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Abstract. Reconciliation is a method widely used to infer the evolu-
tionary relationship between the members of a gene family. It consists
of comparing a gene tree with a species tree, and interpreting the in-
congruence between the two trees as evidence of duplication and loss. In
the case of binary rooted trees, linear-time algorithms have been devel-
oped for the duplication, loss, and mutation (duplication + loss) costs.
However, a strict prerequisite to reconciliation is to have a gene tree free
from error, as few misplaced edges may lead to a completely different
result in terms of the number and position of inferred duplications and
losses. How should the weak edges be handled? One reasonable answer
is to transform the binary gene tree into a non-binary tree by removing
each weak edge and collapsing its two incident vertices into one. The
created polytomies are “apparent” as they do not reflect a true simulta-
neous divergence of many copies from a common ancestor, but rather a
lack of resolution. In this paper, we consider the problem of reconciling
a non-binary rooted gene tree G with a binary rooted species tree S,
were polytomies of G are assumed to be apparent. We give a linear-time
algorithm that infers a reconciliation of minimum mutation cost between
a binary refinement of a polytomy and S, improving on the best known
result, which is cubic. This implies a straightforward generalization to a
gene tree G with nodes of arbitrary degree, that runs in time O(|S||G|),
which is shown to be an optimal algorithm.

1 Introduction

The evolutionary history of a gene family is determined by a combination of
microevolutionary events at the sequence level, and macroevolutionary events
(duplications, losses, horizontal gene transfer) affecting the number and distri-
bution of genes among genomes [11]. While sequence similarity can be considered
as a footprint of microevolution and used to construct a gene tree G for the gene
family, macroevolution is harder to predict as it is not explicitely reflected by
the gene tree. Having a clear picture of the speciation, duplication and loss
mechanisms that have shaped a gene family is however crucial to the study of
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gene function. Indeed, following a duplication, the most common occurrence is
for only one of the two gene copies to maintain the parental function, while
the other becomes non-functional (pseudogenization) or acquires a new function
(neofunctionalization) [19].

Reconciliation, first introduced by Goodman in 1979 [13] — and since widely
studied and implemented in comparative genomics software [12] — is a method
that compares the gene tree G with a phylogeny S of the considered species
(species tree), and interprets the incongruence between the two trees as evi-
dence describing evolution of the gene family through duplication and loss. A
reconciliation R(G,S) is a tree obtained from G by inserting “lost” branches so
that the obtained tree is in agreement with the phylogeny S. As there can be
several reconciliations for a given tree pair, a natural approach is then to select
one, or a subset, that optimize some probabilistic [1,2] or combinatorial [16] cri-
terion such as the number of duplications (duplication cost), losses (loss cost)
or both combined (mutation cost). Reconciliation of binary rooted trees is a
well-studied problem, and linear-time algorithms based on the so called lowest
common ancestor (LCA) mapping have been developed for the duplication, loss
and mutation costs [6,20,22]. Generalizations of reconciliation accounting for
horizontal gene tranfers have also been considered [9]. In particular, minimizing
the number of duplications, losses and transfers has been shown to be compu-
tationally hard [18], but feasible in polynomial time if the input species tree is
dated [10].

The fundamental hypothesis behind reconciliation is that the gene tree reflects
the true phylogeny of the gene family. Therefore, a strict prerequisite is to have
both gene tree and species tree free from error [8,15]. Unfortunately gene trees
are not always well-supported, and frequently many equally-supported trees are
obtained as the output of a phylogenetic method. Typically bootstrap values are
used as a measure of confidence in each edge of a phylogeny. How should the
weak edges of a gene tree be handled? One strategy adopted in [6] is to explore
the space of gene trees obtained from the original tree G by performing Near-
est Neighbor Interchanges around weakly-supported edges. Another reasonable
answer is to transform the binary gene tree into a non-binary tree by removing
each weak edge and collapsing its two incident vertices into one. A polytomy
(node with more than two children) in a gene tree is called true (or hard) if it
reflects a true simultaneous divergence of its children from a common ancestor,
and it is called apparent (or soft) otherwise [17]. Implicitly, polytomies of a gene
tree obtained by the method of collapsing short or poorly supported internal
branches are apparent polytomies, reflecting a lack of resolution.

In this paper, we consider the problem of reconciling a non-binary rooted gene
tree G with a binary rooted species tree S, where polytomies of G are assumed
to be apparent. More precisely, we seek out a reconciliation of minimum muta-
tion cost between a binary refinement of G and S. Chang and Eulenstein were
the first to consider this problem [3]. They showed that each polytomy P can be
treated independently in O(|S|×|P |2) time, implying an O(|S|×|G|2) algorithm
for the entire tree. In a recent paper [21], a linear-time algorithm is developed
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for reconciling a non-binary gene tree G with a binary species tree S, but for the
duplication cost. The output is a reconciliation with optimal loss cost over all
the reconciliations with the optimal duplication cost, which does not necessarily
minimize the mutation cost. Here, we describe an algorithm that infers the min-
imum mutation cost reconciliation between P and S in O(max(|P |, |S|)) time,
implying an O(|G| × |S|) algorithm over the entire gene tree. This algorithm is
optimal, since there exists a family of instances leading to a most parsimonious
reconciliation of size Ω(|G| × |S|).

2 Preliminary Notation

In this paper, all the trees are considered rooted (we ommit to mention it each
time). Given a tree T , we denote by Tx the subtree of T rooted at x, and by L(Tx)
(or simply L(x) if unambiguous) the set of leaves of Tx. We also denote by root(T )
the root of T , by V (T ) the set of nodes of T and by |T | the number of nodes |V (T )|
of T . The degree of an internal node x in a tree T is the number of children of x.
If T is binary, we denote by xl and xr the two children of x in T .

A phylogeny over a set L is a tree with internal nodes of degree 2 or more,
uniquely leaf-labeled by L. A polytomy (or star tree) over a set of L is a phylogeny
with a single internal node, which is of degree |L|, adjacent to each leaf of L.
For example, the tree G in Figure 2 is a polytomy.

A species tree S is a phylogeny over a set of species Σ, which represents
the evolutionary relationship between these species. Similarly, we can consider
the evolutionary relationship between a family of genes Γ , that appear in the
genomes of Σ: a gene tree G for Γ is a phylogeny accompanied by a function
g : Γ → Σ indicating the species where each gene is found. See Figure 1 for an
example. Given a gene tree G, we denote by S(Gx) the subset of Σ corresponding
to L(Gx) (i.e. S(Gx) = {g(l) | l ∈ L(Gx)}).

In this paper, we assume a binary species tree S and a non-binary gene tree
G. As stated in the introduction, the polytomies of G are considered apparent
(i.e. reflecting non resolved parts of the tree). The goal is then to find a “binary
refinement” of G. For any internal node x of G with children {x1, x2, . . . , xn},
any rooted binary tree on the set of leaves {Gx1 , Gx2 , . . . , Gxn} is a refinement
of the polytomy Gx. The following definition generalizes this fact.

Definition 1 (binary refinement). A binary refinement B(G) of a gene tree
G is defined as follows.

– If r is a leaf then B(G) = G;
– Otherwise, B(G) is a rooted binary tree on the set {B(G1), B(G2) . . . ,

B(Gn)}, where Gi is the tree rooted at the ith child of root(G) (for some
ordering of the children), and B(Gi) is a binary refinement of Gi.

2.1 Histories and Reconciliation

We study the evolution of a family of genes Γ taken from genomes Σ through
duplication and loss. Conceptually, a duplication/loss/speciation history (or sim-
ply history) is a tree H reflecting the evolution from a single ancestral gene to
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Fig. 1. S is a species tree over Σ = {a, b, c, d}; R(G,S) is a reconciliation between
S and the gene tree G represented by plain lines. Here Γ = {a1, a2, a3, b2, c2}, and
for each xi ∈ Γ , g(xi) = x. Internal nodes of R(G,S) are labeled according to the
LCA mapping. Artificial genes {b1, c1, d1, d2} are added to illustrate lost branches.
Duplication nodes are indicated by bold squares, and loss leaves are represented by
crosses. This reconciliation has cost 5: 2 duplications and 3 losses; H illustrates the
history that has led to the gene family Γ .H is the same tree as R(G,H), but represented
differently (embedded in the species tree).

a set of genes through duplication, loss, and speciation events. Given a binary
gene tree G for the gene family and a species tree S for Σ, a reconciliation is
a history obtained from G, in “agreement” with the phylogeny S. In this sec-
tion we formally define history and reconciliation, as well as presenting tools for
working with them. All these concepts are illustrated in Figure 1.

The most popular method for finding a parsimonious reconciliation is based
on the “LCA mapping”. The LCA mapping between G and S, denoted by μ(),
maps every node x of G to the lowest common ancestor of S(Gx) in S, which
is the common ancestor of S(Gx) in S that is farthest from the root. We call
μ(x) the label of x. A node x of G is considered a duplication with respect to S
if and only if μ(x�) = μ(x) and/or μ(xr) = μ(x). Any node of G that is not a
duplication node, is a speciation node.

Take a binary tree T , labeled by the LCA mapping, where there exists exactly
one leaf labeled by each gene in Γ , and a function g : Γ �→ Σ indicating the
species where each gene is found. A duplication-free restriction D(T ) of a tree
T is obtained by removing either Tx�

or Txr for each duplication node x, along
with x, and if x is not the root, joining the parent of x and the remaining child
by a new edge. Each duplication-free restriction D(T ) can be considered to be
a copy of a species tree S, in which case each loss leaf u corresponds subtree Su

of the species tree that is missing in D(T ).
A duplication-free restriction D(T ) agrees with a species tree S iff relabeling

each leaf l of D(T ) by g(l), and replacing each loss leaf u in D(T ) with the
subtree Su, results in a tree isomorphic to S.

Definition 2 (consistent). Take a species tree S and a rooted binary tree T
where there exists exactly one leaf labeled by each gene in Γ , and all other leaves
are labeled as losses. T is said to be consistent with S iff every duplication-free
restriction of T agrees with S.
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Definition 3 (history). A history H is a rooted binary tree uniquely leaf-
labeled by a gene set Γ , and function g : Γ �→ Σ (indicating the species where
each gene is found) with the following properties:

1. Any leaf not labeled by a member of Γ is a loss.
2. Each internal node is a duplication or speciation node.
3. There exists a species tree S consistent with H.

Definition 4 (reconciliation). A reconciliation R(G,S) between a binary gene
tree G and a species tree S is a history that can be obtained from G by inserting
loss leaves and labeling internal nodes as speciations or duplications so that it is
consistent with S.

The parsimony criteria used to choose among the large set of possible reconcil-
iations are the number of duplications (duplication cost), the number of losses
(loss cost) or both combined (mutation cost). The LCA mapping induces a rec-
onciliation R(G,S) between G and S, where an internal node x of G leads to a
duplication node in R if and only if x is a duplication node of G with respect
to S. Moreover, R(G,S) is a reconciliation that minimizes the duplication, loss,
and mutation costs [5,14].

In the rest of this paper, the cost of a reconciliation refers to its mutation
cost.

2.2 Problem Statement

Given a binary species tree S and a non-binary gene tree G, we seek out a
full resolution of G leading to a reconciliation of minimum mutation cost. We
formally define the notion of a resolution of G as being a reconciled refinement
of G.

Definition 5 (Resolution). A tree R(G,S) is a resolution of G with respect
to S if and only if R(G,S) is a reconciliation between a binary refinement B(G)
of G, and S.

We are now ready to state our optimization problem.

Minimum Resolution:
Input: A binary species tree S and a non-binary gene tree G.
Output: A Minimum Resolution of G with respect to S (or simply a Minimum
Resolution of G if there is no ambiguity on S), e.g. a resolution of G with respect
to S of minimum mutation cost.

We first show that each polytomy of G can be resolved independently.

Theorem 1. Let {Gxi , for 1 ≤ i ≤ p} be the set of subtrees of G rooted at the
p children {xi, for 1 ≤ i ≤ p} of the root of G. Let Rmin(Gxi , S) be a minimum
resolution of Gxi w.r.t. S. Let G′ be the tree obtained from G by replacing each
Gxi by Rmin(Gxi , S). Then a minimum resolution of G′ is a minimum resolution
of G.
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Proof. This statement was proved by Chang and Eulenstein in [4], which led
them to a dynamic programming algorithm with running-time complexityO(|S|×
|G|2), for the Minimum Resolution problem. The reader interested in this
proof might refer to Chang’s MSc. Thesis written in 2006.

It follows from Theorem 1 that a minimum resolution of G can be obtained by a
depth-first procedure that solves each polytomy Gx iteratively, for each internal
node x of G. At each step, whether the children of the polytomy Gx are internal
nodes or leaves of G, they are treated as leaves of the polytomy and we refer to
each leaf l by its label μ(l).

In the next section, we consider G as a polytomy whose leaves are labeled
(not uniquely) by nodes of S. Furthermore, as the subtrees Sx of S such that
V (Sx) \ {x} has an empty intersection with S(G), will never be considered in
the resolution of G, we can ignore them. We say that S is a species tree linked to
the polytomy G if and only if any internal node of S has a descendant included
in S(G) and the root of S is the lowest common ancestor of S(G). For example,
in Figure 2, S is a species tree linked to the polytomy G.

3 Method

In this section, we consider G to be a polytomy whose leaves are labeled (not
uniquely) by nodes of a species tree S. Notice that a leaf labeled x actually
represents a whole subtree of the considered gene tree, which has already been
resolved, and thus is consistent with Sμ(x). We assume that S is a species tree
linked to G. We describe an approach for computing a minimum resolution
R(G,S) of G based on the observation that for any node x in R(G,S), all nodes
on a path from x to a leaf in R(G,S) will map to a node that is on a path from
μ(x) to a leaf of S. Thus, we decompose the computation of a minimum resolution
of G according to a depth-first traversal of the nodes of S; for each node s of
S we consider the cost of having k maximal subtrees of R(G,S) whose roots
map to s. For example, Figures 2c and 2d represent two such partial resolutions
where there are three maximal subtrees whose roots map to e. Given, for all k,
the minimum cost of a so-called “k-partial resolution” corresponding to a node
s, we show how to compute the cost of a partial resolution corresponding to the
parent of s. Clearly a solution of the Minimum Resolution problem is a minimum
1-partial resolution of G at the root of S.

3.1 Partial Resolutions

Let s be a node of S. The restriction of G by node s, denoted G/s, is the tree
obtained from G by removing the set of leaves Ls whose labels are not in Ss.

Definition 6 (partial resolution). Let s be a node of S. A partial resolution
P (G,S, s) of G at s is a polytomy on a set Fs ∪Ls, where Fs is obtained from a
resolution R(G/s, S) as follows: Fs is a forest of subtrees of G/s, rooted at nodes
labeled s, partitioning the set of leaves of G/s (i.e. each leaf of G/s is in a unique
tree of the forest).
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Fig. 2. (a) A species tree S and a polytomy G; (b) A 2-partial resolution of G at a of
cost 2 (2 duplications); (c) A 3-partial resolution of G at e of cost 3 (2 duplications
and one loss); (d) A 3-partial resolution of G at e of cost 2 (2 duplications); (e) A full
resolution of G with minimum cost (4 duplications, 1 loss).

The cost of a partial resolution P (G,S, s) on a set Fs ∪ Ls is the sum of the
cost of all the trees (reconciliations) of Fs. See Figure 2 for an example.

Definition 7 (k-partial resolution). Let s be a node of S. A k-partial reso-
lution P k(G,S, s) of G at s is a partial resolution of G at s on a set Fs ∪ Ls

with exactly k trees in Fs.

For example, the tree G in Figure 2 is itself a 4-partial resolution of G at a,
whereas the tree (b) is a 2-partial resolution of G at a, and (c) and (d) are two
different 3-partial resolutions of G at e.

Notation 1. For any integer k ≥ 1, we denote by Ms,k the minimum cost of a
k-partial resolution of G at s. We also denote by Ms the vector (Ms,k)k≥1.

A solution for the Minimum Resolution problem is a resolution of G with cost
Mroot(S),1. In this section, we describe an algorithm that computes Mroot(S),1

based on the costs Ms,k of all partial resolutions of G over all k and s. Before
giving a recursive formulation of Ms,k, we need to introduce a subset of k-partial
resolutions, leading to an intermediate cost Cs,k for internal nodes s, which can
be computed directly from k-partial resolutions corresponding to the children
of s.

Definition 8 (k-speciation resolution). Let s be an internal node of S. A
k-partial resolution P k(G,S, s) of G at node s is a k-speciation resolution of G
at s if and only if each node of P k(G,S, s) labeled s is a speciation or a leaf.

A k-speciation resolution at s contains no duplication node nor loss leaf labeled
s. In Figure 2, the tree G is a 4-speciation resolution of G at node a, while the
tree (d) is a 3-speciation resolution at e. Neither the 2-partial resolution of G
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at a (b) nor the 3-partial resolutions of G at e (c) is a speciation resolution, as
in the first case the left-most child of the root labeled a is a duplication node,
while in the second case the right-most child of the root labeled e is a duplication
node.

Notation 2. For any node s of S, we denote by nb(s) the number of leaves of
G labeled s.

Note that there is no k-speciation resolution for k ≤ nb(s). Indeed, asG has nb(s)
leaves labeled s, any speciation resolution ofG has at least nb(s) speciation nodes
labeles s, and thus k ≥ nb(s). Moreover, as S is a species tree linked to G, at
least one descendant of the internal node s of S should be a leaf of G, and thus
any partial resolution at s needs to have at least one additional speciation node
labeled s.

Notation 3. For any internal node s of S and any integer k > nb(s), we denote
by Cs,k the cost of a minimum k-speciation resolution of G at s. For technical
reasons, we set Cs,k = ∞ for 1 ≤ k ≤ nb(s). We denote by Cs the vector
(Cs,k)k≥1.

3.2 A Recursive Formulation

There is an infinite range of values of k for which Ms,k and Cs,k correspond to
valid resolutions. However, the following remark is easy to validate and implies
that, for some input, we need only consider a fixed-size table of values.

Remark 1. There exists a value n ∈ N such that Ms,k < Ms,n, for any node s of
S and any integer 0 < k < n.

The intuition behind this remark is that when k is large enough a k-partial
resolution would contain too many losses, so could never be part of an optimal
solution.

The following lemma exhibits a relationship between two entries of vector Ms.

Lemma 1. For any node s of S and any integers k, i ≥ 1, we have Ms,k ≤
Ms,i + |k − i|.
Proof. Let P i(G,S, s) be an i-partial resolution at s of cost Ms,i. If i < k,
inserting k− i losses of s at the root of P i(G,S, s) gives us a k-partial resolution
of cost Ms,i + k− i. If i > k, joining i− k+1 subtrees rooted at s in P i(G,S, s)
(by duplication nodes) gives us a k-partial resolution of cost Ms,i + i− k. Both
cases imply that Ms,k ≤ Ms,i + |k − i|. 	

We use Lemma 1 to prove the main recurrence defining Cs,k and Ms,k.

Theorem 2. Let s be a node of S and 1 ≤ k ≤ n.

1. If s is a leaf of S, then Ms,k = |k − nb(s)|;
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2. Otherwise, let sl and sr be the two children of s in S. Then,
(a) Cs,k = Ms�,k−nb(s) +Msr ,k−nb(s) if k > nb(s) (∞ otherwise);

(b) Ms,k = min

(
Cs,k, min

1≤i≤n
(Ms,i + |k − i|)

)

Proof. Let P k(G,S, s) be a minimum k-partial resolution of G at node s of cost
Ms,k. Suppose P k(G,S, s) is defined on the set of nodes Fs ∪ Ls.

1. Suppose s is a leaf of S. If k = nb(s), then each tree in Fs is a single node la-
beled s, with reconciliation cost 0, and thus Ms,k = 0 = |k−nb(s)|. If k < nb(s)
(respectively k > nb(s)), then at least nb(s) − k duplication nodes (respec.
k−nb(s) losses) should be present in the trees of Fs. As the trees of Fs are part
of an optimal k-partial resolution, the number of duplications (losses) should be
exactly nb(s)− k (k − nb(s)), and thus Ms,k = |k − nb(s)|.

2. Otherwise, s is an internal node of S.
2(a) Let P k(G,S, s) be a k-speciation resolution of G at node s of minimum
cost Cs,k. Since none of the trees in Fg are rooted at a duplication node nor
labeled as a loss, there must be exactly k − nb(s) trees in Fs that are rooted at
speciation nodes labeled by s. Any such node must have one child labeled s� and
one child labeled sr. Since we are going through each node of S in a depth-first
manner, we assume that the values of Ms� and Msr have been computed. The
result follows from the fact that Ms�,k−nb(s) (resp. Msr,k−nb(s)) gives the optimal
configuration yielding k − nb(s) trees rooted at nodes labeled s� (resp. sr).
2(b) If P k(G,S, s) is a k-speciation resolution of G at s, then clearlyMs,k = Cs,k.
Otherwise, let k′ be the number of trees rooted at duplication nodes of Fs. For
positive k′, if each of the two children of those duplication nodes were taken as
the roots of two new trees, then we would have a forest of i′ = k + k′ trees.
This gives us Ms,k ≥ Ms,i′ + k′ = Ms,i′ + |k − i′|. If k′ = 0 (and P k(G,S, s) is
not a k-speciation resolution), then Fs must have, say k′′, trees corresponding
to losses. Consider the i′′ = k − k′′ trees of Fs that are not losses. This gives us
Ms,k ≥ Ms,i′′+k′′ = Ms,i′′+|k−i′′| as well. ThereforeMs,k ≥ mini(Ms,i+|k−i|).
On the other hand, Lemma 1 gives us Ms,k ≤ mini(Ms,i + |k − i|). 	


3.3 A Dynamic Programming Approach

The recurrence 2.b in Theorem 2 induces a circular argument for computing the
entries of Ms, as for two different constants k and i, Ms,k may be computed
from Ms,i, which in turn may be computed from Ms,k. In other words, the
recurrences of Theorem 2 cannot be used directly in a dynamic programming
algorithm for the computation of Cs,k and Ms,k. The rest of this section focuses
on reformulating recurrence 2.b. We start by giving two important properties
relating Ms to Cs.

Lemma 2. For an internal node s of S, there exists at least one k such that
Ms,k = Cs,k.
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Proof. Let P k(G,S, s) be a k-partial resolution of G at node s of cost Ms,k,
defined on the set Fs ∪ Lg. Assume that Ms,k �= Cs,k for all k. This implies
Ms,k < Cs,k for all k. Consider the subforest F ′

s consisting of the j maximal
subtrees of Fs that are rooted at speciation nodes; F ′

s defines a j-speciation
resolution with cost C′ < Ms,k. Since Cs,j ≤ C′, we have Cs,j < Ms,k. But
Ms,j < Cs,j , so in general, for any k there exists a j such that Ms,j < Ms,k, a
contradiction since the minimum value in Ms must occur in within a finite range
(by Remark 1). 	

Theorem 2 shows that for an internal node s of S, Ms,k can be computed from
Cs,k, or from some other value in Ms. However, we have not characterized how to
easily discern which case will be used, and we have no information about which
i gives Ms,i = Cs,i. The following lemma addresses this matter by narrowing the
possibilities.

Lemma 3. For some internal node s of S and integer k ≥ 1, if Ms,k �= Cs,k

then there exists an i such that Ms,i = Cs,i and Ms,k = Ms,i + |k − i|.
Proof. By the recurrence 2(b) of Theorem 2, if Ms,k �= Cs,k, then we should
have Ms,k = Ms,i + |k− i| for some i. If Ms,i = Cs,i, then the lemma is verified.
Otherwise, Ms,i = Ms,h + |i− h| for some h. This gives Ms,k = Ms,h + |k − i|+
|i− h| ≥ Ms,h + |k − h|. By lemma 2 we know that there must be some value α
for which Ms,kα = Cs,kα , so in general, for some integers k0 and α we have

Ms,k0 = Ms,kα + |kα − kα−1|+ |kα−1 − kα−2|+ · · ·+ |k2 − k1|+ |k1 − k0|

= Ms,kα +

α∑
i=1

|ki − ki−1|

≥ Ms,kα + |kα − k0| = Cg,kα + |kα − k0|.

Lemma 1 gives the complementary bound Ms,k0 ≤ Cs,kα + |kα − k0|, so equality
holds. 	

Lemma 3 allows us to rewrite the recurrence 2(b) of Theorem 2 as follows:

Ms,k = min
nb(s)<i≤n

Cs,i + |k − i| (Eq.1)

With this new formulation of recurrence 2(b), Theorem 2 leads to a cubic-time
dynamic programming algorithm for the computation of the cost of a solution
of the Minimum Resolution problem. Indeed, let the height of a node s of S
be the maximum number of nodes in a path from s to a leaf of S. Consider
an ordering s1, s2 · · · sp of the nodes of S by increasing height, where p = |S|.
In other words, leaves are listed before nodes of height 1, etc. In particular
sp = root(S). Consider the tables M and C of |S| lines, where each line i of
M and C corresponds respectively to the vectors Msi and Csi . The table C is
defined only for lines i > L(S). We first compute the L(S) first lines ofM in O(n)
steps using recurrence (1) of Theorem 2. Then, for each line i, we successively
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compute Csi and Msi for increasing values of i, by using the recurrences (2) a.
and b. of Theorem 2. Each line representing Csi is computed in time O(n), while
each line representing Msi is computed in O(n2) steps, leading to an O(n2|S|)
algorithm for filling the two tables. The final result (cost of a solution of the
Minimum Resolution problem) is just Msp,1. An example is given in Figure 3.

3.4 A Linear-Time Approach

We show in this section that the recurrence (2)b of Theorem 2 can further
be simplified in a way leading to a constant time update for each Ms vector
according to the Msl and Msr vectors. This implies a linear time algorithm for
the computation of Mroot(S),k.

We first show that Ms,k = Cs,k when Cs,k is the minimum value among the
entries of Cs.

Lemma 4. For k such that Cs,k = min
nb(s)<i≤n

Cs,i, we have Ms,k = Cs,k.

Proof. If Ms,k �= Cs,k, then by Lemma 3, there must exist an i such that Ms,k =
Ms,i + |k − i| and Ms,i = Cs,i. This implies that Cs,i < Cs,k, contradicting the
minimality of Cs,k. 	

The key observation allowing a constant-time computation of any entry in Cs

and Ms is that these vectors can be seen as two functions with a cup shape. The
following definition formally introduces the notion of a “cup function”.

Definition 9 (cup function). A cup function is a convex piecewise linear func-
tion m() which, for a minimum value γm ∈ Z and two breakpoints m1,m2 ∈ N,
is strictly decreasing linearly for x < m1, equal to γm when m1 ≤ x ≤ m2, and
strictly increasing linearly when x > m2. It can be written as

m(x) =

⎧⎪⎨
⎪⎩
γm +m1 − x+ P(x) if x < m1

γm if m1 ≤ x ≤ m2

γm + x−m2 +Q(x) if x > m2

where P : N → Z is non-increasing and Q : N → Z is non-decreasing.
We say the function m(x) is a simple cup function iff P(x) = Q(x) = 0 for

all x. Roughly speaking, a simple cup function viewed from left to right has a
slope of −1, a plateau of minimum values, and a slope of 1.

Assume for now that Ms can be associated with a simple cup function m() such
that Ms,k = m(k) for 1 ≤ k ≤ n. Recall that the values of Cs are obtained by
adding the values of Ms� and Msr (recurrence 2(a) of Theorem 2). We show that
Cs can be associated with a cup function by proving that the addition of two
simple cup functions yields a cup function.

Lemma 5. If �() and r() are two simple cup functions, then the function m()
defined by m(k) = �(k) + r(k), is a cup function.
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Furthermore, if �1, �2 and r1, r2 respectively denote the breakpoints of �() and
r(), and γ�, γr respectively denote the minimum values of �() and r(), then the
breakpoints m1,m2 and minimum value γm of m() are computed according to
the following table:

Condition γm m1 m2

If �1 < r1, �2 < r1 γ� + γr + r1 − �2 �2 r1
If �1 < r1, r1 ≤ �2 ≤ r2 γ� + γr r1 �2
If �1 < r1, �2 > r2 γ� + γr r1 r2
If r1 ≤ �1 ≤ r2, r1 ≤ �1 ≤ r2 γ� + γr �1 �2
If r1 ≤ �1 ≤ r2, �2 > r2 γ� + γr �2 r2
If �1 > r2, �2 > r2 γ� + γr + �1 − r2 r2 �1

Proof. The complete proof of this lemma is given in Appendix A. Moreover, a
more general version of this lemma has already been proven by Csűrös in [7],
where it is shown that the sum of an arbitrary number of cup functions yields a
cup function 	

The following theorem states that Ms and Cs can be associated with two cup
functions with the same breakpoints m1, m2 and minimum value γm. Moreover,
Ms is associated with a simple cup function. For example, each line of the table
of Figure 3 can be rewritten as a cup function, with the breakpoint and minimum
values indicated in vectors m1, m2 and γm.

Theorem 3. For any node s of S, there exists a simple cup function m() with
breakpoints m1,m2 ≥ 1 and minimum value γm, such that Ms,k = m(k) for
1 ≤ k ≤ n.

Furthermore, if s is an internal node of S, there exists a cup function c() with
the same breakpoints m1,m2 > nb(s) and same minimum value γm, such that
Cs,k = c(k) for nb(s) < k ≤ n.

Proof. We prove the theorem by induction over the nodes visited in a postorder
traversal of S.

Base Case: If s is a leaf and nb(s) > 0, let m(k) = |k − nb(s)|. It is clear that
m(k) is a simple cup function with breakpoints m1 = m2 = nb(s) and γm = 0.
If nb(s) = 0, let m(k) be a simple cup function with breakpoints m1 = m2 = 1
and minimum value γm = 1. We have m(k) = |k − nb(s)| for k ≥ 1. Then from
Theorem 2.1, both cases give Ms,k = m(k) for 1 ≤ k ≤ n.

Induction Step: If s is an internal node, then from the inductive hypothesis, there
exist two simple cup functions �(), r() such that Ms�,k = �(k) and Msr,k = r(k)
for 1 ≤ k ≤ n. Let f(k) = �(k − nb(s)) + r(k − nb(s)). By Lemma 5, f() is
a cup function. Let f1, f2 be the breakpoints of f() and γf its minimum value.
From part (2a) of Theorem 2 we have Cs,k = Ms�,k−nb(s)+Msr,k−nb(s), implying
that Cs,k = f(k) for nb(s) < k ≤ n. However, it is possible that f1 ≤ nb(s) or
f2 ≤ nb(s), making the theorem statement invalid.
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Let c() be another cup function with breakpoints m1 = max(f1, nb(s) +
1),m2 = max(f2, nb(s) + 1) and minimum value γm = f(m2) = min

nb(s)<k≤n
Cs,k.

It can be verified that c(k) = f(k) when nb(s) < k ≤ n and thus, Cs,k = c(k)
for nb(s) < k ≤ n. From this, we have

Cg,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞ if k ≤ nb(s)

γm +m1 − k + P(k) if nb(s) < k < m1

γm if m1 ≤ k ≤ m2

γm + k −m2 +Q(k) if k > m2

for 1 ≤ k ≤ n.
By Lemma 4, we know that Ms,k = Cs,k = γm for m1 ≤ k ≤ m2.
If k < m1, we show that Ms,k = γm +m1 − k. From the equation (Eq.1), we

have Ms,k = minj(Cs,j + |k− j|). If j > m1, then by the definition of Cs,j given
above, we have Cs,j ≥ γm and thus Cs,j + j − k ≥ γm +m1 − k. If j < m1, then
Cs,j + |k − j| ≥ γm +m1 − j + |k − j| ≥ γm +m1 − k since we can reformulate
this inequality as |k− j| ≥ j−k. Therefore, Cs,j + |k− j| has the minimum value
when j = m1 and it follows that Ms,k = Cs,m1 +m1 − k = γm +m1 − k when
k < m1.

If k > m2, we show that Ms,k = γm + k − m2. From the (Eq.1), we have
Ms,k = minj(Cs,j+ |k−j|). If j < m2, we have Cs,j ≥ γm and thus Cs,j+k−j ≥
γm+k−m2. If j > m2, then Cs,j+|k−j| ≥ γm+j−m2+|k−j| ≥ γm+k−m2 since
we can reformulate this inequality as |k− j| ≥ k− j. Therefore, Cs,j + |k− j| is
minimum when j = m2 and it follows that Ms,k = Cs,m2 +k−m2 = γm+k−m2

when k > m2.
The three cases verify that Ms can be associated with a cup function. 	


Denote by m1,s,m2,s and γs the breakpoints and minimum value of the cup
function associated with Ms (and thus from Theorem 3 also with Cs). Theo-
rem 2.(1) allows us to compute m1,s, m2,s and γs for any leaf s of S. Finally,
Theorem 2.(2a) and Lemma 5 allow us to compute, in constant time, the break-
points m1,s, m2,s and minimum value γs associated with Cs and Ms, given those
associated with Msl and Msr .

Stated differently, let s1, s2, · · · sp be the ordering of the nodes of S defined at
the end of Section 3.3, and consider the three vectors m1 = (m1,si)1≤i≤s, m2 =
(m2,si)1≤i≤s and γ = (γsi)1≤i≤s. Then each entry of each of these vectors can
be computed in constant-time. Theorem 3 ensures that these vectors allow us to
completely define the simple cup function Ms. This leads to an O(max(|G|, |S|))
algorithm for computing any value Ms,k, and in particular the cost Msp,1 of a
solution of the minimum Resolution problem.

In Algorithm CupValues(s), we detail the steps required to compute m1,s,m2,s

and γs for a given node s. Lines 1 to 6 follow from the Theorem 3’s base case
proof. Line 9 follows from Theorem 2.(2a) and Lemma 5 (discussion above).
Line 10 is a correction needed because the table in Lemma 5 gives the result
for the addition of two simple cup functions for the same value of k, e.g. c(k) =
�(k)+r(k). Since Cs,k = Ms�,k−nb(s)+Msr,k−nb(s), we need to shift the obtained
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breakpoints by adding nb(s) to them. Lines 11 and 12 ensure that m1,s,m2,s >
nb(s) and that γs is the minimum entry in Cs, as stated in Theorem 3.

Algorithm 1. CupV alues(s)

1: if s is a leaf then
2: if nb(s) > 0 then
3: m1,s := nb(s);m2,s := nb(s); γs := 0;
4: else
5: m1,s := 1;m2,s := 1; γs := 1;
6: end if
7: else
8: Let s�, sr be the two children of s:
9: Compute m1,s,m2,s and γs using the children values

m1,s� ,m2,s� ,m1,sr ,m2,sr , γ�, γr and the table given in Lemma 5;
10: m1,s := m1,s + nb(s); m2,s := m2,s + nb(s);
11: If m1,s ≤ nb(s) then m1,s := nb(s) + 1;
12: If m2,s ≤ nb(s) then m2,s := nb(s) + 1 and γs := Ms�,1 +Msr ,1;
13: end if

1 2 3 4 5 6 m1 m2 γm
Ma 3 2 1 0 1 2 4 4 0

Mb 1 0 1 2 3 4 2 2 0

Mc 0 1 2 3 4 5 1 1 0

Md 1 2 3 4 5 6 1 1 1

Ce ∞ 4 2 2 2 4 3 5 2
Me 4 3 2 2 2 3 3 5 2

Cf 1 3 5 7 9 11 1 1 1
Mf 1 2 3 4 5 6 1 1 1

Cg 5 5 5 6 7 9 1 3 5
Mg 5 5 5 6 7 8 1 3 5

Fig. 3. An illustration of the algorithms for the gene tree G and species tree S of
Figure 2(a). The cost of a most parsimonious resolution of G is Mg,1 = 5. The gray cells
are those considered by Algorithm DupLoss for computing the Dup and Loss vectors,
the values in bold being the first ones evaluated by the algorithm on a given row. The
obtained values are Dup(e) = 2, Dup(a) = 2, Loss(d) = 1 and Dup(s) = Loss(s) = 0
for any other node s. The corresponding resolution is given in Figure 2(e).

3.5 Constructing an Optimal Resolution

Starting with s = root(S) and k = 1, we recursively compute the number of
losses and duplications required for each node s of S in an optimal reconciliation,
based on partial resolutions at sl and sr, for sl and sr being the children of s.
The algorithm presented in this section is based on the following result, which
is a corollary of Theorem 3.
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Corollary 1 Let s be a node of S with children s� and sr, and P k(G,S, s) be a
minimum k-partial resolution at s defined on the set Fg ∪ Lg for 1 ≤ k ≤ n.

1. If Ms,k = Ms�,k−nb(s)+Msr,k−nb(s), then the k roots of Fs are all speciation
nodes. Otherwise,

2. either Ms,k = γs + k − m2,s, in which case P k(G,S, s) has k − m2,s loss
leaves labeled s,

3. or Ms,k = γs +m1,s− k, in which case P k(G,S, s) has m1,s− k duplications
labeled s.

Proof. In the first case, Ms,k = Cs,k, indicating that the optimal k-partial reso-
lution at s is a k-speciation resolution. case, taking them2,s-speciation resolution
at s of cost γs and adding k −m2,s loss leaves labeled s yields a k-partial res-
olution at s with minimum score γs + k − m2,s. In the third case, taking the
m1,s-speciation resolution at s of cost γs and creating m1,s − k duplications la-
beled s yields a k-partial resolution at s with minimum score γs +m1,s − k. 	


Algorithm DupLoss(s, k) computes the values Dup(s) and Loss(s), being re-
spectively the number of duplications labeled s and the number of loss leaves
labeled s in a minimum resolution of G. Starting with a call to Algorithm
DupLoss(root(S), 1), the output is a pair (Dup(s), Loss(s)) for each node s of S.
From these values, it is easy to reconstruct the corresponding solution R(G,S)
of the Minimum Resolution problem.

Algorithm 2. DupLoss(s, k)

if s is a leaf and k ≥ nb(s) then
Dup(s) := 0;Loss(s) := k − nb(s);

else if s is a leaf and k < nb(s) then
Dup(s) := nb(s)− k;Loss(s) := 0;

else if k − nb(s) > 0 and Ms,k = Ms�,k−nb(s) +Msr ,k−nb(s) then
Dup(s) := 0;Loss(s) := 0;
DupLoss(s�, k − nb(s)); DupLoss(sr, k − nb(s));

else if k < m1,s then
Dup(s) := m1,s − k;Loss(s) := 0;
DupLoss(s�, m1,s − nb(s)); DupLoss(sr,m1,s − nb(s));

else if k > m2,s then
Dup(s) := 0;Loss(s) := k −m2,s;
DupLoss(s�, m2,s − nb(s)); DupLoss(sr,m2,s − nb(s));

end if

Once the vectors Dup and Loss have been computed, an optimal resolution
of G can be constructed easily, knowing nb(g) for each node, and knowing how
many of these nodes are joined under duplication or speciation and how many
are inserted as losses.
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4 Discussion

We have developed an algorithm for constructing the most parsimonious recon-
ciliation, in term of number of duplications + losses, of a polytomy G with a
binary species tree S, running in time O(|S|). It naturally leads to an O(|G|×|S|)
algorithm for the reconciliation of a gene tree with an arbitrary number of poly-
tomies. Indeed, it is sufficient to traverse the tree in a depth-first manner, and
resolve each polytomy at a time. Interestingly, we can find an example of trees G
and S leading to a reconciliation of size |G|×|S|. Indeed, let Σ = {1, 2, · · · s}, and
consider the species tree S over Σ to be a caterpilar tree (1, 2, · · · s) with leaves
ordered from 1 to s, where s = |S|. Consider the gene tree G to be the caterpilar
tree ((l1, r1), · · · (lg, rg)) composed of g cherries (l1, rs), where the l leaves are
labeled 1, and the r leaves are labeled s. We have g = |G|. Then clearly a most
parsimonious reconciliation of G and S is one with s− 2 leaves inserted in each
cherry of G, which leads to a tree of size |G| × |S|. Therefore, the algorithm is
optimal for our considered Minimum Resolution problem. It is likely however that
finding the mutation cost of an optimal reconciliation, without displaying the
actual reconciliation, can be done in linear-time.
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11. Durand, D., Haldórsson, B.V., Vernot, B.: A hybrid micro-macroevolutionary ap-
proach to gene tree reconstruction. Journal of Computational Biology 13, 320–335
(2006)

12. Fang, G., Bhardwaj, N., Robilotto, R., Gerstein, M.B.: Getting started in gene
orthology and functional analysis. PLoS Comput. Biol. 6(3), e1000703 (2010)

13. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.:
Fitting the gene lineage into its species lineage, a parsimony strategy illustrated
by cladograms constructed from globin sequences. Systematic Zoology 28, 132–163
(1979)

14. Gorecki, P., Tiuryn, J.: DLS-trees: a model of evolutionary scenarios. Theoretical
Computer Science 359, 378–399 (2006)

15. Hahn, M.W.: Bias in phylogenetic tree reconciliation methods: implications for
vertebrate genome evolution. Genome Biology 8(R141) (2007)

16. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM J. on Comput. 30,
729–752 (2000)

17. Slowinski, J.B.: Molecular polytomies. Molecular Phylogenetics and Evolu-
tion 19(1), 114–120 (2001)

18. Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications
and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 517–535
(2011)

19. Zhang, J.: Evolution by gene duplication: an update. Trends in Ecology and Evo-
lution 18(6), 292–298 (2003)

20. Zhang, L.X.: On Mirkin-Muchnik-Smith conjecture for comparing molecular phy-
logenies. Journal of Computational Biology 4, 177–188 (1997)

21. Zheng, Y., Wu, T., Zhang, L.: Reconciliation of gene and species trees with poly-
tomies, eprint arXiv:1201.3995 (2012)

22. Zmasek, C.M., Eddy, S.R.: A simple algorithm to infer gene duplication and speci-
iation events on a gene tree. Bioinformatics 17, 821–828 (2001)


	An Optimal Reconciliation Algorithm
for Gene Trees with Polytomies
	Introduction
	Preliminary Notation
	Histories and Reconciliation
	Problem Statement

	Method
	Partial Resolutions
	A Recursive Formulation
	A Dynamic Programming Approach
	A Linear-Time Approach
	Constructing an Optimal Resolution

	Discussion
	References




