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Uncovering Hidden Phylogenetic Consensus
in Large Data Sets
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Bernard M.E. Moret

Abstract—Many of the steps in phylogenetic reconstruction can be confounded by “rogue” taxa—taxa that cannot be placed with
assurance anywhere within the tree, indeed, whose location within the tree varies with almost any choice of algorithm or parameters.
Phylogenetic consensus methods, in particular, are known to suffer from this problem. In this paper, we provide a novel framework to
define and identify rogue taxa. In this framework, we formulate a bicriterion optimization problem, the relative information criterion, that
models the net increase in useful information present in the consensus tree when certain taxa are removed from the input data. We
also provide an effective greedy heuristic to identify a subset of rogue taxa and use this heuristic in a series of experiments, with both
pathological examples from the literature and a collection of large biological data sets. As the presence of rogue taxa in a set of
bootstrap replicates can lead to deceivingly poor support values, we propose a procedure to recompute support values in light of the
rogue taxa identified by our algorithm; applying this procedure to our biological data sets caused a large number of edges to move from
“unsupported” to “supported” status, indicating that many existing phylogenies should be recomputed and reevaluated to reduce any
inaccuracies introduced by rogue taxa. We also discuss the implementation issues encountered while integrating our algorithm into
RAxML v7.2.7, particularly those dealing with scaling up the analyses. This integration enables practitioners to benefit from our
algorithm in the analysis of very large data sets (up to 2,500 taxa and 10,000 trees, although we present the results of even larger
analyses).

Index Terms—Phylogeny, consensus methods, bootstrapping, support values, MAST.
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INTRODUCTION

PHYLOGENETIC consensus methods are used for combining
a set of trees defined on the same set of leaves into a
single tree, so as to summarize the information found in the
set. By their very nature, these methods discard informa-
tion, typically structural elements not prevalent in the set.
However, the most popular consensus methods (strict and
majority rule) are susceptible to the presence of so-called
rogue taxa [20]. While the tree set may agree very strongly
on the structure relating a large subset of the leaves, the
remaining few leaves (the rogue taxa) can effectively
prevent this underlying structure from appearing in the
strict or majority consensus tree. In other words, these
methods end up discarding structural elements that are, in
fact, prevalent in the set.
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Much work has been done on the problem of summariz-
ing a set of trees, including some work on the issue of rogue
taxa. The pioneering work of Wilkinson [20], [21], [22]
addresses the summarization problem by returning sets of
trees, some of which are missing leaves, with the aim of
conveying the prevalent structural elements in at least one
of the returned trees. While theoretically satisfying, this
approach suffers from computational complexity problems
and, more importantly, from difficulties in interpretation.

A problem closely related to both consensus and rogue
taxa is the Maximum Agreement Subtree (MAST). A MAST on
a set of input trees is the largest (induced) subtree common
to all input trees—one can think of choosing a largest subset
of leaves such that the induced subtrees are the same in all
input trees. While the general problem of finding the MAST
of three or more trees is N'P-hard [1], it can be solved
efficiently when at least one of the input trees has bounded
degree [7]. Another agreement subtree optimization pro-
blem, Maximum Information Subtree (MIST), was proposed
by Bryant [3] to overcome a crucial deficiency of MAST,
namely that the maximization of leaf-set cardinality can
entirely obscure important internal structure revealed by a
smaller leaf subset. Bryant’s algorithm for solving MIST,
whose complexity mirrors that of MAST algorithms,
actually affords the practitioner an option to weight the
importance placed on leaf-set cardinality versus internal
structure in the solution. As such, the optimization function
for MIST resembles the MISC optimization problem we
propose below. Unfortunately, all approaches based on
agreement subtrees can be overly conservative; in particu-
lar, there exist instances where the strict consensus tree
(without dropping any leaves) has more internal edges than
any MAST or MIST—Fig. 1 depicts such an instance.
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Fig. 1. An instance where the strict consensus tree has more internal
edges than any agreement subtree.

Cranston and Rannala recently presented a Markov
Chain Monte Carlo (MCMC) method for identifying a
version of rogue taxa in the context of Bayesian phyloge-
netic reconstruction [6]. Their approach identifies subsets of
leaves for which the posterior distribution strongly sup-
ports the structure of the induced subtree—leaves left out
can be viewed as rogue taxa, albeit in the narrow context of
a sampling of trees in a Bayesian search, rather than in the
general context of a consensus of trees.

All of the approaches mentioned thus far fall into the
category of “leaf-dropping methods,” in the terminology of
Redelings [16]. In contrast, Redelings presents, again in the
context of Bayesian phylogenetics, a method that returns a
“multiconnected tree,” which includes all leaves, but does
not summarize the information through a single tree and
thus again raises issues of interpretation—an issue plaguing
all approaches producing nontrees [2], [5], [10], [11]. This is
not to say that consensus methods are without question
preferable to methods that return nontrees. Gauthier and
Lapointe [10] present examples where very informative
results are returned in nontrees, and there is certainly future
work to be done in deciding the optimal manner in which
consensus information can be best utilized by practitioners.
However, we argue that the staying power and over-
whelming popularity of the consensus methods (particu-
larly the majority rules consensus method) lie primarily in
their ability to return a single tree.

In this paper, we contribute a new framework and
optimization criterion, based on the trade-off between
dropping leaves and uncovering additional consensus
structure. Most methods based on leaf dropping will freely
discard leaves in order to uncover any underlying structure;
in contrast, our approach sets up a bicriterion problem, in
which leaves are discarded only if the gain in uncovered
internal edges outweighs the loss incurred by discarding the
leaves. We define a formal measure of relative information
content (unrelated to classical information theory, in contrast
to the measures proposed by Thorley et al. [19] or Gauthier

and Lapointe [10] which are rooted in information theory) to
capture the trade-off and formulate a bicriterion optimiza-
tion problem based on this measure. We are not the first
researchers to define some notion of relative information
content for consensus trees [10], [19], but our definition is
the first to take into account explicitly the loss incurred by
dropping taxa, as well as to generalize beyond the setting of
agreement subtrees.

Finally, we describe an effective greedy heuristic to
compute a good (if not necessarily optimal) set of rogue
taxa, provide an implementation within the popular RAXML
phylogenetic reconstruction package, and report on its
application to both pathological examples from the literature
and a collection of large biological data sets that we used ina
prior study of bootstrapping. As the presence of rogue taxa
in a set of bootstrap replicates can lead to deceivingly poor
support values, we propose a procedure to recompute
support values in light of the rogue taxa identified by our
algorithm; applying this procedure to our biological data
sets caused a large number of edges to change from
“unsupported” to “supported” status, indicating that many
existing phylogenies should be recomputed and reevaluated
to reduce any inaccuracies introduced by rogue taxa.

The conference paper on which this work is based [15]
introduced the relative information content, the bicriterion
optimization, and the greedy heuristic. This extended
version again covers these topics, and then discusses the
issues of implementation with RAXxML, with particular
emphasis on speed of execution, and presents much more
extensive experimentation, including the analysis of some
very large data sets. The rest of the paper is organized as
follows: In Section 2, we define concepts and terminology.
In Section 3, we define our measure of relative information
content, formalize the bicriterion optimization problem for
consensus and rogue taxa, and present some theoretical
results that underlie our approach. In Section 4, we present
an efficient greedy heuristic for our bicriterion problem, as
well as detail the implementation effort required to
incorporate our algorithm into RAXML. In Section 5, we
present the results of our experiments. In Section 6, we
detail the performance of our algorithm on large data sets.

Before moving into the main body of the paper, we note
that consensus tree building is only one of many phases in
phylogenetic reconstruction where rogue elimination/re-
moval may prove fruitful. Ultimately, it would be ideal to
eliminate rogues from the leaf set before reconstruction
begins. To this end, we discuss briefly in the conclusion a few
ways that rogues may arise, and leave a systematic treatment
of this deep issue as future work. In other words, eliminating
rogues at the source appears more difficult for now than
detecting and eliminating them at the reconstruction stage.

2 PRELIMINARIES

We use standard set and graph terminology and notation;
in particular, U refers to union, N to intersection, \ to set
difference, and A to symmetric difference—i.e., SAT =
Sum\(SNT).

A phylogenetic tree represents the evolutionary relation-
ships among a collection of living organisms. Homologous
data (typically molecular sequences), with one datum for
each organism, are placed at the tips of the tree—hereafter
called the leqves; the internal structure of the tree—its edges
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(sometimes also called branches)—represents the evolu-
tionary relationships. The removal of an edge disconnects
the tree and partitions the set of leaves into two subsets;
thus each edge corresponds to a bipartition of the set of
leaves. Every tree includes the same trivial bipartitions,
which separate one leaf from all others; the other biparti-
tions are called nontrivial and correspond to an internal edge
of a tree, that is, an edge not incident on a leaf. We can thus
view a phylogenetic tree as a leaf-labeled tree T' = (L, B),
where L is the set of leaves and B is its set of nontrivial
bipartitions. To describe a bipartition, we list the two sets of
leaves, separated by a | symbol. To ensure an equivalence
between nontrivial bipartitions and internal edges, we
require that every internal node in a phylogeny have
degree at least 3. The number |B| of nontrivial bipartitions
in a phylogeny is at most |L| — 3; when the upper bound is
met we say that the tree is fully resolved or binary; otherwise,
there must exist an internal node of degree at least 4 and
any such node is known as a polytomy.

The consensus problem is given by a set 7 of m trees
defined on a common set L of n taxa (leaves). The bipartition
profile of T is the pair

P=(Br,v:Br — 27)7

where Br is the set of all nontrivial bipartitions found
across all m trees (equiv. the union of the bipartitions of the
m trees in T) in the set and v is a function mapping
bipartitions to the trees in which they appear.

We denote the removal of leaves from trees through the
restriction operator—which also uses the | symbol. For
example, 7|L' refers to restricting each tree in the set 7 to
the leaf subset L' C L, which corresponds to removing each
leaf in L\ L’ from each tree, as well as removing any nodes
of degree 2 created in the process. Individual trees, tree sets,
and bipartition profiles can appear on the left-hand side of
the restriction operator.

We focus on consensus methods based on bipartition
frequency—see the excellent survey of Bryant [4] for a
comprehensive treatment of consensus methods. Given a
threshold parameter % <t < m, the t-consensus tree is
composed of all of the bipartitions that occur in more than
t trees. The majority rule consensus [12] is obtained by
setting ¢ to %, while the strict consensus is obtained by
setting ¢ to m — 1. We denote t-consensus methods by C;.
Thus, C,,—1(T) corresponds to taking the strict consensus
tree of the set 7.

3 CONSENSUS, RELATIVE INFORMATION CONTENT,
AND ROGUE TAXA

3.1 The Measure and the Problem

The general problem we study can be phrased as follows:
given a set 7 of trees on a common leaf set L and given a
frequency-based consensus method C;, we want to find a leaf
subset L' that optimizes the relative information content of
the consensus returned by C; on the set of subtrees induced
by L'. The crucial notion here is that of relative information
content. Formally, if C,(7|L') yields T" = (L', B'), then the
relative information content is given by

|+ |B|

0L = iz —s)

(1)
This measure is the ratio of the total number of bipartitions
(trivial and nontrivial) in the consensus tree derived on the
reduced leaf set to the total number of bipartitions in an
ideal, fully resolved tree on the original leaf set. By taking
trivial bipartitions into account, we automatically penalize a
method for removing many leaves, since the number of
trivial bipartitions is simply the number of leaves. By adding
the number of nontrivial bipartitions, we reward a method
for preserving more internal edges, since the denominator is
fixed to the number of such edges in an ideal tree. Note that
the use of the word “information” in our definition does not
imply information-theoretic foundations. (A definition of
relative information content that does not explicitly refer-
ence a consensus method may be of independent interest. In
(1),if T" = (L', B') is provided independently, then C; can be
dropped from the arguments of 1.)

A curious property of our definition for RIC is how it
performs in scoring poorly resolved consensus trees.
Specifically, using the strict consensus method as an
example, it is the case that a data set whose consensus tree
is the star tree (i.e., contains zero nontrivial bipartitions) will
have RIC tending toward 3. That this value is nonzero is
seemingly at odds with a common perception that a star
tree conveys no information. Again, this is precisely the
point of explicitly including leaves in our formulation of
RIC, as we contend that the leaves themselves convey
information. Finally, notice that it is possible to have an RIC
of value less than { (in fact, an RIC of zero is possible) when
we consider dropping leaves in a way that the consensus of
the restricted set is still poorly resolved.

We now formulate our main problem, which we call
MISC, for Maximum-Information Subtree Consensus.

Problem. Given a set 7 of trees defined on a common
leaf set L and a frequency-based consensus method C;, find
a leaf subset L' that maximizes the relative information
content I(C,(7T|L), L, C;).

The MAST solution typically maximizes the |B'| term at
the expense of the |L'| term—it has no direct penalty for
dropping leaves. In contrast, consensus methods typically
maximize |L’| (in the case of majority and strict consensus,
by forcing L' = L) at the expense of |B'|. MISC, on the other
hand, combines the two aspects into a single formulation.

Before moving on, we propose an extension to RIC that
may warrant further exploration. Specifically, it may make
sense to redefine RIC more generally as

, o|L'| + BB

ML =1 =y ?
subject to o and (3 being nonnegative. This formulation
affords control of the emphasis placed on leaves versus
nontrivial bipartitions as being informative in a phylogeny.
This is similar in spirit to the parameters defined in MIST by
Bryant [3] in the agreement subtree setting. For the
remainder of this paper, though, we assume that o = 5 = 1.

3.2 How Bipartitions Change under Leaf Deletion

We begin by studying the effect that dropping leaves has on
a bipartition profile. For any bipartition in the original
profile, there are three cases. We illustrate these cases
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through a simple example, with an original leaf set of
a,b,c,d, e, f and with leaves b and e dropped.

1. merge. If two bipartitions differ solely in (a subset
of) the leaves being dropped, then those bipartitions
get merged in the new profile. For example, ac|bde f
and abc|def merge into ac|df and the v set for the
merged bipartition consists of the union of v sets of
the two original bipartitions.

2. disappear. If dropping the leaves creates a biparti-
tion with an empty side or makes the bipartition
trivial, then the bipartition disappears. For example,
both acdf|be and acd|bef disappear.

3. no change. Otherwise, the restricted bipartition
remains in the bipartition profile with an un-
changed v.

An important observation is that, for all L” C L' C L, every
nontrivial bipartition in P|L” and in C,(7|L") arises as a
result of a “no change” of a single bipartition or a “merge”
of two or more bipartitions in P|L’. Unfortunately, this
observation has not led to an efficient exact algorithm for
the MISC problem.

3.3 Finding Subsets of Leaves to Drop

Given two bipartitions b; and b, of L, we can easily identify
all leaf subsets L' of minimum cardinality such that
dropping L' from L merges b; and b,. If we have by = A|B
and by = C|D, then the dropset L' is the smaller of the two
following sets (or either set in case they have the same size):

(AAC)U (BAD)or(AAD) U (BAC). (3)
The dropset computation can be simplified to
(AAC)or(AAD), 4)

by observing that (AAC) = (BAD) and (AAD) = (BAC)
due to A and B (resp. C and D) being complementary.

This concept is exploited in Algorithm 1 (see the
pseudocode below). Observe that, in the terminology of
[17], removing the dropset of b; and b, yields the largest
partial X-split such that b; and b, both extend it.

Algorithm 1. Find minimum cardinality leaf-dropset that
renders b; = by
Input: two bipartitions on the same leaf set
Output: a set of dropsets (of cardinality one or two)
1: Function BIPARTITION-PAIR-DRPPSET (b; = A|B,
by = C|D)
Sy — AAC
Sl — AAD
if |S()| < |Sl| then
return {5y}
else if |51 < |Sp then
return {5}
else

return{5,51 }
10: end if
11: end function

Theorem 1. Algorithm 1 computes the minimum cardinality
dropsets (of which there will be at most two such dropsets) for
any pair of bipartitions of L.

Proof. That the dropset causes the two partitions to merge is
evident. We establish that the dropset has minimum
cardinality by contradiction. Consider that there exists a
smaller dropset merging the two bipartitions. Then there
is at least one leaf ¢ in the dropset returned by our
algorithm that is not in the smaller dropset. This leaf
must be on the same side of the partition in both b; and
by, since otherwise our dropset would not merge the two.
But our algorithm uses the symmetric difference of these
two sides in computing the dropset, so it could not have
chosen /¢, a contradiction. O

Theorem 2. The cardinalities of the dropsets returned by
Algorithm 1 define a metric on the space of bipartitions of L.

Proof. Three properties characterize a metric: it must be
positive definite and symmetric, and it must obey the
triangle inequality. The first two properties are trivial in
this case. Suppose we have bipartitions by, b2, and b3; we
want to show that the cardinality of the dropset of b, and
b3 cannot exceed the sum of the cardinalities of the
dropsets of b; and by and of b; and b3. Note that removing
both of these dropsets from both b; and b3 merges the
two bipartitions, thereby establishing an upper bound on
the distance between these two bipartitions in our space;
but the distance is the size of the dropset of b; and b3, so
that the triangle inequality holds. 0

We note that Theorem 1 is not used in the remainder of
this paper, but has spurred other research investigations
which are currently in submission.

4 THE ALGORITHM
4.1 Description and Pseudocode

We describe the algorithm at a conceptual level, leaving a
more formal specification to inset pseudocode. First, we
build the bipartition profile for the given tree set. Next, we
compute the dropset for each pair of bipartitions in the
profile such that neither bipartition in the pair appears in
the consensus tree, but the pair would appear if merged.
For each unique dropset, we accumulate the list of
bipartition pairs yielding that dropset. These last two steps
are formalized in Algorithm 2. We then compute the impact
of each dropset as the number of bipartition pairs giving
rise to that dropset minus the size of the dropset itself. This
score corresponds roughly to the difference between the
number of edges that will be created and the number of
leaves that will be lost should that dropset be used. The
dropset of largest impact is then used, the profile updated,
the impacts updated, and the process repeated until there
does not remain any dropset with a nonnegative impact.
This greedy framework is formalized in Algorithm 3. The
impact measure ignores disappearing edges and dropsets
that are subsets of another—the latter because a superset
with deceivingly poor score is likely to get chosen in a
subsequent round. The overall algorithm is a greedy
heuristic, but does well in practice and on hard instances,
as we demonstrate in the next two sections.
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Algorithm 2. Find potential dropsets by examining all pairs

in a profile

input: A bipartition profile P = (Br,v: By — 27)

input: A frequency-only consensus method C; with
threshold ¢

Output: An object mapping dropsets to lists of bipartition
pairs

1: Function POTENTIAL-PROFILE-DROPSETS (P, C;)

2: T« {blbe€ Br and |v(b)| <t}
3: for all pairs of bipartitions b;,b; in I' do
4: if |v(by) Uv(by)| > t then
5: L « BIPARTITION-PAIR-DROPSET (b1, b»)
6: forde L do
7. 6ld) — 81d) U{ (b1, b2)}
8: end for
9: end if
10: end for
11: return ¢

12: end function

Algorithm 3. Our top level iterative heuristic for finding

dropsets

Input: A tree set 7

Input: A frequency-only consensus method C with
threshold ¢

Output: A set of leaves to drop, composed of the union of
dropsets

1: function SELECT-AND-REMOVE-DROPSETS (7))
2 d* — dgeeqy <— 0
3 repeat
4: P «— BUILD-BIPARTITION-PROFILE (7 |(L — d*))
5: 6 — POTENTIAL-PROFILE-DROPSETS (P, C;)
6 mazximpact = 0
7 dgr’ccdy = @
8 for all d € ¢’s domain do
9: if |6[d]| — |d| > mazimpact then
10: dgreedy =d
11: mazimpact = |6[d]| — |d|
12: end if
13: end for
14: d" = d* Udgreedy
15: untill dgeeqy = 0
16: return d*

17: end function

There remains the issue, as with all leaf-dropping
methods, of what to do with the dropped leaves. The staying
power of consensus methods argues for producing a single
tree and our method does that. For rogue taxa, we provide a
strategy in Section 5.3 that is applicable in some settings.

4.2 Implementation and Optimization

Since the preliminary version of this paper, we have
implemented and optimized our algorithm as part of RAXML
[18]. This was a logical choice as the RAXML codebase
provides efficient data structures for operations on biparti-
tions. RAXML v7.2.7, which implements the leaf-dropping
algorithm, is available for download at http:/ /wwwkramer.
in.tum.de/exelixis/software/.

4.2.1 Implementation
In the RAXML implementation, the bipartition profile of the
input tree collection and the set comprising potential
dropsets are stored as hash tables. In addition to the quick
indexing afforded by the bipartition profile hash table, it
also provides a mapping to the set of trees that support a
particular bipartition. The dropset hash table provides a
mapping of the taxa in a dropset to the number of pairs of
bipartitions that will be merged when applying the dropset.
The sets in the bipartition profile, that is, the bipartitions
induced by the tree collection, are hashed as bit vectors. To
save memory in the dropset hash table, dropsets are hashed
as list of (taxon) indices. This is because they are typically
very small sets, and a bit-vector representation would prove
sparse (thereby requiring an excessive amount of memory).
A representation as bit vector is advantageous if, on
average, more than 1 bit (per 32 bits) is set, that is, more
than #tazra/32 taxa would be dropped. Thus, to compute
entries for the dropset hash table we initially apply a XOR
operation on bit vectors. The bits that are set in the result
are then converted into an index list.

4.2.2 Optimization

The operation for computing candidate dropsets (this
operation has complexity O(|Br|*), where By is the number
of bipartitions in the profile) dominates the execution time
of the unoptimized algorithm and accounts for approxi-
mately 97 percent of overall execution time.

To improve the performance of this operation, we use
sorting along with the (consensus specific) threshold ¢ (see
Section 2 for the definition of C; and t) value to avoid
unnecessary computations. Specifically, we begin by sorting
the list of bipartitions by their frequency of occurrence. Then
we check pairs of bipartitions (b;, b;), where i # j, by order of
decreasing frequencies. When the sum of the frequencies of
b; and b; is below the frequency threshold ¢ (see Section 2),
no other (less frequently occurring) bipartition b;, where
k < j, can be merged with b; to form a bipartition with a
higher overall frequency. Hence, we can omit comparisons
to all successive bipartitions that are stored in the sorted list
because they have a lower frequency.

In the optimized algorithm, the computation of candi-
date dropsets requires 60 percent of overall execution time.

5 ALGORITHM PERFORMANCE

In the following, we present results on artificial data sets
constructed to cause difficulties to various consensus
methods, followed by results on biological data sets that
we used in previous work on bootstrapping. We then
discuss implications of our results on the interpretation of
phylogenetic reconstruction. We conclude by a smaller
study on biological data sets using a slight modification of
our algorithm to maximize the number of nontrivial
bipartitions in the result.

5.1 Difficult Instances

Our algorithm is particularly well suited to the so-called
“pathological” instances used in the literature to critique
the strict or majority consensus. In this section, we cover
a number of specific instances and instance families
which exhibit the inherent limitations of frequency-based
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Fig. 2. A simple, yet starkly contrasting, example (top) for which the strict
consensus returns a star tree, but for which our algorithm correctly
identifies the rogue taxa and produces a fully resolved tree (bottom).

consensus methods, the effectiveness of our approach, as
well as limitations with our approach.

5.1.1 A First Example

A classic example is an instance where the trees share a
common subtree of n — k leaves, but where the remaining k
leaves destroy resolution in the consensus.

This example uses the strict consensus. An instance
consists of just three trees, defined on the 28-leaf set
{a,b,...,z,R,S,T,U}. The common backbone consists of
the 24 taxa {a,b,...,z}, as illustrated in Fig. 2e.

The rogue taxa form the set {R,S,T,U}; they vary in
position on the backbone as indicated in Figs. 2a, 2b, and 2c.
The strict consensus tree of the three trees is shown in Fig. 2d:
it is a star, with no nontrivial bipartition (no internal tree
edge) and its relative information content is I(7, L,C,,—1) =
st = 28 ~ 0.53. Our algorithm correctly identifies the rogue
set, however, so that its strict consensus tree on the
remaining set of leaves is the backbone, with a relative
information content of I(T|{a,...,z},L,Cp 1) =551 =
% ~ 0.85.

5.1.2 The 1-Cherry Trees

The behavior exhibited in the previous example is not
limited to small trees. In this section we introduce a simple,
but infinitely large, family of instances exhibiting similar
behavior. An instance in this family is fully specified by a
parameter k. An instance has m =3- 2k trees, and n =
3 -2k 4 1 leaves. The common backbone that exists in each
tree consists of all but one of the leaves and structurally is a
fully balanced binary tree. The remaining leaf, name it R
wanders and occurs together with every second leaf X in a
bipartition of the form RX|rest (which is colloquially
referred to as a cherry in phylogenetics, hence the name of
the family). See Fig. 3 for the cherry tree with k = 1.

(d) Tree 4

(e) Tree 5 (f) Tree 6

Fig. 3. The second instance (the first is k= 0) of our family of cherry
trees. There are 3- 2" = 6 trees on 3 - 251 41 = 13 leaves.

Our algorithm correctly identifies the rogue taxon in all
cherry trees. The relative information content of cherry tree
k is

3.2 41 3.2 4
(3.2k+1+1)+(3.2k+1+1_3)_2.3.2k+1 1’

which in the limit &, n, m — oo tends toward % After rogue
identification and elimination by our algorithm, which in
this case optimally solves MISC-C,,_;, the relative informa-
tion content is

3‘2k+1+3_2k+173 _2_3_2k+173
(3.2k+1+1)+(3‘2k+1+1_3)_2.3.2k+1_1’

which in the limit k&, n, m — oo tends toward 1.

5.1.3 The r-Cherry Trees

The 1-cherry tree instances are somewhat unsatisfying as
pathological instances because a much simpler strategy
than our algorithm is sufficient for finding the single rogue
taxon (e.g., the polynomial time procedure of dropping each
leaf in turn and applying the strict consensus method to
assess relative information content of the result). However,
it is straightforward to adapt the basic principle behind 1-
cherry trees to induce an effectively arbitrary number of
rogue taxa. Given k and a desired number of rogue taxa r
(where r divides 4 evenly), we take n=3-2""!+ 7 and
m = 3’7—? In the first tree, the rogue taxa are attached as
cherries to every second taxon, for a total of 2 taxa. In the
second tree, the rogue taxa are attached to the next 2 (while
attaching as a cherry to every second) taxa. This pattern
continues in each subsequent tree. An instance of this
family is actually what we showed in Section 5.1.1 as a
motivational example for our algorithm (Fig. 2), which is
the k = 2 4-cherry tree (i.e.,, k =2 and r = 4).

5.1.4 The Comb/Caterpillar

Another instance (family) that exhibits extremal behavior
with respect to relative information content arises when
subjecting the comb or caterpillar tree (so named by their
appearance when drawn) to rogue taxa. The simplest case
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(a) Tree 1 (b) Tree 2

Fig. 4. An instance where all of the internal structure of the strict
consensus tree is destroyed by a single rogue taxon, even with only two
trees in the set.

consists of two trees, on an arbitrary number of taxa, where
the rogue taxon occurs at each end of the backbone tree. See
Fig. 4 for the instance of this family with nine taxa. This
family of caterpillar instances is also often used to
demonstrate a brittleness of the Robinson-Foulds metric.
Namely, the RF distance between the two trees is maximum
(for the given number of taxa), whereas the trees are clearly
nearly identical. Our algorithm performs particularly well
on caterpillar (and related) instances because hidden edges
in such instances are almost always revealed by merging
pairs of bipartitions.

5.1.5 Instance Requiring a Three-Way Merge

As was discussed earlier, bipartitions in a restricted
consensus tree can be uncovered as the result of merging
three or more bipartitions. Since our algorithm only
considers bipartition pairs as merging candidates, an
instance which only admits improvement via a three (or
more)-way merge will fail to be solved by our algorithm.
Fig. 5 illustrates such an instance. The relative information
content of the nonrestricted instance is 2 whereas removing
leaves R and S yields a situation where the relative
information content is % However, our algorithm will
recommend to not drop any leaves.

5.1.6 Some Notes about C; Where t < m

All of the instances presented in this section considered
relative information content in light of the strict consensus
method (C,,—1). However, it is trivial to adapt these instance
families into easy/difficult cases for our algorithm when
operating under the majority rule (Cz) consensus method.
Namely, for any instance discussed so far with m trees, add
an additional m — 1 star trees (recall that the star tree
contains zero nontrivial bipartitions). This simple transfor-
mation yields instances that perform identically with respect
to relative information content (with Cu substituted for C,,_1).
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c d c d d S
R . S R c R
b £ b e b f
a S f a R
(a) Tree 1 (b) Tree 2 (c) Tree 3

Fig. 5. This instance will not be solved correctly by our algorithm. This is
because identifying R and S as rogue requires merging three
bipartitions.

It is also interesting to note that all of the examples
presented in this section can be optimally solved by MAST/
MIST. This is evidence of the logic behind conceiving these
instances. That is, start with a common backbone tree
(which in the end turns out to be the MAST/MIST), and
add rogues in various ways so as to confound the consensus
method. However, as we showed in Fig. 1, MAST/MIST
will not always optimally solve MISC even when the
consensus method is specified as strict consensus. And,
clearly, the usefulness of MAST/MIST diminishes in
relation to solving MISC when we consider consensus
methods where the threshold is less than strict.

Refer to Table 1, for a comparison of dropset sizes for
MAST/MIST and those that our algorithm returns, along
with the corresponding relative information content of each
solution.

5.2 Results on Biological Data

We applied our method to the data sets we used in an earlier
study of bootstrapping methods [13] and available at http://
Icbb.epfl.ch/BS.tar.bz2. There are 10 data sets of single-gene
and multigene DNA sequences, with anywhere from 125 to
994 taxa. For each data set we generated 1,000 bootstrap
replicates and applied our algorithm to the resulting trees
using both Cz and C;,—1. Our algorithm found rather diverse
dropset sizes across the 10 data sets. The results are depicted
in Fig. 6, where a quartet of histogram bars are shown for
each data set with a nonempty dropset. The first histogram
bar (a negative quantity) denotes how many leaves were
dropped, while the second bar (a positive quantity) denotes
how many nontrivial bipartitions were uncovered. The third
bar is the sum of the first two, simply depicting the net
(nonnormalized) contribution to relative information con-
tent. The final bar is discussed in Section 5.3.

TABLE 1
A Comparison of Our Dropset Sizes versus the Number of Leaves Dropped in a MAST/MIST
taxa 125 150 218 354 404 500 628 714 994
RIC for full dataset (MR) | 0.992 0.848 0.790 0.711 0.806 0.853 0816 0.841 0.889
RIC for MISC (MR) 0992 0852 0.790 0.713 0.822 0.855 0.820 0.844 0.893
RIC for full dataset (SC) | 0.895 0572 0.550 0517 0.524 0555 0.547 0.561 0.589
RIC for MISC (SC) 0.895 0572 0550 0517 0527 0555 0551 0561 0.59%4
RIC for MAST 0.700 0.118 0.081 0.021 0.125 0.061 0.042 0.061 0.045
taxaInMISC (MR) 125 149 214 352 393 496 624 708 991
taxaInMISC (SC) 125 150 218 354 403 500 625 714 989
taxalnMAST 88 19 19 9 52 32 28 45 46

Note that MISC refers to the output of our (greedy) algorithm, and not necessatrily the optimal solution to MISC. SC refers to the Strict Consensus

and MR refers to Majority Rules Consensus.
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Fig. 6. The performance of Algorithm 3 in terms of how much “hidden”
consensus is uncovered in biological data sets. The top plot is for
majority consensus, the bottom for strict consensus. The tree sets each
consist of 1,000 bootstrap replicates generated by the RAXML 7.2.5
Rapid Bootstrap Algorithm.

For comparison, we have included in Table 1 the size of
the MAST/MIST (which are equivalent in this case as all of
the input trees are binary) for our data sets.

5.3 Biological Interpretation

Maximum likelihood phylogenetic analyses are typically
conducted in two steps. First, the reconstruction proper is
performed, yielding a “best tree.” Then a number of
bootstrap replicate trees are generated, say 500 of them;
for each bipartition b in the best tree, its support value is
calculated as a normalized count of the number of replicates
in which b appears. Researchers tend to consider edges with
support lower than 75 percent as unreliable [8].

If rogue taxa are present in the replicate set, the support
values for certain bipartitions can be deceivingly de-
pressed. To remedy this problem, we propose that
Algorithm 3 be applied to the replicate set in order to
identify rogue taxa. If a dropset of nonzero size is found,
this dropset is then removed from each tree in the replicate
set. Finally, the support value is calculated as a normalized
count of the replicates in which ¥ appears such that, if we
have b= A|B, then, without loss of generality, we have
b =A|B such that A/ CA and B C B. In this way,

support values in the “best tree” are less susceptible to the
deceiving influence of rogue taxa. This approach offers one
possible solution to the data display problem of leaf-
dropping methods. We still return a single tree on the
original leaf set (the “best tree” as reconstructed by an ML
method), but support values for individual bipartitions
more accurately reflect the underlying replicate data. In
our data sets, recomputing support values as suggested
above yields very intriguing and promising results. All but
two of the identified dropsets succeeded in pushing at
least one previously hidden edge in the “best tree” over
the 75 percent threshold. The number of edges uncovered
by this application of our technique is displayed in the
fourth histogram bar in Figs. 6a and 6b. In the data set
with 404 taxa, 20 edges were uncovered in this manner,
pointing to a need for reevaluation of the phylogeny.

5.4 Increasing Resolution

Our algorithm can easily be modified to maximize
nontrivial bipartitions, that is, to remove taxa so as to
increase resolution. With such a setting, our algorithm
loosely matches the goal of Cranston and Rannala [6], so we
analyzed the same data set with our technique to compare
our results to theirs. The data set consists of 85 species of
Canformia Carnivora [9]. We obtained the sequence data
from TreeBASE (http://www.treebase.org, Study Acces-
sion # 51532) and reconstructed a tree using RAXML-7.2.5
[18] under the GTRCAT approximation. Additionally,
RAxML was used to generate 350 bootstrap replicates (the
number chosen by RAXML’s bootstopping algorithm).
Analyzing these 350 trees with our modified Algorithm 3
and using majority consensus generated fully resolved trees
with 50 to 55 taxa, a value consistent with the size of the
agreement subtrees observed by Cranston and Rannala [6].

6 RUNTIME PERFORMANCE

Execution times for the optimized RAXML implementation
were measured on collections of 10,000 bootstrap replicate
trees on 16 real biological data sets containing between 150
and 2,554 taxa [13]. The test runs were conducted on a Sun
x4440 server (24 AMD cores, 128 GB RAM) and on a Sun
x4600 server (32 AMD cores, 64 GB RAM).

In Table 2, we provide the overall execution times in
seconds as well as the execution times of the dropset
phase (see Section 4.2) for the unoptimized and optimized
RAXML implementations. Note that, in the unoptimized
case, dropset computation typically accounts for more
than 90 percent of total runtime. In row # bipartitions, we
also indicate the total number of unique bipartitions in
each tree collection.

As discussed in Section 4.2.2, the optimization of the
dropset calculation phase avoids unnecessary computation
on pairs of bipartitions that cannot be merged into a
frequently (specifically, with frequency exceeding ¢, where ¢
was defined in Section 2) occurring bipartition. This simple
shortcut yields overall runtime improvements between one
to two orders of magnitude. This improvement is achieved
because a large fraction of bipartitions stored in the profile
occur in few trees, so that a substantial number of pairwise
operations on bipartitions can be avoided (and the effect is
more pronounced with higher values of t).
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TABLE 2
Overall Execution Times (Runtime) and Dropset Phase Execution Times (Dropset Time) for the Unoptimized and Optimized (Opt.)
RAXML Implementations in Seconds

# taxa 150 218 354 404 500 628 714 994
run-time 2.9 23.1 1,908.9 837.5 106.2 267.4 4139 254.9
dropset time 2.1 21.3 1,902.7 830.9 101.1 260.9 403.6 243.9
opt. run-time 0.8 1.9 5.7 9.1 6.1 8.1 14.3 14.2
opt. dropset time 0.1 0.2 0.3 2.1 1.1 1.4 53 3.1
# bipartitions 11,336 23,276 170,397 73,434 42,630 75,156 61,280 64,497
# taxa 1,288 1,481 1,512 1,604 1,908 2,000 2,308 2,554
run-time 6,673.9  634,188.4 2255871 1415735 61,9422 1,704,656.0 5759.9  423,813.2
dropset time 6,640.9  634,0252 225451.7 141,406.6 61,854.0 1,704,244.0 5,693.1  423,522.0
opt. run-time 49.9 238.6 166.5 223.7 117.5 727 4 114.6 743.8
opt. dropset time 18.7 75.4 54.2 106.2 43.0 315.4 42.5 452.6
# bipartitions 178,242 718,719 589,985 352,229 439,279 761,654 156,812 470,434

Data for 10,000 BS replicate trees on 16 real-world data sets with 150 up to 2,554 taxa.

The runtime contribution of dropset computations
decreases in the optimized implementation because other
operations, such as parsing input trees, building a
bipartition profile, and reconstructing an output tree from
a set of bipartitions, now require a larger fraction of
runtime. The optimized RAXML implementation is two to
three orders of magnitude (data set specific) faster than the
original python script.

Table 2 also shows that execution time and number of taxa
are not strongly correlated. The run time of the most
computationally intensive phase, the dropset calculation,
depends on 1) the size of the bipartition profile which grows
with the number of taxa and also grows, but saturates, with
the number of trees, 2) the number of iterations required
until no additional dropset with positive impact can be
found, and 3) the size of the bit vectors, that increases
linearly with the number of taxa and number of trees.

To illustrate factor 2), see Table 2 which shows that
40 dropset identification iterations were required for the
2,000 taxon data set, whereas only eight iterations were
required for the 2,308 taxon data set. To illustrate factor 1),
our tree collection containing 2,304-taxon trees contains
significantly fewer unique bipartitions than the 2,000-taxon
and 2,554-taxon tree collections.

These confounding factors make it difficult to forecast
runtimes for our implementation on larger data sets.
Despite these challenges, we are currently able to handle
data sets of 10,000 trees on 2,554 taxa, with more than
760,000 unique bipartitions—a size that should cover most
data sets analyzed today.

Finally, we explored the scalability limits of the RAXML
implementation by using 672 bootstrap replicate trees
generated for a phylogenetic analysis of angiosperms
comprising 37,831 taxa (Stephen A. Smith, Jeremy M.
Beualieu, A. Stamatakis, submitted). We found that, despite
using a multicore system with 128 GB of main memory for
testing, memory consumption represents the main limiting
factor (in the sense that paging is required), when using a
nonstrict consensus threshold. When using a strict con-
sensus threshold, our implementation successfully com-
pleted and revealed 208 new strict consensus edges by
dropping 13 taxa (which is more than an 8 percent gain in
consensus bipartitions). Memory issues can be handled by
moving to larger workstations (high-end workstations
today can be configured with 1 TB of main memory) or, if
necessary, to supercomputers; the latter can also help with
running times if one uses parallel code.

7 CoNcLUSIONS AND FUTURE WORK

We have presented a novel framework to define rogue taxa
so as to maximize the relative information present in a
consensus tree computed after removing these rogue taxa.
This framework defines a bicriterion problem, MISC, that is
the first to explicitly balance loss of taxa with gain in
resolution in a setting other than agreement subtrees. We
have also provided an effective greedy heuristic to find a
good set of such rogue taxa. This algorithm was tested on
both pathological cases from the literature and a variety of
biological data. The changes in the consensus tree can be
parlayed into more accurate bootstrap scores, which in turn
can lead to the reevaluation of phylogenetic trees, as we
showed on our biological data sets.

Rogue taxa do not have a unique source. Some are
difficult to place reliably because of poor taxon sampling:
no matter where they are placed, they connect to the rest of
the tree through a very long edge, so that moving them
around a tree hardly alters the score of that tree. For other
rogues, poor sequence alignment is the most likely culprit,
but that in turn could be due to higher than expected
divergence, poor data quality, or poor choice of genomic
sequences. Yet others could be created through an
unexpected interaction between the reconstruction algo-
rithm and the specific values associated with the rogue and
its neighbors. In general, eliminating rogues at the source
appears more difficult for now than detecting and eliminat-
ing them at the reconstruction stage.

Further work includes a characterization of the computa-
tional complexity of the MISC problem, as well as improved
algorithms for it, including approximation algorithms with
known performance guarantees. Generalizing our approach
to support consensus methods other than frequency-based
methods is another algorithmic problem worth investigat-
ing. Finally, there is certainly room to extend and apply our
techniques in different domains, most notably in Bayesian
phylogenetics (as suggested in Section 5.4) and for the
subtree mergers used in the Disk-Covering Methods (as
suggested in [14]). On the bioinformatics side, our pre-
liminary findings indicate that existing phylogenies can be
significantly refined by applying our approach to the
recomputation of bootstrap support.

Finally, we have followed through on a suggestion made
in the preliminary version of this paper, and implemented
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our approach in the open-source phylogenetics package
RAXML. Whereas our original implementation was only
suitable for 1,000 taxon, 1,000 tree data sets, our RAXML-
based implementation scales to 2,500 taxon, 10,000 tree data
sets. We also, remarkably, succeeded in applying our
RAxML-based algorithm (using the strict consensus meth-
od) to a 38,000 taxon data set. Our implementation has been
fully integrated into RAXML v7.2.7 which is freely available
from http:/ /wwwkramer.in.tum.de/exelixis/software.
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