , there is a bijection between L(S) and Γ (notice that this may not be the case for a gene tree as it is not necessarily
uniquely leaf-labelled). Given an internal node x of U , we denote by xl and xr respectively, the left and right child of x, by
U (x) the subtree of U rooted at x, and by Γ (U (x)) the set of leaf labels of U (x). If there is no ambiguity on the tree being
considered, we denote C(x) = Γ (U (x)); C(x) is called the cluster of x. A triplet is a uniquely leaf-labelled binary rooted tree
on three leaves. An ancestor of a node x of U is any node on the path from the root of U to x.
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Fig. 1. (a) A species tree S for Γ = {1,2,3,4}; (b) A gene tree T . A leaf label g indicates a gene copy in genome g . Internal nodes are labelled according
to the LCA mapping between T and S . Flagged nodes are duplication nodes, as they map to node A of S , and they both have a child mapping to A as
well. The root is an AD node as its left and right subtrees share at least one common leaf (they share 2 and 3). The node indicated by a square is a NAD
node as its left and right subtrees have empty leaf-set intersection. All other nodes are speciation nodes. (c) A reconciliation R(T , S) of T and S . Dotted
lines represent subtree insertions. Flagged nodes are duplication nodes, and all others are speciation nodes. This reconciliation reflects a history of the gene
family with two gene duplications preceding the first speciation event, and four losses.

Given a tree U , a leaf removal consists in removing a given leaf l of U , and suppressing the resulting degree two node
(that is the parent of l). A label removal consists in removing all the leaves of U associated with a given label σ ∈ Γ , and
suppressing the resulting degree two nodes. If a tree U ′ is obtained from U through a sequence of leaf/label removals, then
U ′ is included in U .

A subtree insertion in U consists in creating a new node x on a branch (a,b) (joining node a to node b, b being the child
of a), making b the left child of x, setting the parent of x to a, and grafting the subtree being inserted as the second child
of x (create an edge from x to the root of the subtree). An extension of U is a tree obtained from U through a sequence of
subtree insertions.

2.2. Reconciliation

Several definitions of reconciliation exist in the literature. The one we use utilizes tree extensions [12,17]. A reconciliation
R(T , S) of a gene tree T with respect to a species tree S is an extension of T such that for each internal node x of R(T , S):
(i) there is a node x′ in S such that C(x) = C(x′), and (ii) either C(xl) = C(xr) (duplication node) or C(xl) ∩ C(xr) = ∅
(speciation node). An example is given in Fig. 1(c).

A history of duplications and losses can immediately be inferred from a reconciliation. Different algorithms have been
developed for recovering a reconciliation minimizing a duplication and/or loss cost [8,12,18,22,23,26,29,30], most of them
based on a method called LCA mapping.

The LCA mapping between a gene tree T and a species tree S , denoted by LCAT ,S , maps every node x of T to the Lowest
Common Ancestor (LCA) of C(x) in S . Formally, LCAT ,S (x) = y, where y is the node of S that has the minimum cluster
such that C(x) ⊆ C(y). A duplication occurs in a node x of T (or x is a duplication), if x and at least one of its children
are mapped by LCAT ,S in the same node y of the species tree S . If x is not a duplication node, then x is a speciation. See
Fig. 1(b) for an example.

2.3. Duplication nodes and MD-trees

The notations of this section are those used in [12,16]. Let x be a node of a gene tree T verifying C(xl)∩C(xr) �= ∅. Then,
for any species tree S , x is guaranteed to be a duplication node. Such a node x is called an Apparent Duplication node (AD
node for short). Given a species tree S , a duplication node x which is not an AD node is called a Non-Apparent Duplication
node (NAD node for short). A gene tree T is MD-consistent (MD holds for “Minimum Duplication”) with a species tree S if
and only if each node of T is either a speciation or an AD node.

As explained in [16], NAD nodes point to disagreements between a gene tree T and a species tree S that are not due
to the presence of repeated leaf labels, i.e. duplicated gene copies (see Fig. 1(b)). It has therefore been suggested, and
supported by simulations in [12], that NAD nodes may point to gene copies that are erroneously placed in T . Notice that
a misplaced gene in a gene tree T does not necessarily lead to a NAD node. In other words, NAD nodes can only point to
a subset of misplaced leaves. However, in the context of reconciliation and species tree inference, the damage caused by a
misplaced leaf leading to a NAD node is to significantly increase the real duplication and/or loss cost of the tree. Following
these observations, the Minimum Leaf Removal Problem, given below, has been considered in [16] for error-correction in gene
trees.

Problem 1 (Minimum Leaf Removal Problem [MinLeafRem]).
Input: A gene tree T and a species tree S , both leaf-labelled by Γ .
Output: A tree T ∗ MD-consistent with S such that T ∗ is obtained from T by a minimum number of leaf removals.
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A more conservative strategy that can be used when full confidence is not put in the species tree, is to remove the mini-
mum number of species from γ such that T restricted to the new set is MD-consistent with S . The following combinatorial
problem has first been introduced in [34].

Problem 2 (Minimum Species Removal Problem [MinSpecRem]).
Input: A gene tree T and a species tree S , both leaf-labelled by Γ .
Output: A tree T ∗ MD-consistent with S such that T ∗ is obtained from T by a minimum number of label removals.

As for the species tree inference problem, natural generalizations of the MinLeafRem and MinSpecRem problems, first
introduced in [34], are given below.

Problem 3 (Minimum Leaf Removal Inference Problem [MinLeafRemInf]).
Input: A gene tree T leaf-labelled by Γ .
Output: A gene tree T ∗ obtained from T by a minimum number of leaf removals and MD-consistent with some species
tree S .

Problem 4 (Minimum Species Removal Inference Problem [MinSpecRemInf]).
Input: A gene tree T leaf-labelled by Γ .
Output: A gene tree T ∗ obtained from T by a minimum number of label removals and MD-consistent with some species
tree S .

3. Hardness of Minimum Leaf Removal and Minimum Species Removal

In this section we consider the computational (and approximation) complexity of MinLeafRem and MinSpecRem. We
show that both problems are APX-hard, even in the restricted case that each label is associated with at most two leaves
of T . We denote these restrictions of the problems by MinLeafRem(2) and MinSpecRem(2).

First, we prove that MinLeafRem(2) is APX-hard, by giving an L-reduction from the Minimum Vertex Cover Problem on
Cubic graphs (MVCC). Notice that MVCC is known to be APX-hard [4]. The proof that MinSpecRem(2) is APX-hard follows
closely, as discussed in Theorem 2.

Problem 5 (Minimum Vertex Cover Problem on Cubic Graphs [MVCC]).
Input: A cubic graph G = (V , E) where V = {v1, . . . , vn} is the set of vertices and E the set of edges of G (in a cubic graph,
each vertex has degree 3).
Output: A minimum cardinality set V ′ ⊆ V , such that for each edge {vi, v j} ∈ E , at least one of vi , v j belongs to V ′ .

Let G = (V , E) be an instance of MVCC. We define an instance of MinLeafRem(2) associated with G , consisting of a gene
tree T and a species tree S , both leaf-labelled by Γ . The set Γ is defined as follows, where t = 4|V | + |E| + 1:

Γ = {vi,l: vi ∈ V ,1 � l � 4} ∪ {
v j

i : vi ∈ V , {vi, v j} ∈ E
} ∪ {

ei, j: {vi, v j} ∈ E, i < j
}

∪ {zi: 1 � i � t} ∪ {α}.
We denote Z = {zi: 1 � i � t}. Let U be a tree, which is either the gene tree T , the species tree S , or a tree included in

T with a leaf labelled by α. We define the spine of U as the path from the root of U to the unique leaf of U labelled by α.
Next, we define an ordering on the edges E of G . Consider the edges {vi, v j}, with i < j, and {vh, vk}, with h < k, then

{vi, v j} < {vh, vk}, iff i � h, and j < k if i = h. Denote with {v p, vq} the last edge in such ordering of E .
The gene tree T is defined as in Fig. 2. It contains the following kinds of subtrees (these subtrees are inserted in the

spine starting from the leaf labelled by α to the root): (1) a subtree T vi , for each vertex vi ∈ V ; (2) a subtree Teij and a
leaf ei, j , for each edge {vi, v j} ∈ E; (3) a tree T Z , which is a caterpillar tree of size t with leaves uniquely leaf-labelled
by the set Z . Notice that the order in which the subtrees Teij and the leaf ei, j appear in T , depends on the order of the

corresponding edges of E . Moreover, notice that the order assigned to the labels v j
i , vh

i vk
i in T vi is arbitrary.

The species tree S is defined in Fig. 3. It contains the three following kinds of subtrees: (1) a subtree S vi , for each vertex
vi ∈ V ; (2) a single leaf labelled by ei, j , for each edge {vi, v j} ∈ E; (3) a tree S Z , which is a caterpillar tree of size t uniquely
leaf-labelled by the set Z .

It is easy to see that S is a species tree uniquely leaf-labelled by Γ . Moreover, notice that T is a gene tree where each
label in Γ is associated with at most two leaves of T . Indeed, each subtree T vi , Tei, j , T Z is uniquely leaf-labelled and each

label in {vi,l: vi ∈ V ,1 � l � 4} ∪ {zi: 1 � i � t} ∪ {α} is associated with exactly one leaf of T . Each label in {v j
i : vi ∈ V ,

{vi, v j} ∈ E} is associated with a leaf of the subtree T vi and a leaf of the subtree Tei, j . Each leaf in {ei, j: {vi, v j} ∈ E} is
associated with a leaf of the subtree Tei, j and with a singleton leaf connected to the spine of T .

The following properties of T are directly deduced from the construction of T .
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Fig. 2. The gene tree T , and the subtrees T vi , T Z and Teij of T . Notice that i < j, hence T v j is closer to the root than T vi . SPEC nodes are speciation nodes.

Fig. 3. The species tree S , and the subtrees S vi , S Z of S . Notice that i < j, hence S v j is closer to the root than S vi .

Remark 1. The root of T Z and all its ancestors are mapped (by the LCA mapping) to the root r of S . Consequently, all the
ancestors of the root of T Z are duplication nodes. Moreover, we deduce from the non-empty intersection of the left and
right leaf sets that all these nodes are AD nodes.

Remark 2. For each {vi, v j} ∈ E , the root of the corresponding subtree Tei, j is a NAD node. Indeed, it is mapped to the same
node of S as its left child, and it does not contain any duplicated leaf label.

The next remark follows from Fig. 4.
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Fig. 4. LCA mapping of T vi to S vi .

Fig. 5. LCA mapping from T vi after the removal of leaves with labels v j
i , vh

i , vk
i to S vi .

Fig. 6. LCA mapping from T vi after the removal of leaves with labels {vi,1, vi,2, vi,3, vi,4} to S vi .

Remark 3. For each vi ∈ V , the corresponding subtree T vi contains three NAD nodes.

It follows from Remark 3 that appropriate leaves must be removed from each T vi in order to obtain a solution of
MinLeafRem(2) over instance (T , S). The main goal of the rest of this section is to explain the required removals. We begin
by giving an overview of the results.

First, from Remark 1, each node v of T such that C(v) ⊇ Z is mapped (by the LCA mapping) to the root of S . Furthermore,
we show in Lemma 3 that we can assume that a solution T ∗ of MinLeafRem contains all the leaves of T Z . Hence each
ancestor of T Z in T ∗ is a duplication node, which must be an AD node (in order for T ∗ to be MD-consistent with S).
Consider an ancestor v of T Z connecting a subtree Teij to the spine of T . Since v is mapped in the root of S , to be an AD

node in the solution, we should remove from Teij exactly one leaf with label in {v j
i , vi

j}, assume w.l.o.g. vi
j , and keep in T vi

the leaf v j
i (Lemma 5), so that the right subtree and left subtree of T (v) both contain a leaf labelled by v j

i .
The next remark follows from a direct inspection of Figs. 5 and 6.

Remark 4. Let vi be a vertex of G . Then: (1) the tree obtained from T vi by removing the leaves with labels v j
i , vh

i , vk
i is MD-

consistent with S vi ; (2) the tree obtained from T vi by removing the leaves with labels vi,1, vi,2, vi,3, vi,4 is MD-consistent
with S vi .

Lemma 1. Let vi be a vertex of G. Then: (1) in a solution of MinLeafRem(2) over instance (T , S) at least three leaves are removed
from T vi ; (2) a solution of MinLeafRem(2) over instance (T , S) that contains a leaf of T vi with a label in {v j

i , vh
i , vk

i }, contains at most
three leaves of T vi .

Proof. Denote by T ∗ a solution of MinLeafRem(2) over instance (T , S) and denote by T ∗
vi

the subtree of T ∗ that is obtained
after the removal of leaves from T vi . Denote the root of T vi and S vi respectively, by r and r′ .
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(1) We prove the first part of the lemma. If T ∗
vi

is a subtree of T vi (rl) or a subtree of T vi (rr), then at least three leaves
of T vi have been removed, hence the first part of the lemma holds. Otherwise, T ∗

vi
has leafset labelled either by a subset of

(C(rl) ∩ C(r′
l )) ∪ (C(rr) ∩ C(r′

r)), or by a subset of (C(rl) ∩ C(r′
r)) ∪ (C(rr) ∩ C(r′

l )), and again the first part of the lemma holds.
(2) Now, we prove the second part of the lemma. If T ∗

vi
is a subtree of T vi (rr), since T vi (rr) contains three leaves, in this

case the second part of the lemma holds. Assume T ∗
vi

is a subtree of T vi (rl). By construction |L(T vi (rl))| = 4. Since T vi (rl) is
not MD-consistent with S vi , in this case the second part of the lemma holds.

Assume that T ∗
vi

has leafset labelled by a subset of (C(rl)∩C(r′
l ))∪ (C(rr)∩C(r′

r)), then its leaves are labelled by a subset
of {vi,1, vi,2, vi,3, vi,4}, hence in this case the second part of the lemma holds.

Finally, assume that T ∗
vi

has leafset labelled by a subset of (C(rl) ∩ C(r′
r)) ∪ (C(rr) ∩ C(r′

l )), then its leaves are labelled by

a subset of {v j
i , vh

i , vk
i }, hence in this case the second part of the lemma holds. �

It follows from Remark 4 and Lemma 1 that a solution of MinLeafRem(2) over instance (T , S) is obtained by removing
leaves from each T vi in essentially two possible ways: (1) either remove the four leaves {vi,1, vi,2, vi,3, vi,4}, or (2) remove

the three leaves {v j
i , vh

i , vk
i }. Indeed if we remove a different set of leaves from T vi , then this set must contain at least four

leaves, and we can assume that this set is {vi,1, vi,2, vi,3, vi,4}, since these four labels belong only to leaves of the subtree
T vi , hence their removal does not affect other subtrees of T (vi). We will relate the former case to the vertex vi being
included in a vertex cover V ′ of G , and the latter case to the vertex vi being in V \ V ′ (Lemma 4 and Lemma 5). We first
give two preliminary lemmas.

Lemma 2. At least one leaf from Teij , for each ei, j ∈ E, is removed in each solution of MinLeafRem(2) over instance (T , S).

Proof. Direct corollary of Remark 2. �
The following lemma will be used to show that the caterpillar tree T Z is kept in a solution of MinLeafRem(2).

Lemma 3. There is no optimal solution of MinLeafRem(2) over instance (T , S) that is obtained by removing less than 4|V | + |E| + 1
leaves, one of them being a leaf of T Z .

Proof. Let T ∗ be a solution of MinLeafRem(2) over instance (T , S) obtained from T by removing less than 4|V | + |E| + 1
leaves. Notice that, since |Z | = 4|V | + |E| + 1, at least one leaf with a label in the set Z must be in T ∗ . Assume that a leaf f
with label zh is removed from T . The (re)-insertion of leaf f in T ∗ does not affect other nodes of T ∗ , that is the insertion
of the leaf with label zh does not cause any AD node of T ∗ to become a NAD node. �

We are now ready to show the two main technical results of the reduction.

Lemma 4. Let G = (V , E) be an instance of MVCC and let (T , S) be the corresponding instance of MinLeafRem(2). Then, starting
from a vertex cover V ′ of G, we can compute in polynomial time a solution of MinLeafRem(2) over instance (T , S) that is obtained by
removing 3|V | + |V ′| + |E| leaves from T .

Proof. Let V ′ ⊆ V be a vertex cover of G = (V , E). Then we define a solution T ∗ by removing some leaves of the subtrees
of T as follows:

– for each vi ∈ V ′ , remove from the subtree T vi the set of leaves labelled by {vi,1, vi,2, vi,3, vi,4} (hence this subtree T ∗
vi

of T ∗ has leafset labelled by {v j
i , vh

i , vk
i });

– for each vi ∈ V \ V ′ , remove from the subtree T vi the set of leaves labelled by {v j
i , vh

i , vk
i } (hence this subtree T ∗

vi
of T ∗

has leafset labelled by {vi,1, vi,2, vi,3, vi,4});
– for each {vi, v j} ∈ E , if vi ∈ V ′ , then remove from Teij the leaf labelled by vi

j (hence this subtree T ∗
ei, j

has leafset

labelled by {ei, j, v j
i }), otherwise remove from Teij the leaf labelled by v j

i (hence this subtree T ∗
ei, j

has leafset labelled

by {ei, j, vi
j}). Notice that if both vi, v j ∈ V ′ , then we remove from Teij the leaf labelled by vi

j and not the leaf labelled

by v j
i .

The tree T ∗ is computed by removing four leaves of T vi , for each vi ∈ V ′ , three leaves of T vi , for each vi ∈ V \ V ′ , and
one leaf of Teij , for each {vi, v j} ∈ E , hence the overall number of leaves removed from T to obtain T ∗ is 3|V | + |E| + |V ′|.

Now, from Remark 4 and by construction, it follows that the subtrees T ∗
vi

, for each vi ∈ V , and T ∗
ei, j

, for each {vi, v j} ∈ E ,
of T ∗ are MD-consistent with S .

Now, consider the other internal nodes of T ∗ , that is the nodes on the spine of T ∗ . If one of these nodes joins a subtree
T ∗

v to the spine of T ∗ , by construction is a speciation.

i
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Consider the node p joining subtree Teij to the spine of T ∗ . Since V ′ is a vertex cover, it follows that a node with either

label v j
i or vi

j belongs to both clusters C(pl) and to C(pr) of the right child and the left child of p. Hence p is an AD node.
Consider the node p joining a leaf labelled by ei, j to the spine of T ∗ . Then, p is an AD node, since both clusters of the

right child and the left child of p contain label ei, j , formally ei, j ∈ C(pl) and ei, j ∈ C(pr).
Finally, by construction each node joining a leaf with a label in Z to the spine of T ∗ is a speciation. Hence we can

conclude that T ∗ is MD-consistent with S . �
Lemma 5. Let G = (V , E) be an instance of MVCC and let (T , S) be the corresponding instance of MinLeafRem(2). Then starting from
a solution of MinLeafRem(2) over instance (T , S) that is obtained by removing at most 3|V |+ |E|+ c leaves from T , with 1 � c � |V |,
we can compute in polynomial time a vertex cover V ′ of G such that |V ′| � c.

Proof. Let T ∗ be a solution of MinLeafRem(2) over instance (T , S) obtained by removing at most 3|V | + |E| + c leaves from
T , with 1 � c � |V |. First, consider the subtrees T ∗

vi
, with vi ∈ V , obtained by removing some leaves from T vi . By Lemma 1,

we can assume that T ∗ is obtained by removing at most four leaves for each subtree T vi of T . Indeed, if more than four
leaves are removed from a subtree T vi of T , we can replace T ∗

vi
with the subtree of T vi containing the leaves labelled by

v j
i , vh

i , vk
i .

If T ∗
vi

is obtained by removing exactly three leaves from T vi , then by Lemma 1 T ∗
vi

contains the leaves with labels
vi,1, vi,2, vi,3, vi,4. Hence in what follows, we can assume by Lemma 4 and by Lemma 1 that T ∗

vi
, with vi ∈ V , is leaf-labelled

either by the set {vi,1, vi,2, vi,3, vi,4}, or by the set {v j
i , vh

i , vk
i }. Moreover, by Lemma 3, we can assume that T ∗ contains

each leaf with a label in the set Z .
Assume that for each subtree Teij , with {vi, v j} ∈ E , T ∗ contains a subtree T ∗

ei, j
. Assume that T ∗

ei, j
does not contain the

leaf labelled by ei, j , and let li, j be the single leaf with label ei, j that is connected to the spine of T . It follows that li, j
does not belong to T ∗ . Indeed, since ei, j /∈ Γ (T ∗

ei, j
), by Remark 1 the ancestor of li, j would be a NAD node, hence T ∗

ei, j
must

contain the leaf labelled by ei, j .
If ei, j /∈ Γ (T ∗

ei, j
), we show that we can compute in polynomial time from T ∗ a solution T + of MinLeafRem(2) over

instance (T , S) that it is obtained by removing from T at most as many leaves as T ∗ and such that li, j ∈ L(T +). The solution
T + is computed as follows: (1) remove from the subtree T vi exactly the leafset having labels {vi,1, vi,2, vi,3, vi,4} (hence T +

contains a subtree T +
vi

having leaves leaf-labelled by {v j
i , vh

i , vk
i }); (2) remove from Teij the leaf of label vi

j ; (3) the single

leaf li, j with label ei, j that is connected to the spine of T belongs to T + is (re)-inserted in T + . Comparing the number
of leaves removed to obtain T + with the number of leaves removed to obtain T ∗ , we have: modification (1) increases the
number of leaves removed by at most one; modification (2) by Lemma 2 does not change the number of leaves removed;
modification (3) decreases the number of leaves removed by at least one. It follows that we have computed in polynomial
time from T ∗ a solution T + of MinLeafRem(2) that is obtained by removing from T at most as many leaves as T ∗ and such
that li, j ∈ L(T +).

Hence we assume in what follows that T ∗ does not remove the leaf labelled by ei, j from Teij , and consequently that the
single leaf li, j is not removed to obtain T ∗ .

Now we prove that T ∗ contains at least one of the leaves with label v j
i , vi

j of Teij . Assume that T ∗ contains only the
leaf labelled by ei, j of Teij . Then by Remark 1, the node p where Teij joins the spine of T ∗ is a NAD node, since the two
children of p have disjoint clusters. Hence in what follows we can assume that, for each subtree Teij , T ∗ contains a subtree

T ∗
ei, j

that is obtained by removing exactly one leaf having label in the set {v j
i , vi

j} from Teij .
Consider the node p that joins the spine of T ∗ to the subtree T ∗

ei, j
. By Remark 1, the node p and its left child pl are

both mapped to the root of S . It follows that p must be an AD node, hence the cluster of its left child and the cluster of its
right child must contain a same label. This implies that T ∗

vi
contains a leaf labelled by v j

i or that T ∗
v j

contains a leaf labelled

by vi
j . Notice that by Lemma 1, if T ∗

vi
contains a leaf labelled by v j

i , then T ∗
vi

contains three leaves that are leaf-labelled by

the set {v j
i , vh

i , vk
i }.

Now, we are ready to define a vertex cover V ′ of T .

V ′ = {
vi: T ∗

vi
contains the leaves labelled by

{
v j

i , vh
i , vk

i

}}
.

V ′ is a vertex cover, since for each subtree Teij associated with {vi, v j} ∈ E , T ∗
vi

has three leaves leaf-labelled by {v j
i , vh

i , vk
i }

or T ∗
v j

has three leaves leaf-labelled by {v j
i , v f

j , v g
j }.

Now, |V ′| has size at most c, since T ∗ is obtained by removing four leaves from each subtree T ∗
vi

with three leaves

leaf-labelled by {v j
i , vh

i , vk
i }, three leaves from each subtree T ∗

v j
with four leaves leaf-labelled by {vi,1, vi,2, vi,3, vi,4} and

exactly one leaf from each subtree Teij . �
Theorem 1. MinLeafRem(2) is APX-hard.
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Fig. 7. The gene tree T , and the subtrees T vi , T Z and Teij of T . Notice that i < j, hence T v j is closer to the root than T vi . SPEC nodes are speciation nodes.
In the subtree Teij , x, y ∈ {1,2,3,4}.

Proof. It follows from Lemma 4 and from Lemma 5, that we have designed an L-reduction from MVCC to MinLeafRem(2).
Since MVCC is APX-hard [4], it follows that also MinLeafRem(2) is APX-hard. �

By using a similar reduction, we prove that MinSpecRem(2) is APX-hard.

Theorem 2. MinSpecRem(2) is APX-hard.

Proof. The result is implied by a reduction from MVCC similar to that for MinLeafRem(2). Starting from an instance G =
(V , E) of MVCC, we construct an instance of MinSpecRem(2) almost identical to the instance of MinLeafRem(2) described
in the previous reduction.

The species tree S is identical to the species tree defined in Fig. 3. The gene tree T is defined as in Fig. 7. Notice that in
the construction of T , each of the subtrees T (ei, j), T (ei,h), T (ei,k), with {vi, v j}, {vi, vh}, {vi, vk} ∈ E , is associated with a
distinct label in {vi,1, . . . , vi,4}.

By construction the only labels that are associated with more than one leaf are those labels vi,x , with x ∈ {1, . . . ,4}, and
ei j , with {vi, v j} ∈ E . For each other label, a leaf removal is equivalent to a label removal.

Consider a subtree T (vi). By Lemma 1, we can assume that either the set of labels {vi,1, vi,2, vi,3, vi,4} or the set of

labels {v j
i , vh

i , vk
i } is removed from T (vi).

Now, consider the subtree T (ei, j), with {vi, v j} ∈ E , and let vi,x , v j,y , for some values 1 � x � 4 and 1 � y � 4, be two
labels associated with leaves of T (ei, j). We claim that there exists an optimal solution of MinSpecRem(2) over instance
(T , S), where at least one of vi,x , v j,y is removed. Assume to the contrary that none of the labels vi,x , v j,y is removed, then
label ei j must be removed, since by construction there is a NAD node in T (ei, j). Moreover, by Lemma 1, we can assume that

the set of labels {v j
i , vh

i , vk
i } is removed from T vi and that the set of labels {vi

j, v f
j , v g

j } is removed from T vi . Then, we can
compute in polynomial time a solution of MinSpecRem(2) over instance (T , S) that does not increase the number of labels
removed as follows: we remove the labels vi,1, vi,2, vi,3, vi,4, and we put back in the solution labels v j

i , vh
i , vk

i , ei, j .
As a consequence, for each {vi, v j} ∈ E , at least one of the sets {vi,1, vi,2, vi,3, vi,4}, {v j,1, v j,2, v j,3, v j,4} is removed.

Hence, it is easy to see that the set of labels {vi,1, vi,2, vi,3, vi,4} removed by the solution of MinSpecRem(2) over instance
(T , S) corresponds to the vertex vi in a vertex cover of G .

Then, it follows that starting from a vertex cover V ′ of G we can compute in polynomial time a solution of
MinSpecRem(2) that removes at most 3|V | + |V ′| labels (similarly to Lemma 4), and that starting from a solution of
MinSpecRem(2) that removes at most 3|V | + c labels, we can compute in polynomial time a vertex cover |V ′| � c of G
(similarly to Lemma 5).

Hence we have designed an L-reduction from MVCC to MinSpecRem(2). Since MVCC is APX-hard [4], it follows that also
MinSpecRem(2) is APX-hard. �



JID:JDA AID:509 /FLA [m3G; v 1.101; Prn:14/06/2013; 9:17] P.10 (1-15)

10 R. Dondi et al. / Journal of Discrete Algorithms ••• (••••) •••–•••
Fig. 8. The gene tree T associated with the set R of triplets.

4. Hardness of Minimum Leaf Removal Inference and Minimum Species Removal Inference

First, we give a reduction from Minimum Rooted Triplets Inconsistency Problem [11] (the dual of the Maximum Compatible
Subset of Rooted Triples Problem introduced by Bryant [10]) to MinLeafRemInf. The reduction implies that MinLeafRemInf is
not only NP-hard, but it is not approximable within factor c ln n for some constant c > 0, where n is the number of leaves
of the input gene tree, unless P = NP, and that the problem is W[2]-hard, if the parameter is the number of leaves that
must be removed. We then show that MinSpecRemInf is not only NP-complete, but also W[2]-hard if the parameter is the
number of labels that must be removed, with a reduction from the Complement Maximum Agreement Supertree Problem.

Denote by T |L the tree included in T obtained by removing all leaves not in L. A set of trees T = {T1, T2, . . . , Tk} is
consistent if there exists a tree T such that T |L(Ti) = Ti for all i. Otherwise, the set is inconsistent. The following problem
statement is equivalent to the one given in Byrka et al. [11], since given a set of compatible triplets, we can reconstruct a
compatible tree using the algorithm of Aho et al. [2].

Problem 6 (Minimum Rooted Triplets Inconsistency Problem [11] [MinTripIncon]).
Input: A set R of rooted triplets over leafset Γ .
Output: A subset R ′ ⊆ R such that R \ R ′ is consistent, and |R ′| is minimum.

Theorem 1. The Minimum Leaf Removal Inference problem is: (1) not approximable within factor c ln n, where n is the number of
leaves in the input tree, for some constant c > 0, unless P = NP; (2) W[2]-hard, if parameterized by the number of leaves that must be
removed.

Proof. We present a parameterized and approximation preserving reduction from MinTripIncon to MinLeafRemInf. Create the
gene tree T from the set of triplets R = {R1, R2, . . . , Rt} over leafset Γ by taking the caterpillar on t leaves, having internal
nodes z1, . . . , zt , and replacing the i-th leaf, 1 � i � t , with the subtree (Ri, x), where x is a label not in Γ (see Fig. 8).

Every internal node in {z2, . . . , zt} of T is an AD node (because of the multiple occurrences of label x). The nodes in
a subtree Ri , 1 � i � t , of T can be NAD nodes with respect to any species tree, because the set R of triplets is possibly
inconsistent.

Consider a solution R ′ of MinTripIncon, with |R ′| = h, then we compute in polynomial time a solution T ∗ of MinLeafRemInf
that removes h leaves. For each triplet Ri ∈ R ′ , we construct T ∗ by removing an arbitrary leaf from the corresponding subtree
of T . Consider the tree U that is consistent with R \ R ′ (we assume that it contains all the labels, otherwise we add them
on the top of the tree); then, a species tree S MD-consistent with T ∗ is defined connecting the root of S with two children:
the root of the subtree U and a leaf labelled x. By construction T ∗ is MD-consistent with S .

Consider a solution T ∗ of MinLeafRemInf that removes at most h leaves, then we compute in polynomial time a solution
R ′ of MinTripIncon such that |R ′| = h. Consider the subtree R∗

i , 1 � i � t , of T ∗ . All such trees are uniquely leaf-labelled, and
they must be MD-consistent with some species tree S , hence such subtrees correspond to consistent triplets. Moreover, we
can assume that at most one leaf is removed from each subtree R∗

i . Hence, the triplets associated with subtrees where no
leaf has been removed are consistent.

Since MinTripIncon is not approximable within factor d log |Γ | [11], for some constant d > 0, and n � |Γ 3| + 1, it follows
that MinLeafRemInf is not approximable within factor c logn, for some constant c > 0. Moreover, notice the reduction given
in [11] implies that MinTripIncon is W[2]-hard, hence MinLeafRemInf is W[2]-hard. �

We now turn our attention to the MinSpecRemInf problem. We will present a reduction from CMASP (see below) to
MinSpecRemInf. Consider a set of trees U = {U1, U2, . . . , Ut} leaf labelled by Γ1,Γ2, . . . ,Γt respectively. Let Γ = ⋃t

i=1 Γi . An
agreement supertree for U is a tree X leaf labelled by M ⊆ Γ such that X |Γi = Ui |M .
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Problem 7 (Complement Maximum Agreement Supertree Problem [CMASP]).
Input: A set of trees U = {U1, U2, . . . , Ut} leaf labelled by Γ1,Γ2, . . . ,Γt respectively, and Γ = ⋃t

i=1 Γi .
Output: An agreement supertree X for U , such that X is over leafset M ⊆ Γ , and |Γ − M| is minimum.

Berry and Nicolas [6] showed that CMASP is NP-hard and W[2]-hard if the parameter is the number of labels that
must be removed (that is |Γ − M|), even when the input trees are triplets. Applying the same construction of Theorem 1,
Theorem 2 follows.

Theorem 2. The Minimum Species Removal Inference problem is NP-hard and W [2]-hard, if parameterized by the number of labels
that must be removed.

5. Fixed-parameter algorithms for MinLeafRem and MinSpecRem

Since the MinLeafRem and MinSpecRem are APX-hard, it is interesting to see if the problems become tractable under
some biological meaningful parameterizations (for an introduction to parameterized complexity see [27]). In this section
we focus on the two following parameterizations: (1) the size of the solution of MinLeafRem (that is the number of leaves
removed from T in order to obtain a tree MD-consistent with S), and MinSpecRem (that is the number of labels removed
from T in order to obtain a tree MD-consistent with S); (2) the number of labels in Γ associated with multiple leaves of T
(i.e. the number of genomes containing multiple gene copies). We will give fixed-parameter algorithms for MinLeafRem and
MinSpecRem under these two parameterizations.

Notice that a third natural parameter would be the maximum number of leaves in T associated with a single label of Γ

(i.e. the maximum number of gene copies in a given genome). However, we have proved in Section 3 that MinLeafRem and
MinSpecRem are already APX-hard when each label has at most two occurrences in the gene tree T .

5.1. MinLeafRem and MinSpecRem parameterized by the number of leaves removed

In this section, we investigate the parameterized complexity of MinLeafRem and MinSpecRem, when parameterized by
the size of the solution, that is the number of leaves/species removed from T . We present a fixed-parameter algorithm for
MinLeafRem that is based on the depth-bounded search tree technique. The algorithm for MinSpecRem is similar, and we
briefly discuss it in Corollary 4.

Denote by c the size of the solution, that is the number of leaves that have to be removed from T in order to get a tree
T ∗ which is MD-consistent with the species tree S .

First, we notice that if T does not contain NAD nodes, then T is MD-consistent with S and it requires no leaf removal.
Hence in what follows we assume that T contains at least one NAD node.

Now, consider a NAD node v of T . Let s be the node of S where v is mapped, and let sl and sr be the left child and
the right child respectively of s. Since v is a NAD node, it follows that at least one of its children, denoted as vl and vr , is
mapped by LCAT ,S to s. Assume w.l.o.g. that vl is mapped to s, that is LCAT ,S (vl) = s. Since LCAT ,S (vl) = s, it follows that
C(vl) ⊆ C(s), C(vl) ∩ C(sl) = X1 �= ∅ and C(vl) ∩ C(sr) = X2 �= ∅. Hence, in order to obtain a tree T ∗ that is MD-consistent
with S , we have to remove from T : (1) the leaves of T (vl) having labels in X1, or (2) the leaves of T (vl) having labels in
X2, or (3) the leaves of T (vr). We formally prove this property in the following lemma.

Lemma 6. Let v be a NAD node of a gene tree T , and let vl , vr be the children of v, such that LCAT ,S (v) = LCAT ,S (vx) = s, for some
x ∈ {r, l}. Let sl , sr be the children of s. Then, there is no subtree included in T that is MD-consistent with S and that contains a leaf of
T (vx), for some x ∈ {r, l}, with a label in X1 = C(vx) ∩ C(sl), a leaf of T (vx) with a label in X2 = C(vx) ∩ C(sr), and a leaf of T (v y),
with y ∈ ({r, l} \ {x}).

Proof. Assume that T ′ is a subtree of T that contains a leaf l3 of T (v y) and that is MD-consistent with S . We will show
that all the leaves of T (vx) with a label in X1 or all the leaves of T (vx) with a label in X2 do not belong to T ′ .

Assume that T ′ contains one leaf l1 of T (vx) with a label in X1 and one leaf l2 of T (vx) with a label in X2. Let v ′
x be

the LCA in T ′ of l1 and l2. Let v ′ be the LCA in T ′ of l1 (or l2) and l3. It follows that s = LCAT ′,S(v ′) = LCAT ′,S(v ′
x), hence v ′

would be a NAD, and T ′ would not be MD-consistent with S . �
Due to Lemma 6, we can design a fixed-parameter algorithm for MinLeafRem parameterized by the number of leaves c

that have to be removed. Let Dup(T ) = 〈v1, . . . , vz〉 be the ordered list of NAD nodes of T in a breadth-first visit of T . The
algorithm at each step chooses the first node v1 of Dup(T ). Let LCAT ,S (v1) = s, and let sl and sr be the two children of s.
Consider a child v1

x , with v1
x ∈ {v1

l , v1
r }, of v1 that is mapped to s, and let v1

x̄ be the other child of v1. Let C(v1
x) ∩ C(sl) =

X1 �= ∅, C(v1
x) ∩ C(sr) = X2 �= ∅.

Now, the algorithm branches on the following cases:

1. Remove the leaves of T (v1
x) with labels in X1 from L(T ) and suppress the resulting degree two nodes;
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2. Remove the leaves of T (v1
x) with labels in X2 from L(T ) and suppress the resulting degree two nodes;

3. Remove the subtree T (v1
x̄) from T , and suppress the resulting degree two nodes.

After the branching, the algorithm outputs a subtree T ′ of T . Then the LCA mapping LCAT ′,S between T ′ and S is
computed (in polynomial time), and the ordered list Dup(T ′) of NAD nodes of T ′ is computed (again in polynomial time).
The algorithm stops either when it finds a subtree T ′ of T that is MD-consistent with S , or when there is no subtree
included in T that can be obtained with c leaf removals.

Theorem 3. The algorithm computes if there exists a solution of size at most c for MinLeafRem in time O (3c poly(|V (T )|, |V (S)|)).

Proof. The correctness of the algorithm follows from Lemma 6.
Now, we focus on the time complexity of the algorithm. At each step the algorithm branches in three possible cases,

and for each of these cases at least one leaf is removed. As the depth of the search tree is bounded by c, the size of the
search tree is bounded by O (3c). Since after each branching we require at most time O (poly(|V (T )||V (S)|)) to compute T ′ ,
LCAT ′,S , and Dup(T ′), it follows that the overall time complexity of the algorithm is O (3c poly(|V (T )||V (S)|)). �

Next, we show a similar result for MinSpecRem.

Corollary 4. There exists a fixed-parameter tractable algorithm that computes if there exists a solution of size at most c for Min-
SpecRem in time O (3c poly(|V (T )|, |V (S)|)).

Proof. The algorithm follows very closely the algorithm for MinLeafRem, except that, given a NAD node, in this case the
algorithm considers the possible label removals, instead of leaf removals.

Formally, consider a NAD node v of T . Let s be the node of S where v is mapped. Since v is a NAD node, and assuming
that vl is mapped in s, it follows that C(vl) ∩ C(sl) = X1 �= ∅ and C(vl) ∩ C(sr) = X2 �= ∅. Hence, in order to obtain a tree
T ∗ that is MD-consistent with S , we have to remove: (1) the leaves of T having labels in X1, or (2) the leaves of T having
labels in X2, or (3) the leaves of T having labels in Γ (T (vr)).

The correctness of the algorithm follows closely to that of MinLeafRem. �
5.2. MinLeafRem and MinSpecRem parameterized by the number of labels with multiple copies

In this section we give a fixed-parameter algorithm for MinLeafRem and MinSpecRem, when the parameter is the number
of labels associated with multiple leaves of T . Denote by ΓD ⊆ Γ , the subset of labels associated with multiple leaves of T .
Next, we describe the algorithm for MinLeafRem, then we discuss the case of MinSpecRem in Theorem 6.

The algorithm is based on dynamic programming. Let x be a node of T , having children xl , xr , and let y be a node of
S , with children yl , yr . Given Γ ′

D ⊆ ΓD , we define M[T (x), S(y),Γ ′
D ] as the minimum number of leaves that have to be

removed to obtain a tree T ′ included in T (x) such that (1) T ′ is MD-consistent with S(y) and (2) the subset Γ ′
D ⊆ Γ (T ′).

We can compute M[T (x), S(y),Γ ′
D ] applying the following dynamic programming recurrence:

M
[
T (x), S(y),Γ ′

D

] = min
Γ ′

1,D⊆Γ ′
D ,

Γ ′
2,D⊆Γ ′

D ,

Γ ′
1,D∪Γ ′

2,D=Γ ′
D

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M[T (xl), S(yl),Γ
′

1,D ] + M[T (xr), S(yr),Γ
′

2,D ]
if Γ ′

1,D ∩ Γ ′
2,D = ∅,

M[T (xl), S(yr),Γ
′

1,D ] + M[T (xr), S(yl),Γ
′

2,D ]
if Γ ′

1,D ∩ Γ ′
2,D = ∅,

M[T (xl), S(y),Γ ′
1,D ] + M[T (xr), S(y),Γ ′

2,D ]
if Γ ′

1,D ∩ Γ ′
2,D �= ∅,

M[T (xl), S(y),Γ ′
D ] + |L(T (xr))|,

M[T (xr), S(y),Γ ′
D ] + |L(T (xl))|,

M[T (x), S(yl),Γ
′
D ],

M[T (x), S(yr),Γ
′
D ].

(1)

Now, we define the base cases of the recurrence, when each of T (x) and S(y) is a single leaf, with Γ (T (x)) = λG and
Γ (S(y)) = λS . If λG = λS , then M[T (x), S(y),Γ ′

D ] = 0 if Γ ′
D ∈ (∅ ∪ {λG}), otherwise if λG = λS and Γ ′

D /∈ (∅ ∪ {λG}), then
M[T (x), S(y),Γ ′

D ] = +∞. If λG �= λS , then M[T (x), S(y),Γ ′
D ] = 1 if Γ ′

D = ∅, otherwise M[T (x), S(y),Γ ′
D ] = +∞.

The correctness of Recurrence (1), is proved in the following.

Lemma 7. Let T be a gene tree, let S be a species tree, and let ΓD ⊆ Γ be the set of labels associated with multiple leaves of T . Let x
be a node of T and y be a node of S, and consider a subset Γ ′

D ⊆ ΓD . Then if M[T (x), S(y),Γ ′
D ] = c, there exists a tree T ′ included in

T (x) such that (i) T ′ is MD-consistent with S(y); (ii) T ′ is obtained by removing c leaves; and (iii) Γ ′ ⊆ Γ (T ′).
D
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Proof. We prove the lemma by induction on the number of leaves of |L(T (x))| + |L(S(y))|.
Assume that |L(T (x))|+|L(S(y))| = 2 and Γ (T (x)) = Γ (S(y)) = λ. Then, if Γ ′

D = {λ} it follows that M[T (x), S(y), λ′
D ] = 0,

if Γ ′
D = ∅ it follows that M[T (x), S(y), λ′

D ] = 1, otherwise M[T (x), S(y),Γ ′
D ] = +∞. If Γ (T (x)) = λ1 and Γ (S(y)) = λ2 with

λ1 �= λ2, then M[T (x), S(y),Γ ′
D ] = 1 if Γ ′

D = ∅, otherwise M[T (x), S(y),Γ ′
D ] = +∞.

Assume now that the lemma holds when |L(T (x))| + |L(S(y))| � n, we show that the lemma holds when |L(T (x))| +
|L(S(y))| = n + 1. Assume that M[T (x), S(y),Γ ′

D ] = c, we show that there exists a subtree T ′(x) included in T (x) such that
(i) T ′(x) is MD-consistent with S(y); (ii) T ′(x) is obtained from T (x) by removing c leaves; (iii) Γ ′

D ⊆ Γ (T ′(x)).
Assume that M[T (x), S(y),Γ ′

D ] is obtained by one of the first two cases of Recurrence (1), w.l.o.g. the first case. It holds
that M[T (xl), S(yl),Γ

′
1,D ] = c1, M[T (xr), S(yr),Γ

′
2,D ] = c2, where c1 + c2 = c. By the induction hypothesis there exists a

subtree T ′(xl) (T ′(xr) respectively) included in T (xl) (in T (xr) respectively) that is MD-consistent with S(yl) (S(yr) respec-
tively), obtained by removing c1 leaves (c2 leaves respectively) and containing a set of leaves labelled by Γ ′

1,D (by Γ ′
2,D

respectively). Since Γ ′
1,D ∩ Γ ′

2,D = ∅ and Γ (S(yl)) ∩ Γ (S(yr)) = ∅, it follows that the subtree T ′(x) of T (x) consisting of a
root that joins the two subtrees T ′(xl) and T ′(xr), has the following property: Γ (T ′(xl)) ∩ Γ (T ′(xr)) = ∅. Furthermore, by
induction, T ′(x) is MD-consistent with S(y) and it is obtained by removing c = c1 + c2 leaves from T (x).

Assume that M[T (x), S(y),Γ ′
D ] is obtained by case 3 of Recurrence (1). It holds that M[T (xl), S(y),Γ ′

1,D ] = c1,
M[T (xr), S(y),Γ ′

2,D ] = c2, where c1 + c2 = c. Then, by the induction hypothesis there is a subtree T ′(xl) (T ′(xr) respec-
tively) included in T (xl) (T (xr) respectively) that is MD-consistent with S(y), obtained by removing c1 leaves (c2 leaves
respectively) and containing a set of leaves labelled by Γ ′

1,D (by Γ ′
2,D respectively), with Γ ′

1,D ∩ Γ ′
2,D �= ∅. It follows that the

subtree T ′(x) of T (x) consisting of a root that joins the two subtrees T ′(xl) and T ′(xr), is MD-consistent with S(y), and it
is obtained by removing c = c1 + c2 leaves.

Assume that M[T (x), S(y),Γ ′
D ] is obtained by case 4 or 5 of Recurrence (1), w.l.o.g. take case 4. It holds that

M[T (xl), S(y),Γ ′
D ] = c1, for some value c1 � 0, hence there is a subtree T ′(xl) of T (xl) obtained by removing c1 leaves

of T (xl) and such that all the leaves of T (xr), with c1 + |L(T (xr))| = c. Furthermore, by induction the subtree T ′(xl) is
MD-consistent with S(y).

Assume that M[T (x), S(y),Γ ′
D ] is obtained by case 6 or 7 of Recurrence (1), w.l.o.g. take case 6. It holds that

M[T (x), S(yl),Γ
′
D ] = c, hence there is a subtree T ′(x) of T (x) obtained by removing c leaves of T (x) such that L(T (x′)) ⊆

L(S(yl)). Furthermore, by induction the subtree T ′(x) is MD-consistent with S(yl), hence also with S(y). �
Lemma 8. Let T be a gene tree, let S be a species tree, and let ΓD ⊆ Γ be the set of labels associated with multiple leaves of T . Let x
be a node of T and y be a node of S, and consider a subset Γ ′

D ⊆ ΓD . Then if there exists a tree T ′ included in T (x) such that (i) T ′ is
MD-consistent with S(y); (ii) T ′ is obtained by removing c leaves; and (iii) Γ ′

D ⊆ Γ (T ′), it follows that M[T (x), S(y),Γ ′
D ] = c.

Proof. We prove the lemma by induction.
Assume that |L(T (x))| + |L(S(y))| = 2, and Γ (T (x)) = Γ (S(y)) = λ. If Γ ′

D = {λ}, then, M[T (x), S(y), λ′
D ] = 0; if Γ ′

D = ∅,
then M[T (x), S(y), λ′

D ] = 1; else M[T (x), S(y),Γ ′
D ] = +∞. If Γ (T (x)) = λ1, Γ (S(y)) = λ2, with λ1 �= λ2, then if Γ ′

D = ∅,
M[T (x), S(y),Γ ′

D ] = 1, else M[T (x), S(y),Γ ′
D ] = +∞.

Assume that there exists a subtree T ′(x) included in T (x) such that (i) T ′(x) is MD-consistent with S(y); (ii) T ′(x) is
obtained by removing c leaves; and (iii) Γ ′

D ⊆ Γ (T ′(x)). Then, we will show that M[T (x), S(y),Γ ′
D ] = c. Denote with r′ the

root of T ′(x).
Notice that if T ′(x) is a subtree included in T (xl) (T (xr) respectively), then case 4 (case 5 respectively) of Recurrence (1)

applies, and by induction the lemma holds. Similarly, if Γ (T ′(x)) ⊆ Γ (S(yl)) (Γ (T ′(x)) ⊆ L(S(yr)) respectively) holds, then
case 6 (case 7 respectively) of Recurrence (1) applies, and by induction the lemma holds.

Now, consider the root r′ of T ′(x). Let r′
l and r′

r be the two children of r′ . Notice that T ′(x) is not a subtree of T (xl) or
T (xr), otherwise by the previous argument the lemma holds. Since T ′(x) is MD-consistent with S(y), then r′ can be either
a speciation or an AD node. First, assume that r′ is a speciation. As a consequence r′

l and r′
r , are mapped by LCAT ′(x),S(y)

to nodes of distinct subtrees S(yl) and S(yr). Assume w.l.o.g. that r′
l and r′

r are mapped by LCAT ′(x),S(y) to nodes of S(yl)

and S(yr) respectively. Since T ′(x) is obtained by removing c � 0 leaves from T (x), then T ′(r′
l ) is obtained by removing

c1 � 0 leaves from T (xl), while T ′(r′
r) is obtained by removing c2 � 0 leaves from T (xr), with c1 + c2 = c. Furthermore,

T ′(r′
l ) is MD-consistent with S(yl) and contains a set of leaves labelled by Γ ′

1,D , while T ′(r′
r) is MD-consistent with S(yr)

and contains a set of leaves labelled by Γ ′
2,D . Hence T ′(x) contains a set of leaves labelled by Γ ′

D , with Γ ′
D = Γ ′

1,D ∪ Γ ′
2,D .

By induction hypothesis, M[T (xl), S(yl),Γ
′

1,D ] = c1, M[T (xr), S(yr),Γ
′

2,D ] = c2, with c1 + c2 = c. By case 1 of Recurrence (1)
the lemma holds. The case that r′

l and r′
r are mapped in nodes of S(yr) and S(yl) respectively, is similar, and by case 2 of

Recurrence (1) the lemma holds.
Assume now that r′ is an AD node, that is Γ (T ′(r′

l )) ∩ Γ (T ′(r′
l )) = Γ +

D �= ∅. Now, consider the subtrees T ′(r′
l ), T ′(r′

r),
which w.l.o.g. are subtrees included in T (xl), T (xr) respectively. Then T ′(r′

l ) is obtained by removing c1 � 0 leaves of
T (xl), while T ′(r′

r) is obtained by removing c2 � 0 leaves of T (xr), with c1 + c2 = c. Furthermore, since r′ is an AD node,
there exist two subsets Γ ′

1,D ,Γ ′
2,D with Γ ′

1,D ⊆ Γ (T ′(r′
l )), and Γ ′

2,D ⊆ Γ (T ′(r′
r)) such that Γ ′

1,D ∩ Γ ′
2,D �= ∅. By induction

hypothesis, M[T (x), S(y),Γ ′
1,D ] = c1 and M[T (xr), S(y),Γ ′

2,D ] = c2, with c1 + c2 = c. Then by case 3 of Recurrence (1),
M[T (x), S(y),Γ ′

D ] = c, with Γ ′
D = Γ ′

1,D ∪ Γ ′
2,D , and the lemma follows. �
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Theorem 5. Given a gene tree T and a species tree S, let ΓD ⊆ Γ be the set of labels associated with multiple leaves of T . Then an
optimal solution of MinLeafRem over instance (T , S) can be computed in time O (4|ΓD | poly(|V (T )||V (S)|)).

Proof. By Lemma 7 a solution of MinLeafRem over instance (T , S) is obtained looking for the minimum of the values
M[T (rT ), S(rS ),Γ

′
D ], for each Γ ′

D ⊆ ΓD , where rT (rS respectively) is the root of T (S respectively).
Now, we prove in the following that the time complexity of the algorithm is O (4|ΓD | poly(|V (T )||V (S)|)). It is easy

to see that the time complexity to compute Recurrence (1) is dominated by case 3. The entries M[T (x), S(y),Γ ′
D ] are

O (2|ΓD ||V (T )||V (S)|). For each pair of nodes x ∈ V (T ), y ∈ V (S), we have to consider O (4|ΓD |) possible combinations.
Indeed, the number of subsets Γ ′

1,D ,Γ ′
2,D ⊆ Γ ′

D , with Γ ′
D = Γ ′

1,D ∪ Γ ′
2,D , is 4|ΓD | , since we have to consider all possible

subsets Γ ′
D of ΓD and, for each subset Γ ′

D , we have to consider all possible subsets Γ ′
1,D ,Γ ′

2,D ⊆ Γ ′
D , with Γ ′

D = Γ ′
1,D ∪ Γ ′

2,D .

It follows that we have to consider 4|ΓD | combinations, since there are 4|ΓD | possible ways to split set ΓD into four disjoint
subsets (in this case the subsets are ΓD \ Γ ′

D , Γ ′
1,D \ Γ ′

2,D , Γ ′
2,D \ Γ ′

1,D , and Γ ′
1,D ∩ Γ ′

2,D ). For each combination, the recursion
can be computed in constant time.

Finding the minimum value in the entries M[T (rG), S(rS),Γ
′
D ] requires time O (2|ΓD ||V (T )||V (S)|), hence the overall time

complexity to find an optimal solution of MinLeafRem over instance (T , S), is O (4|ΓD | poly(|V (T )||V (S)|)). �
Next, we show that an equivalent result can be proved for MinSpecRem.

Theorem 6. Given a gene tree T and a species tree S, let ΓD ⊆ Γ be the set of labels associated with multiple leaves of T . Then an
optimal solution of MinSpecRem over instance (T , S) can be computed in time O (4|ΓD | poly(|V (T )||V (S)|)).

Proof. Similarly to MinLeafRem, define M[T (x), S(y),Γ ′
D ] as the minimum number of labels that have to be removed to

obtain a tree T ′(x) included in T (x) such that (1) T ′ is MD-consistent with S(y), (2) the subset Γ ′
D ⊆ Γ (T ′), and (3) a leaf

of L(T (x)) labelled by ΓD belongs of T ′(x) if and only if it is associated with a label in Γ ′
D .

The dynamic programming algorithm for MinSpecRem is based on the following recurrence:

M
[
T (x), S(y),Γ ′

D

] = min
Γ ′

1,D⊆Γ ′
D ,

Γ ′
2,D⊆Γ ′

D ,

Γ ′
1,D∪Γ ′

2,D=Γ ′
D

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M[T (xl), S(yl),Γ
′

1,D ] + M[T (xr), S(yr),Γ
′

2,D ]
if Γ ′

1,D ∩ Γ ′
2,D = ∅,Γ ′

2,D ∩ Γ (T (xl)) = ∅, and Γ ′
1,D ∩ Γ (T (xr)) = ∅,

M[T (xl), S(yr),Γ
′

1,D ] + M[T (xr), S(yl),Γ
′

2,D ]
if Γ ′

1,D ∩ Γ ′
2,D = ∅,Γ ′

2,D ∩ Γ (T (xl)) = ∅, and Γ ′
1,D ∩ Γ (T (xr)) = ∅,

M[T (xl), S(y),Γ ′
1,D ] + M[T (xr), S(y),Γ ′

2,D ]
if Γ ′

1,D ∩ Γ ′
2,D �= ∅, (Γ ′

2,D \ Γ ′
1,D) ∩ Γ (T (xl)) = ∅, and

(Γ ′
1,D \ Γ ′

2,D) ∩ Γ (T (xr)) = ∅,

M[T (xl), S(y),Γ ′
D ] + |Γ (T (xr))|

if Γ ′
D ∩ Γ (T (xr)) = ∅,

M[T (xr), S(y),Γ ′
D ] + |Γ (T (xl))|

if Γ ′
D ∩ Γ (T (xl)) = ∅,

M[T (x), S(yl),Γ
′
D ],

M[T (x), S(yr),Γ
′
D ].

(2)

The base cases of the recurrence are identical to those for MinLeafRem.
The dynamic programming closely follows that for MinLeafRem, except for the conditions that ensures that, when a label

is removed, there is no occurrence of that label associated with some leaves of the solution.
We consider the first case. The condition Γ ′

2,D ∩ Γ (T (xl)) = ∅ ensures that no leaf l having a label σ in Γ ′
1,D belongs to

T (xr), otherwise this label (hence also l) would be removed. Indeed, by definition of M[T (x), S(y),Γ ′
D ], among the leaves

labelled by ΓD , only the leaves of T (xl) having labels in Γ ′
1,D , with Γ ′

1,D ∩ Γ ′
2,D = ∅, are not removed. But then, if l is not

removed, there would be a leaf with a label σ ∈ Γ ′
1,D that belongs to the solution, and one label with label σ that has been

removed. �
6. Conclusion

In this paper, we present complexity results for problems related to the preprocessing of gene trees for use in recon-
ciliation and species tree inference, following the approach of [12]. We prove that two combinatorial problems presented
MinLeafRem, MinSpecRem are APX-hard, even when each label is associated with at most two leaves of the input gene tree,
and we present fixed-parameter algorithms for MinLeafRem and MinSpecRem. Furthermore, we prove that MinLeafRemInf is
not only NP-hard, but also W[2]-hard (when parameterized by the size of the solution, that is the minimum number of leaf
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removals) and inapproximable within factor c ln n, where n is the number of leaves in the gene tree. Finally we show that
MinSpecRemInf is NP-hard and W[2]-hard, when parameterized by the size of the solution, that is the minimum number of
species removals.

An interesting open problem is to further study the approximation complexity of MinLeafRem and MinSpecRem. Is it
possible to have constant factor approximation algorithms for the two problems? Another interesting open problem is to im-
prove the time complexity of the parameterized algorithms given in Section 5.1. Finally, kernelization issues of MinLeafRem
and MinSpecRem are left completely unexplored.
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