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ABSTRACT

We present a comparative genomics approach for inferring ancestral genome organization
and evolutionary scenarios, based on present-day genomes represented as ordered gene
sequences with duplicates. We develop our methodology for a model of evolution restricted
to duplication and loss, and then show how to extend it to other content-modifying opera-
tions, and to inversions. From a combinatorial point of view, the main consequence of
ignoring rearrangements is the possibility of formulating the problem as an alignment
problem. On the other hand, duplications and losses are asymmetric operations that are
applicable to one of the two aligned sequences. Consequently, an ancestral genome can
directly be inferred from a duplication-loss scenario attached to a given alignment. Although
alignments are a priori simpler to handle than rearrangements, we show that a direct
approach based on dynamic programming leads, at best, to an efficient heuristic. We present
an exact pseudo-boolean linear programming algorithm to search for the optimal alignment
along with an optimal scenario of duplications and losses. Although exponential in the worst
case, we show low running times on real datasets as well as synthetic data. We apply our
algorithm* in a phylogenetic context to the evolution of stable RNA (tRNA and rRNA) gene
content and organization in Bacillus genomes. Our results lead to various biological insights,
such as rates of ribosomal RNA proliferation among lineages, their role in altering tRNA
gene content, and evidence of tRNA class conversion.

Keywords: alignment, bacillus, comparative genomics, duplication, gene order, loss, linear

programming, tRNA.

1. INTRODUCTION

During evolution, genomes continually accumulate mutations. In addition to base mutations and short

insertions or deletions, genome-scale changes affect the overall gene content and organization of a

genome. Evidence of these latter kinds of changes are observed by comparing the completely sequenced and

annotated genomes of related species. Genome-scale changes can be subdivided into two categories: (1) the
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rearrangement operations that shuffle gene order such as inversion, and (2) the content-modifying operations

that affect the number of gene copies, such as gene insertion, loss and duplication. In particular, gene

duplication is a fundamental process in the evolution of species (Ohno 1970), especially in eukaryotes

(Blomme et al., 2006; Cotton and Page, 2005; Eichler and Sankoff, 2003; Hahn et al., 2007; Lynch and

Conery, 2000; Wapinski et al., 2007), where it is believed to play a leading role for the creation of novel gene

function. In parallel, gene losses through pseudogenization and segmental deletions, appear generally to

maintain a minimum number of functional gene copies (Blomme et al., 2006; Cotton and Page, 2005; Demuth

et al., 2006; Eichler and Sankoff, 2003; Hahn et al., 2007; Lynch and Conery, 2000; Ohno, 1970). Transfer

RNAs (tRNAs) are typical examples of gene families that are continually duplicated and lost (Bermudez-

Santana et al., 2010; Rogers et al., 2010; Tang et al., 2009; Withers et al., 2006). Indeed, tRNA clusters (or

operons in microbial genomes) are highly dynamic and unstable genomic regions. In Escherichia coli for

example, the rate of tRNA gene duplication/loss events has been estimated to be about one event every 1.5

million years (Bermudez-Santana et al., 2010; Withers et al., 2006).

One of the main goals of comparative genomics is to infer evolutionary histories of gene families, based

on the comparison of the genomic organization of extant species. Having an evolutionary perspective of

gene families is a key step towards answering many fundamental biological questions. For example, tRNAs

are essential to establishing a direct link between codons and their translation into amino-acids. Under-

standing how the content and organization of tRNAs evolve is essential to the understanding of the

translational machinery, and in particular, the variation in codon usage among species (Dong et al., 2006;

Kanaya et al., 1999).

In the genome rearrangement approach to comparative genomics, a genome is modeled as one or

many (in case of many chromosomes) linear or circular sequences of genes (or other building blocks of a

genome). When each gene is present exactly once in a genome, sequences can be represented as permu-

tations. In the most realistic version of the rearrangement problem, a sign is associated with a gene,

representing its transcriptional orientation. The pioneering work of Hannenhalli and Pevzner (Hannenhalli

and Pevzner, 1995, 1999) has led to efficient algorithms for computing the inversion and/or translocation

distance between two signed permutations. Since then, many other algorithms have been developed to

compare permutations subject to various rearrangement operations and based on different distance mea-

sures. These algorithms have then been used from a phylogenetic perspective to infer ancestral permuta-

tions (Bourque and Pevzner, 2002; Chauve and Tannier, 2008; Ma et al., 2007; Moret et al., 2001; Sankoff

and Blanchette, 1997) and evolutionary scenarios on a species tree. An extra degree of difficulty is

introduced in the case of sequences containing multiple copies of the same gene, as the one-to-one

correspondence between copies is not established in advance. A review of the methods used for comparing

two ordered gene sequences with duplicates can be found in El-Mabrouk (2005) and Fertin et al. (2009).

They can be grouped into two main classes. The ‘‘Match-and-Prune’’ model aims at transforming strings

into permutations, so as to minimize a rearrangement distance between the resulting permutations. On the

other hand, the ‘‘Block Edit’’ model consists of performing the minimum number of ‘‘allowed’’ re-

arrangement and content-modifying operations required to transform one string into the other. Most studied

distances and ancestral inference problems in this category are NP-complete (Fertin et al., 2009).

In this paper, we focus on comparing two ordered gene sequences with duplicates. We develop our

methodology for a model of evolution restricted to content-modifying operations, more specifically to

duplication and loss, and then show how to extend it to other content-modifying operations, and to non-

overlapping inversions. From a combinatorial point of view, the main consequence of ignoring re-

arrangement operations is the fact that gene organization is preserved, which allows us to reformulate the

problem of comparing two gene orders as an alignment problem. Notice however that only the most recent

events that have not been obscured by subsequent events are visible in such an alignment. Another

advantage of a model restricted to duplication and loss is that a unique ancestral genome can directly be

inferred from a duplication-loss scenario attached to a given alignment, as duplications and losses are

asymmetrical operations that are applicable to one of the two aligned sequences.

Although alignments are a priori simpler to handle than rearrangements, there is no direct way of

inferring optimal alignments together with a related duplication-loss scenario for two gene orders, as

detailed in Section 4. Even our simpler goal of finding an alignment is fraught with difficulty as a naive

branch-and-bound approach to compute such an alignment is non-trivial; trying all possible alignments

with all possible duplication and loss scenarios for each alignment is hardly practicable. As it is not even

clear how, given an alignment, we can assign duplications and losses in a parsimonious manner, we present
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in Section 4.1 a pseudo-boolean linear programming (PBLP) approach to search for the optimal alignment

along with an optimal scenario of duplications and losses. The disadvantage of the approach is that, in the

worst case, an exponential number of steps could be used by our algorithm. On the other hand, we show in

Section 6.2 that for real data, and larger simulated genomes, the running times are quite reasonable. Further,

the PBLP is flexible in that a multitude of weighting schemes for losses and duplications could be

employed to, for example, favor certain duplications over others, or allow for gene conversion.

In Section 5, we extend our initial model of evolution to handle additional content-modifying operations,

as well as non-overlapping inversions, and we show how to relax some constraints regarding the visible

(i.e., non-intersecting) nature of operations. In Section 6.1, we apply our algorithm in a phylogenetic

context to infer the evolution of stable RNA (tRNA and rRNA) gene content and organization in various

genomes from the genus Bacillus, a so-called ‘‘low G + C’’ gram-positive clade of Firmicutes that includes

the model bacterium B. subtilis as well as the agent of anthrax. Stable RNA operon organization in this

group is interesting because it has relatively fewer operons that are much larger and contain more seg-

mental duplicates than other bacterial groups. We obtained results leading to various biological insights,

such as more accurate quantification of ribosomal RNA operon proliferation, their role in altering tRNA

gene content, and evidence of tRNA gene class conversion.

2. RESEARCH CONTEXT

The evolution of g genomes is often represented by a phylogenetic (or species) tree T, binary or not, with

exactly g leaves, each representing a different genome. When such a species tree T is known for a set of

species, then we can use the gene order information of the present-day genomes to infer gene order

information of ancestral genomes identified with each of the internal nodes of the tree. This problem is

known in the literature as the ‘‘small’’ phylogeny problem, in contrast to the ‘‘large’’ phylogeny problem

which is one of finding the actual phylogenetic tree T.

Although our methods may be extended to arbitrary genomes, we consider single chromosomal (circular

or linear) genomes, represented as gene orders with duplicates. More precisely, given an alphabet S where

each character represents a specific gene family, a genome or string is a sequence of characters from S
where each character may appear many times. To simplify our explanation we ignore the orientation (sign)

of the genes. However, our methodology is easily extendable to inclusion of this information. For example,

given S = {a, b, c, d, e}, A = ‘‘ababcd’’ is a genome containing two gene copies from the gene family

identified by a, two genes from the gene family b, and a single gene from each family c and d. A gene in a

genome A is a singleton if it appears exactly once in A (for example c and d in A), and a duplicate

otherwise (a and b in A above).

Let O be a set of ‘‘allowed’’ evolutionary operations. The set O may include organizational operations

such as Reversals (R) and Transpositions (T), and content-modifying operations such as Duplications (D),

Losses (L) or Insertions (I). For example, O = {R, D, L} is the set of operations in an evolutionary model

involving reversals, duplications and losses. In the next section, we will formally define the operations

involved in our model of evolution.

Given a genome A, a mutation on A is characterized by an operation O from O, the substring of A that is

affected by the mutation, as well as possibly other characteristics such as the position of the re-inserted removed

(in case of transposition) or duplicated substring. For simplicity, consider a mutation O(k) to be characterized

solely by the operation O from O, and the size k of the substring affected by the mutation. Consider c(O(k)) to

be a cost function defined on mutations. Finally, given two genomes A and X, an evolutionary history OA/X

from A to X is a sequence of mutations (possible of length 0) transforming A into X.

Let A, X be two strings on S with A being a potential ancestor of X, meaning that there is at least one

evolutionary history OA!X = fO1(k1)‚ . . . ‚ Ol(kl)g from A to X. Then the cost of OA/X is:

C(OA!X) =
Xl

i = 1

c(Oi(ki))

Now let OA!X be the set of possible histories transforming A into X. Then we define:

C(A! X) = min
OA!X2OA!X

C(OA!X)
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Then, the small phylogeny problem can be formulated as one of finding strings at internal nodes of a given

tree T that minimize the total cost:

C(T) =
X

all branches bi of T

C(Xi‚1 ! Xi‚2)

where Xi,1, Xi,2 are the strings labeling the nodes of T adjacent to the branch bi, with the node labeled Xi,1

being the parent of the node labeled Xi,2.

For most restrictions on genome structure and models of evolution, the simplest version of the small

phylogeny problem—the median of three genomes—is NP-hard (Caprara, 1999; Pe’er and Shamir, 1998;

Tannier et al., 2009). When duplicate genes are present in the genomes, even finding minimum distances

between two genomes is almost always an NP-Hard task ( Jiang, 2010). In this paper, we focus on cherries

of a species tree (i.e., on subtrees with two leaves). The optimization problem we consider can be

formulated as follows:

Two Species Small Phylogeny Problem:

Input: Two genomes X and Y.

Output: A potential common ancestor A of X and Y minimizing C(A / X) + C(A / Y).

Solving the Two Species Small Phylogeny Problem (2-SPP) can be seen as a first step towards

solving the problem on a given phylogenetic tree T. The most natural heuristic to the Small Phylogeny

Problem, that we will call the SPP-heuristic, is to traverse T depth-first, and to compute successive

ancestors of pairs of nodes. Such a heuristic can be used as the initialization step of the steinerization

method for SPP (Sankoff and Blanchette, 1997; Blanchette et al., 1997). The sets of all optimal solutions

output by an algorithm for the 2-SPP applied to all pairs of nodes of T (in a depth-first traversal) can

alternatively be used in an iterative local optimization method, such as the dynamic programming method

developed in Kovac et al. (2011).

3. THE DUPLICATION AND LOSS MODEL OF EVOLUTION

Our evolutionary model accounts for two operations, Duplication (denoted D) and Loss (denoted L). In

other words O= fD‚ Lg, where D and L are defined as follows. Let X[i . . . i + k] denote the substring

XiXi + 1 � � �Xi + k of X.

- D: A Duplication of size k + 1 on X = X1 � � �Xi � � �Xi + k � � �XjXj + 1 � � �Xn is an operation that copies a

substring X[i . . . i + k] to a location j of X outside the interval [i, i + k] (i.e., preceding i or following i + k).

In the latter case, D transforms X into

X0 = X1 � � �Xi � � �Xi + k � � �Xj - 1Xi � � �Xi + kXj + 1 � � �Xn

We call the original copy X[i . . . i + k] the origin, and the copied string the product of the duplication D.

- L: A Loss of size k is an operation that removes a substring of size k from X.

Notice that gene insertions could be considered in our model as well. In particular, our linear

programming solution is applicable to an evolutionary model involving insertions, in addition to dupli-

cations and losses. We ignore insertions for two main reasons: (1) insertions and losses are two symmetrical

operations that can be interchanged in an evolutionary scenario. Distinguishing between insertions and

losses may be possible on a phylogeny, but cannot be done by comparing two genomes; (2) gene insertions

are usually due to lateral gene transfer, which may be rare events compared to nucleotide-level mutations

that eventually transform a gene into a pseudogene.

As duplication and loss are content-modifying operations that do not shuffle gene order, the Two Species

Small Phylogeny Problem can be posed as an alignment problem. However, the only operations that are

‘‘visible’’ on an alignment are the events on an evolutionary history that are not obscured by subsequent

events. Moreover, as duplications and losses are asymmetrical operations, an alignment of two genomes X

and Y does not reflect an evolutionary path from X to Y (as operations going back to a common ancestor are
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not defined), but rather two paths going from a common ancestor to both X and Y. A precise definition

follows.

Definition 1. Let X and Y be two genomes. A visible history of X and Y is a triplet (A, OA/X, OA/Y)

where A is a potential ancestor of both X and Y, and OA/X (respectively OA/Y) are evolutionary histories

from A to X (respectively from A to Y) verifying the following property: Let D be a duplication in OA/X or

OA/Y copying a substring S. Let S1 be the origin and S2 be the product of D. Then D is not followed by any

other operation inserting (by duplication) genes inside S1 or S2, or removing (by loss) genes from S1 or S2. We

call a visible ancestor of X and Y a genome A belonging to a visible history (A, OA/X, OA/Y) of X and Y.

We now define an alignment of two genomes.

Definition 2. Let X be a string on S, and let S - be the alphabet S augmented with an additional

character ‘‘ - ’’. An extension of A is a string A - on S - such that removing all occurrences of the character

‘‘ - ’’ from A - leads to the string A.

Definition 3. Let X and Y be two strings on S. An alignment of size a of X and Y is a pair (X - , Y - )

extending (X, Y) such that jX - j = jY - j = a, and for each i, 1 £ i £ a, the two following properties hold:

- If Xi
- s‘‘ - ’’ and Yi

- s‘‘ - ’’ then X -
i = Y -

i ;

- X -
i and Y -

i cannot be both equal to ‘‘ - ’’.

Let A = (X - ‚ Y - ) be an alignment of X and Y of size a. It can be seen as a 2 · a matrix, where the ith

column Ai of the alignment is just the ith column of the matrix. A column is a match iff it does not contain

the character ‘ - ’, and a gap otherwise. A gap [ Xi

- ] is either part of a loss in Y, or part of a duplication in X

(only possible if the character Xi is a duplicate in X). The same holds for the column [ -
Yj

]. An interpretation

of A as a sequence of duplications and losses is called a labeling of A. The cost of a labeled alignment is

the sum of costs of all underlying operations.

As duplications and losses are asymmetric operations that are applied explicitly to one of the two strings,

each labeled alignment A of X and Y leads to a unique common ancestor A for X and Y. The following

theorem shows that this, and the converse is true (Fig. 1).

Theorem 1. Given two genomes X and Y, there is a one-to-one correspondence between labeled

alignments of X and Y and visible ancestors of X and Y.

Proof. Let A be a visible ancestor of X and Y and (A, OA/X, OA/Y) be a visible history of X and Y.

Then construct a labeled alignment A of X and Y as follows: -

1. Initialization: Define the two strings X - = Y - = A on S - , and define A as an alignment with all

matches between X - and Y - (i.e., self-alignment of A).

2. Consider each operation of OA/X in order.

- If it is a duplication, then add the inserted string at the appropriate position in X - , and add gaps

(‘‘ - ’’ characters) at the corresponding positions in Y - . Label the inserted columns of A as a

duplication in X, coming from the columns of the alignment representing the origin of the

duplication.

- If it is a loss, then replace the lost characters in X- by gaps. Label the modified columns as a loss in X.

3. Consider each operation of OA/Y and proceed in a symmetrical way.

FIG. 1. Left: a labeled alignment between

two strings X = ababacd and Y = abaad.

Right: the ancestor A and two histories re-

spectively from A to X and from A to Y ob-

tained from this alignment. The order of

operations in the history from A to Y is

arbitrary.
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As (A, OA/X, OA/Y) is a visible history of X and Y, by definition the origins and products of duplications

remain unchanged by subsequent operations on each of OA/X and OA/Y. Therefore, all intermediate

labellings remain valid in the final alignment. Therefore, the constructive method described above leads to

a labeled alignment of X and Y.

On the other hand, a substring Xi � � �Xj (resp. Yi � � � Yj) that is labeled as a duplication in X (resp. Y)

should not be present in A, as it is duplicated on the branch from A to X (resp. from A to Y). Also, a

substring Xi � � �Xj (resp. Yi � � � Yj) that is labeled as a loss in Y (resp. X) should be present in A, as it is lost on

the branch from A to Y (resp. from A to X). This implies an obvious algorithm to reconstruct a unique

ancestor. -

In other words, Theorem 1 states that the Two Species Small Phylogeny Problem reduces in the case

of the Duplication-Loss model of evolution to the following optimization problem.

Duplication-Loss Alignment Problem:

Input: Two genomes X and Y on S.

Output: A labeled alignment of X and Y of minimum cost.

4. METHOD

Although alignments are a priori simpler to handle than rearrangements, a straightforward way to solve

the Duplication-Loss Alignment Problem is not known. We show in the following paragraphs, that a

direct approach based on dynamic programming leads, at best, to an efficient heuristic, with no guarantee of

optimality.

Let X be a genome of size n and Y be a genome of size m. Denote by X[1 . . . i] the prefix of size i of X,

and by Y[1 . . . j] the prefix of size j of Y. Let C(i, j) be the minimum cost of a labeled alignment of X[1 . . . i]
and Y[1 . . . j]. Then the problem is to compute C(m, n).

DP: A natural idea would be to consider a dynamic programming approach (DP), computing C(i, j), for all

1 £ i £ n and all 1 £ j £ m. Consider the variables M(i, j), DX(i, j), DY (i, j), LX(i, j) and LY (i, j) which

reflect the minimum cost of an alignment Ai‚ j of X[1 . . . i] and Y[1 . . . j] satisfying respectively, the

constraint that the last column of Ai‚ j is a match, a duplication in X, a duplication in Y, a loss in X, or a loss

in Y. Consider the following recursive formulae.

- M(i‚ j) = C(i - 1‚ j - 1) if X[i] = Y[j]
+1 otherwise

�

- LX(i‚ j) = min0pkpi - 1 [C(k‚ j) + c(L(i - k))]

(the corresponding formula holds for LY (i, j))

- DX(i‚ j) = +1 if X[i] is a singleton

minlpkpi - 1 [C(k‚ j) + c(D(i - k))] otherwise‚

�

where X[l . . . i] is the longest suffix of X[1 . . . i] that is a duplication

(the corresponding formula holds for DY (i, j)).

The recursions for DX and DY imply that duplicated segments are always inserted to the right of the

origin. Unfortunately, such an assumption cannot be made while maintaining optimality of the alignment.

For example, given the cost c(D(k)) = 1 and c(L(k)) = k, the optimal labeled alignment of S1 = abxabxab

and S2 = xabx aligns ab of S2 with the second ab of S1, leading to an optimal history with two duplications

inserting the second ab of S1 to its left and to its right. Such an optimal scenario cannot be recovered by DP.

DP-2WAY: As a consequence of the last paragraph, consider the two-way dynamic programming approach

DP-2WAY that computes DX(i, j) (resp. DY (i, j)) by looking for the longest suffix of X[1 . . . i] (resp.

Y[1 . . . j]) that is a duplication in the whole genome X (resp. Y). Unfortunately, DP-2WAY may lead to

invalid cyclic evolutionary scenarios, as the same scenario may involve two duplications: one with origin

ANCESTRAL GENOME ORGANIZATION 285



S1 and product S2, and one with origin S2 and product S1, where S1 and S2 are two duplicated strings. This is

described in more detail in Section 4.1.

DP-2WAY-UNLABELED: The problem mentioned above with the output of DP-2WAY is not necessarily

the alignment itself, but rather the label of the alignment. As a consequence, one may think about a method,

DP-2WAY-UNLABELED, that would consider the unlabeled alignment output by DP-2WAY, and label it

in an optimal way (e.g., find an evolutionary scenario of minimum cost that is in agreement with the

alignment). Notice first that the problem of finding a most parsimonious labeling of a given alignment, is

not a priori an easy problem, and there is no direct and simple way to do it. Moreover, although

DP-2WAY-UNLABELED is likely to be a good heuristic algorithm to the Duplication-Loss Alignment

Problem, it would not be an exact algorithm, as an optimal cyclic alignment is not guaranteed to have a

valid labeling leading to an optimal labeled alignment. Figure 2 shows such an example; an optimal cyclic

duplication and loss scenario can be achieved by both alignments (5 operations), while the optimal acyclic

scenario can only be achieved by the alignment of Figure 2b.

4.1. The Pseudo-Boolean Linear Program

Consider genome X of length n and genome Y of length m. We show how to compute a labeled alignment

of X and Y by use of pseudo-boolean linear programming (PBLP). The alignment that we compute is

guaranteed to be optimal. While in the worst case our program could take an exponential number (in the

length of the strings) of steps to find the alignment, our formulation has a cubic number of equations

variables, and is far more efficient than scoring all possible alignments along with all possible duplication/

loss scenarios. We show that practical running times can be achieved on real data in Section 6.2.

For any alignment, an element of the string X could be considered a loss (this corresponds to gaps in the

alignment), a match with an element of Y, or a duplication from another element in X (these also appear as

gaps in the alignment). Thus, in a feasible solution, every element must be ‘‘covered’’ by one of those three

possibilities. The same holds for elements of Y. Figure 2 shows two possible alignments for a given pair of

strings, along with the corresponding set of duplications and losses. In the alignment of Figure 2a, character

x8 is covered by the duplication of x12, character a11 is covered by a loss, and character x5 is covered by a

match with character x4 in Y.

Let Mi
j signify the match of character Xi to character Yj in the alignment. Say character Xi could be

covered by matches Mi
1‚ Mi

2‚ . . . ‚ Mi
pi

or by duplications DXi
1‚ DXi

2‚ . . . ‚ DXi
si

. If we consider each of those

to be a binary variable (can take value 0 or 1) and take the binary variable LXi as corresponding to the

possibility that Xi is a loss, then we have the following equation to ensure that character Xi is covered by

exactly one operation:

LXi + Mi
1 + Mi

2 + � � � + Mi
pi

+ DXi
1 + DXi

2 + � � � + DXi
si

= 1‚ (1)

where pi and si are the number of matches and duplications that could cover character Xi. A potential

duplication in X (DXi
l for some l) corresponds to a pair of distinct, but identical, substrings in X. Each pair

of such substrings yields two potential duplications (substring A was duplicated from substring B or

substring B was duplicated from substring A). Each of the possible O(n3) duplications gets a variable. Each

position in Y gets a similar equation to Equation 1.

The order of the matches with respect to the order of the strings must be enforced. For example, in Figure

2 it is impossible to simultaneously match w10 and x12 from X with w5 and x4 of string Y; the assignment of

variables corresponding to this case must be forbidden in the program. Thus, we introduce equations

FIG. 2. Alignments for strings X = ‘‘zxyzxyaxbwaxb’’ and Y = ‘‘zxyxwb’’. We consider the following cost:

c(D(k)) = 1 and c(L(k)) = k for any integer k. Matches are denoted by a vertical bar, losses denoted by an ‘‘L’’, and

duplications denoted by bars, brackets, and arrows. Alignment (a) yields 6 operations (3 duplications and 3 losses) and

implies ancestral sequence ‘‘zxyxwaxbz’’, while (b) yields 5 operations (3 duplications and 2 losses) and implies

ancestral sequence ‘‘zxyaxwbz’’.
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enforcing the order of the matches. Recall that Mi
j is the variable corresponding to the match of the ith

character from X with the jth character from Y. The existence of match Mi
j implies that any match Mk

l where

k ‡ i and l £ j (or k £ i and l ‡ j) is impossible, so must be forbidden by the program. The constraints can

be written as:

Mi
j + Mk1

l1
p1‚ Mi

j + Mk2

l2
p1‚ . . . ‚ Mi

j + M
kti

lti
p1 (2)

where ti is the number of matches conflicting with Mi
j , and for any Mku

lu we have either k u ‡ i and lu £ j, or

ku £ i and lu ‡ j. There are at most a linear number of inequalities for each of the possible O(n2) matches.

Equality 1 ensures that each character will be covered by exactly one D, M, or L. Our objective function

minimizes some linear combination of all Ls and all Ds:

min c1LX1 + � � � + cnLXn + cn + 1LY1 + � � � + cn + mLYm + cn + m + 1D1 + � � � + cn + m + qDq (3)

where cl is a cost of the lth operation and q is the total number of duplications for all positions of X and Y

(i.e., Dl = DXi
s or Dl = DYj

r for some i, j, s, and r). The full PBLP (excluding the trivial integrality con-

straints) is then:

min c1LX1 + � � � + cnLXn + cn + 1LY1 + � � � + cn + mLYm

+ cn + m + 1D1 + cn + m + 2D2 + � � � + cn + m + qDq

s:t: LXi + Mi
1 + Mi

2 + � � � + Mi
pi

+ DXi
1 + � � � + DXi

si
= 1‚ 0pipn

LYj + M1
j + M2

j + � � � + M
qj

j + DY
j
1 + � � � + DYj

rj
= 1‚ 0pjpm

Mi
j + Mk1

l1
p1‚ Mi

j + Mk2

l2
p1‚ . . . ‚ Mi

j + M
kti

lti
p1‚ 8i‚ j s:t: Xi = Yj and

(kmqi and lmp j)‚ or

(kmpi and lmq j)

In the example illustrated in Figure 2—where X = ‘‘zxyzxyaxbwaxb’’ and Y = ‘‘zxyxwb’’—there are 17

variables corresponding to matches, 20 variables corresponding to losses, and 24 variables corresponding to

duplications.

Cyclic Duplications: Recall the definition of the product of a duplication; in Figure 2b, the product of

the leftmost duplication is z4, x5, and y6. Consider a sequence of duplications D1‚ D2‚ . . . ‚ Dl and

characters a1‚ a2‚ . . . ‚ al such that character ai is in the product of Di and is the duplication of a

character in the product of Di - 1 (a1 is the duplication of some character a0). We call this set of

duplications cyclic if D1 = Dl. Consider the set of duplications {D1, D2} where D1 duplicates the

substring X1X2 to produce the substring X3X4 and D2 duplicates the substring X4X5 to produce the

substring X1X2. This implies the sequence of characters X2, X4, X1, X3 corresponding to the cyclic

duplication D1, D2, D1.

Theorem 2. A solution to the PBLP of Section 4.1 that has no cyclic set of duplications is an optimal

solution to the Duplication-Loss Alignment problem.

Proof. Equation 1 ensures that each character of X is either aligned to a character of Y, aligned to a loss

in Y, or the product of a duplication. The similar holds for each character of Y. Since there exists no cyclic

set of duplications, then the solution given by the PBLP is a feasible solution to the Duplication-Loss

Alignment problem. The minimization of Formula 3 guarantees optimality. -

However, if there does exist a cyclic duplication set, the solution given by the PBLP is not a feasible

solution since the cycle implies a scenario that is impossible; the cycle implies a character that does not

exist in the ancestor but does appear in X. A cyclic duplication set fD1‚ D2‚ . . . ‚ Dlg can be forbidden from

a solution of the PBLP by the inclusion of the following inequality:

D1 + D2 + � � � + Dlpl - 1: (4)
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The following algorithm guarantees an acyclic solution to the PBLP.

]Pairwise-Alignment(PBLP)

get solution S to the PBLP

while S has a cycle do
for each cycle D1 + D2 + � � � + Dl in S do

PBLP &leftarrow; PBLP plus constraint D1 + D2 + � � � + Dlpl - 1

end for
get solution S to the PBLP

end whileS

end

It simply runs the PBLP and each time it finds a cyclic set of duplications, it adds the corresponding

constraint to forbid the set and reruns the PBLP. It is clear that Algorithm 1 guarantees an acyclic solution:

Theorem 3. Algorithm 1 returns an optimal solution to the Duplication-Loss Alignment problem.

Note that the constraints to forbid all possible cyclic sets of duplications, given a particular X and Y,

could be added to the PBLP from the start, but in the worst case there is an exponential number of such

constraints. We will see in Section 6.2 that in practice we do not have to rerun the PBLP many times to find

an acyclic solution.

5. EXTENDED MODELS OF EVOLUTION

This section shows how the PBLP may be adapted to handle additional content-modifying operations, as

well as some rearrangement events. We will also consider the possibility of applying general distance

methods to specific substrings for which we may want to consider less visible events. For any considered

set O of allowed operations, the goal will be to add the appropriate equations to the PBLP in order to output

an alignment reflecting a most parsimonious visible history.

Before describing our new operations, we need to define the notion of a visible history in a more general

context, as Definition 1 is restricted to visible duplications. Definition 4 given bellow is general. Recall that

a duplication operation has an origin and a product. In the case of rearrangement operations and losses, we

consider the origin to be the empty string, and the product to be the resulting string. So in the case of

inversions, the product is the inverted string, and in the case of losses both the origin and product are empty.

Definition 4. Let X and Y be two genomes. A visible history of X and Y is a triplet (A, OA/X, OA/Y)

where A is a potential ancestor of both X and Y, and OA/X (respectively OA/Y) are evolutionary histories

from A to X (respectively from A to Y) verifying the following property: Let O be an operation in OA/X.

Let S1 be the origin and S2 be the product of O. Then O is not followed by any other operation modifying

(by insertion, deletion, substitution or rearrangement) S1 or S2.

5.1. Substitution

For the sake of generality, in addition to duplication, loss, and insertion (horizontal gene transfer

discussed in Section 3), it seems natural to include substitution which is another content-modifying op-

eration representing the conversion of a gene from one function to another.

- S: A Substitution is an operation that replaces a character Xi at a given position i of a string X by

another character Y i.

Interestingly, applying our algorithm to the tRNA gene content in Bacillus (see Section 6) revealed

misaligned positions that are likely to be substitutions representing tRNA functional shift.

The PBLP naturally generalizes to substitutions. In this case, a character Xi can be covered by any one of

the characters of Y (i.e., there are exactly m match variables in Equation 1). However, the cost attached to a

variable Mi
j has to be positive in case of a substitution (Xi s Yj). Instead of attributing a constant cost for

substitution it seems reasonable to allow for a cost which is dependent upon the aligned characters,

corresponding to the likelihood of the particular gene conversion. It follows that the objective function of

the PBLP has to be augmented with m · n terms of the form cijM
i
j .
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Notice that the convenient property of asymmetry that holds for the Duplication and Loss model of

evolution, which allows for the one-to-one correspondence between labeled alignments and visible an-

cestors (Theorem 1), does not hold anymore for the generalized model with substitution. Indeed, an

alignment of character Xi with Yj can be either interpreted as a substitution from Xi to Yj or from Yj to Xi,

leading respectively to an ancestor with character Xi or Yj.

5.2. Inversion

Although, in general, comparing two genomes based on genome rearrangement events can not be done

with an alignment approach, non-overlapping inversions in a context of a visible history can be handled by

our approach. Notice however that, similar to substitutions, inversions are symmetrical operations that can

be applied to either one of the two genomes being considered; we lose the one-to-one correspondence

between labeled alignments and visible ancestors (Theorem 1).

- I: An Inversion is an operation that transforms a proper substring X[i + 1 . . . i + k] = X[i + 1]
X[i + 2] � � �X[i + k] of X into its reverse substring X[i + 1 . . . i + k] = X[i + k] � � �X[i + 2]X[i + 1]:

- ID: An Inverted Duplication of size k is an operation that copies the reverse of a substring

X[i + 1 . . . i + k] to a location j of X outside the interval [i + 1, i + k].

In order to handle inversions, Equation 1 is augmented with variables IXi
1‚ IXi

2‚ � � � IXi
ui

. A potential

inversion (IXi
l for some l) corresponds to a pair (X0, Y 0), where X0 is a substring of X covering position i, and

Y0 is a substring of Y such that Y 0 is the reverse of X0. There are O(n3) such possible pairs, and thus O(n3)

variables corresponding to an inversion operation for each i.

In order to handle inverted duplication, Equation 1 is augmented with variables IDXi
l corresponding to all

pairs (X0, X†) of disjoint substrings of X such that X0 covers position i and X† is the reverse of X0. There are

also O(n3) such pairs.

5.3. Relaxing the visibility criterion

The main restriction of our methodology imposed by the alignment strategy is the fact that only the most

recent operations in a history, namely those that have not been obscured by subsequent operations, can be

detected as visible in the alignment. More precisely, a duplication or inversion that is followed in the

history by an operation affecting its origin or product is not detectable by our base method. In this section,

we show that some relaxation of this restriction is possible.

The idea is that any substring of X can be covered by another substring Xo of X by a duplication of Xo

followed by a series of operations. Alternatively, any substring of X can be covered by any substring of Y

through some series of operations. For example, the substring ac of S3 = acabc could be covered by the

duplication of abc before a loss of b. Alternatively, ac from S3 could be covered by the inversion of the

substring ca in S4 = caabc.

In general we could create O(n4) variables, each corresponding to covering a substring of X with another

substring, the coefficient of the variable in the objective function being the cost of such a scenario. In

practice, only certain pairs of substrings under certain sets of operations may be interesting. In this section

we outline a few of the possible cases.

The DupLoss operation: Consider a duplication that has been followed by a sequence of losses reducing

the number of copied genes. We introduce a new operation representing such a sequence of events.

- DL: A DupLoss DL(k, l) of duplication size k and loss size l on a string X, is an operation that copies a

substring X[i + 1 . . . i + k] of X to a location j of X outside the interval [i + 1, i + k], and removes l < k

characters from the copied substring.

The most natural way to compute the cost for a DupLoss DL(k, l) is to sum up the cost of the duplication

with that of the loss events. For example, in case of a size independent loss cost, c(DL(k, l)) = c(D(k))

+ l · c(L).

The generalization of the PBLP requires additional binary variables corresponding to the possibility that

a character is covered by a DupLoss. More precisely, Equation 1 should be augmented with variables

DLXi
1‚ DLXi

2‚ . . . ‚ DLXi
ti
. A potential DupLoss in X (DLXi

l for some l) corresponds to origin A and product
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B where B is a subsequence of A, and B spans the index i. In this case, there are O(n4) possible pairs, and

thus O(n4) variables corresponding to a DupLoss operation for each i.

The Inversion operation: The previous section allows us to align genomes in the presence of non-

overlapping inversions where the content of the inverted substring is identical in the two genomes. In this

section, we introduce a relaxation on this constraint by allowing the detection of a consecutive sequence of

possibly intersecting inversions.

- IB: An Inversion Bloc of size k on a string X is a sequence of k consecutive inversions acting on X.

- IDB: An Inverted Duplication Bloc of size k is a duplication D followed by an inversion bloc of size

k acting on the product of D.

The most natural cost for an inversion bloc is simply the number of inversions in the bloc, while the most

natural cost for an inverted duplication bloc is the cost of the duplication plus the number of inversions.

We use the notion of common interval considered in the genome rearrangement literature (Bergeron

et al., 2008; Bergeron and Stoye, 2003; Landau et al., 2005).

A pair of common intervals (A, B) is a pair of strings with the exact same gene content (same alphabet

with the same number of copies for each character). Clearly, given two strings A and B, there is an inversion

bloc transforming A into B if and only if (A, B) is a pair of common intervals.

The idea will be to interpret the alignment between a pair of common intervals (X0, Y 0), where X0 is a

substring of genome X and Y 0 a substring of genome Y, as resulting from an inversion bloc, with cost

corresponding to the inversion distance (i.e., the minimum number of inversions transforming X0 into Y 0).
Similarly, we will interpret a pair of common intervals (X0, X†), where X0 and X† are two disjoint substrings

of X, as an inverted duplication bloc.

In the case of X0 and Y 0 being two permutations, computing the inversion distance between the two

strings can be done in linear time (Bader et al., 2001). Although the problem is NP-complete in the general

case of substrings with multiple gene copies (Angibaud et al., 2007; Blin et al., 2007; Chauve et al., 2006),

many heuristics exist for approximating the inversion distance (Chen et al., 2006; Sankoff, 1999; Shi et al.,

2010; Swenson et al., 2005).

6. APPLICATIONS

6.1. Evolution of stable RNA gene content and organization in Bacillus

The stable RNAs are chiefly transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), which are essential

in the process of translating messenger RNAs (mRNAs) into protein sequences. They are usually grouped

in the genome within clusters (or operons in the case of microbial genomes), representing highly repetitive

regions, causing genomic instability through illegitimate homologous recombination. In consequence,

stable RNA families are rapidly evolving by duplication and loss (Bermudez-Santana et al., 2010; Rogers

et al., 2010; Withers et al., 2006).

We applied Algorithm 1 (without the extensions of Section 5) in a phylogenetic context, using the SPP-

heuristic described at the end of Section 2, to analyze the stable RNA content and organization of 5

Bacillus lineages: Bacillus cereus ATCC 14579 (NC4722), Bacillus cereus E33L (NC6274), Bacillus

anthracis (NC7530), Bacillus licheniformis ATCC 14580 (NC6322) and Bacillus subtilis (NC964). The

overall number of represented RNA families in these genomes is around 40, and the total number of RNAs

in each genome is around 120. Our PBLP algorithm processes each pair of these genomes in a few seconds.

We used the following cost for duplications and losses: c(D(k)) = 1 and c(L(k)) = k, for any integer k

representing the size of an operation. The phylogeny in Figure 3 reflects the NCBI taxonomy. Each leaf is

labeled by a block representation of the corresponding genome. Details on each colored block is given in

Figure 4.

The costs and evolutionary scenarios given in Figure 3 are those output by our algorithm after inter-

pretation. In particular, the five Bacillus genomes all show a large inverted segment in the region to the left

of the origin of replication (the right part of each linearized representation in Figure 3). As the algorithm

without extensions has been used, we preprocessed the genomes by inverting this segment. The genome

representations given in Figure 3 are, however, the true ones. Signs given below the red bars represent their

true orientations. Consequently, the duplication of the right-most red bar to the left-most position should be
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interpreted as an inverted duplication that occurred around the origin of replication. On the other hand,

some duplications of the red bar have been reported by our algorithm as two separate duplications of two

segments separated by a single gene. After careful consideration, these pairs of duplications are more likely

a single duplication obscured by subsequent substitution, functional shift or loss of a single tRNA gene.

Also, when appropriate (e.g., when a lone gene is positioned in a lone genome), we interpreted some of the

losses in our alignments as insertions.

FIG. 4. The RNA gene clusters represented by each colored bar of Figure 3. Ribosomal RNAs are identified by their

families’ names: 16S, 23S, 5S. Each tRNA is identified by its anticodon preceded by the letter corresponding to the

corresponding amino-acid. The symbol ’,’ (respectively ’;’) separates two genes that are inside (resp. not inside) the

same operon.

FIG. 3. An inferred evolutionary history for the five Bacillus lineages identified with each of the five leaves of the

tree. Circular bacterial genomes have been linearized according to their origin of replication (e.g., the endpoints of each

genome is its origin of replication). Bar length is proportional to the number of genes in the corresponding cluster. A

key for the bars is given in Figure 4, except for white bars that represent regions that are perfectly aligned inside the two

groups (cereus, anthracis) and (licheniformis, subtilis), but not between the two groups. More specifically, the 27

duplications and losses reported on the top of the tree are obtained from the alignment of these white regions. Finally,

each D represents a loss and each V is an insertion.
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The ancestral genomes given in Figure 3 are those output by our algorithm. They reflect two separate

inverted duplications that would have occurred independently in each of the two groups (cereus, anthracis)

and (licheniformis, subtilis). We could alternatively infer that the ancestral Bacillus genome already

contained both the origin and product of the inverted duplication. The consequence would be the simul-

taneous loss of the leftmost red bar in three of the five considered genomes. Moreover, nucleotide sequence

alignment of the red bars in subtilis and cereus ATCC reveal a higher conservation of pairs of paralogous

bars versus orthologous ones, which may indicate that inverted duplications are recent. Whatever the

situation is, our inference of a duplication around the origin of replication is in agreement with the

observation that has been largely reported in the literature that bacterial genomes have a tendency to

preserve a symmetry around the replication origin and terminus (Eisen et al., 2000; Tillier and Collins,

2000; Ajana et al., 2002). The results also show independent proliferation of ribosomal RNA gene-

containing operons in Bacillus, which has been associated to selection for increased growth rate (Ardell and

Kirsebom, 2005). They also show that in Bacillus, growth-selection on ribosomal RNA operon expansions

may significantly alter tRNA gene content as well. The results given in Figure 5 also suggest that some

tRNA genes may have been affected by substitutions leading to conversions of function. Such tRNA

functional shifts have been detected in metazoan mitochondrial genomes (Rawlings et al., 2003) and

bacteria (Saks and Conery, 2007).

6.2. Execution time

Running times were recorded using a 12-core AMD 2.1-GHZ processor, with 256 GB of RAM, and the

(multithreaded) IBM CPLEX solver under the default settings. Note that a significant amount of memory

(>1 GB) was required only for sequences of several thousand genes; all tests reported here could be run on a

standard laptop with 2 GB of memory. Alignments of all pairs of genomes for each of three sets of stable

RNA gene orders were computed. The average computation time for the Bacillus pairs was under thirty

seconds. The average computation time for pairs from 13 Staphylococcus was under a second. Pairs from a

dataset of Vibrionaceae which had a very high number of paralogs and a large number of rearrangements

took a couple of days.

6.3. Simulations

Simulations were run in order to explore the limits of our method (full results not shown due to space

limitations). A random sequence R was drawn from the set of all sequences of length n and alphabet size a.

l moves were then applied to R to obtain the ancestral sequence A. To obtain the extant sequences X and Y, l

more moves were applied to A for each. The set of moves were segmental duplications and single gene

losses. The length of a duplication was drawn from a Gaussian distribution with mean 5 and standard

deviation 2; these lengths were consistent with observations on Bacillus and Staphylococcus. Average

running times for sequences with a fixed ratio of 2l/n = 1/5 and a/n = 1/2 (statistics similar to those

observed in Bacillus) were always below 6 minutes for n < 800. Sequences of length 2000 took less than 2

hours and sequences of length 5000 took a couple of days. When varying l, n, and a the most telling factor

for running time was the ratio a/n. This explains the high running times for the set of Vibrionaceae which

had, on average, nearly 100 moves for a sequence of length 140.

FIG. 5. (a) Genomes of Figure 3 restricted

to their red bars; (b) An alignment of all red

bars, reflecting one gene insertion (or alter-

natively 5 gene losses) and substitutions, in-

dicated by ‘*’.
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The distance of our computed ancestor to the simulated ancestor was found by computing an alignment

between the two. For values of n = 120, a = 40, and l = 15 (values that mimic the statistics of more distant

pairs of the Bacillus data) we compute ancestors that are, on average, 5 moves away from the true ancestor.

In general, for sequences with ratios 2l/n = 1/5 and a/n = 1/2, the average distance to the true ancestor stays

at about 15% of l.

7. CONCLUSION

We have considered the two species small phylogeny problem for an evolutionary model reduced to non-

overlapping (visible) content-modifying operations. We provided some extensions to the model by in-

corporating overlapping operations, and inversions. Although exponential running times are possible in the

worst case, our pseudo-boolean linear programming algorithm turns out to be fast on real datasets, such as

the RNA gene repertoire of bacterial genomes. We have also explored avenues for developing efficient

non-optimal heuristics. As described in Section 4, a dynamic programming approach can be used to infer a

reasonable, though not necessarily optimal unlabeled alignment of two genomes, or a labeled but possibly

cyclic alignment. A recent investigation on the complexity of these problems has revealed that the mini-

mum labeling alignment problem is APX-hard [Dondi and El-Mabrouk(2012)]. In future work the ap-

parently easy ‘‘core’’ of finding a possibly cyclic alignment may be leveraged to use the Lagrangian

relaxation technique—in this case each constraint against a cyclic duplication set would correspond to a

modification of the objective function in our dynamic program.

Application to the RNA gene content of five Bacillus lineages has pointed out a number of interesting

biological mechanisms that have to be further investigated. Probably the most interesting observations are

the substitutions occurring among the tRNAs. Indeed, as illustrated in Figure 5, some positions indicate a

shift of the anticodon, and thus potentially a shift of the original function of the tRNA. Alternatively, such

divergence may just be an indication that the tRNA is in the process of losing its function and becoming a

pseudogene. Taking into consideration not only the anticodon but rather the entire tRNA sequence, and

comparing with additional lineages, may allow to conclude to one or the other alternative. Also other

investigations on sequence alignment are required to test our hypothesis that two inverted duplications

around the origin of replication have occurred independently on each group (cereus, anthracis) and (li-

cheniformis, subtilis), rather than a single duplication preceding the Bacillus ancestor, followed by losses of

the same regions in each of the two monophyletic groups.

8. ALIGNMENT DETAILS

Ribosomal RNAs are grouped in bacteria into three families: the 16S, 5S, and 23S rRNAs. As the major

role of tRNAs is to serve as adapters between codons along the mRNA and the corresponding amino acids,

we group them according to their anticodon. More precisely, the four-letter designation starts with one

letter indicating functional class (either an IUPAC one-letter code for a charged amino acid, ‘‘X’’ for

initiator or ‘‘J’’ for a special class of isoleucine tRNA) followed by an anticodon sequence in a DNA

alphabet. The full alignment as given by our program is available as Supplementary Material at www

.liebertpub.com/cmb/.
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