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ABSTRACT

Perfection has been used as a criteria to classify rearrangement scenarios since 2004.
However, there is a fundamental bias towards extant species in the original definition:
ancestral species are not bound to perfection. Here we develop a new theory of perfection
that takes an egalitarian view of species, and we examine the fitness of this theory on several
datasets. Supplementary Material is available at www.liebertonline.com/cmb.
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1. INTRODUCTION

In mathematical biology, the genome sorting problem is to find a sequence of rearrangement operations

that transforms one genome into another. The type of rearrangement operations is fixed, and a sorting

sequence of operations is called a scenario. Given two genomes, there can be an exponential number of

scenarios, which makes difficult the choice of one particular scenario, even among those of minimum length

called parsimonious. Parsimony is only one of the criteria that can be used for the selection of a scenario, and

there are many alternatives that are worth exploring.

Here we consider the problem of perfect sorting which was initially stated roughly as follows: given two

genomes, find a sorting scenario between the genomes that preserves common genomic segments in

intermediate states of the transformation. Such scenarios are called perfect and this problem was first

introduced under the inversion rearrangement model by Figeac and Varré (2004) who showed the NP-

hardness of the problem. It was later shown by Bérard et al. (2004, 2007), Braga et al. (2009), and Sagot

and Tannier (2005) that for some classes of instances, the problem could be solved in polynomial

time. More recently, Bérard et al. (2008) explored the problem under the double-cut-and-join (DCJ)

rearrangement model, using a less stringent definition of perfection that allows temporary circular

chromosomes.

In this article, we address the problem of perfect sorting by DCJ under the initial definition of perfection.

We also reexamine the original idea of perfection which applies only to the two compared extant species.

What about all intermediate species that are generated by the scenario? Any good biological argument in

favor of perfect scenarios would apply to any pair of these intermediate species. In this paper, we intend to

correct this injustice. Note that, in Braga et al. (2009), an asymmetric approach that consists in progres-

sively detecting and preserving common segments between intermediate species and one of the extant
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species was proposed. Here, we present a symmetric approach that considers common segments between

all pairs of species.

We introduce a new, more restrictive class of perfection, called ultra-perfection with the corresponding

problem: given two genomes, find a sorting scenario such that any sub-scenario is perfect. Our main results are

the description of combinatorial properties of ultra-perfection that leads to a polynomial time algorithm for

computing ultra-perfect scenarios between genomes, and the discussion of its practicability through real datasets.

This article is organized as follows: in Section 2, we give the definitions of genomes, common intervals,

rearrangement scenarios and ultra-perfection. In Section 3, we characterize ultra-perfection in terms of

commutation of inversion scenarios, which leads to an algorithm for computing ultra-perfect scenarios. In

Section 4, we describe several examples of rearrangement scenarios, on real datasets, ranging from a

scenario that breaks almost all common intervals to ultra-perfect scenarios.

2. MODELS AND DEFINITIONS

In this section, we give the main definitions and notation that are used in the paper: genomes, inversions,

double-cut-and-join operations, commuting inversions, perfect and ultra-perfect scenarios.

2.1. Genomes

Genomes are compared by identifying homologous segments along their DNA sequences, called blocks,

organized in circular or linear chromosomes. A genome is circular (resp. linear) if it is only composed of

circular (resp. linear) chromosomes. Each genome contains exactly one occurrence of each block, and the

order and orientation of the blocks may differ between genomes. A linear chromosome will be represented by

an ordered sequence of signed integers, one for each block, flanked by the unsigned block 8 at each end, and a

circular chromosome will be represented by a circularly ordered sequence of signed integers. For example,

genome (�5 7 1 �3 2) (8 �6 4 8 9 8) consists of one circular chromosome and one linear chromosome.

An adjacency in a genome is a pair of consecutive blocks. Since a chromosome can be read in two

directions; the adjacencies (x y) and (�y� x) are equivalent. Moreover, since the block8 is unsigned, the

adjacencies (8 y) and (�y 8) are equivalent. An interval in a genome is a set of blocks that appear

consecutively in the genome. For example, in genome (�5 7 1� 3 2) (8 �6 4 8 9 8), {�3 2� 5} and {�6

4} are two intervals. A common interval between genomes A and B is an interval that exists in both A and B.

A maximal common interval between A and B is a common interval that is not included in any other

common interval between A and B.

2.2. Rearrangement scenarios

In this paper, we consider two models of rearrangements: the inversion model and the double-cut-and-

join model. An inversion of a set of contiguous blocks reverses the order of those blocks and change their

signs. A double-cut-and-join (DCJ) operation on a genome A cuts two different adjacencies in A and glues

pairs of the four exposed extremities to form two new adjacencies, no other adjacency is altered. The

circularization of a linear chromosome ( � x . . . y � ) is the DCJ operation that cuts adjacencies (8 x) and

(y 8) to produce (y x) and (8 8), thus creating the circular chromosome (x . . . y). The opposite operation

called a linearization is a DCJ operation that transforms a circular chromosome into a linear chromosome.

For example, a DCJ operation on genome (�5 7 1 �3 2) (8 �6 4 8 9 8) that cuts the adjacencies (2� 5)

and (�6 4) to form (2 4) and (�6� 5) would produce genome (8 �6 �5 7 1 �3 2 4 8 9 8). Note that we

consider the empty chromosome (8 8) to belong to any genome so that the DCJ on the circular genome (�5

7 1 �3 2) which cuts adjacencies (7 1) and (8 8) will produce the linear genome (81 �3 2 �5 78).

Let A and B be two genomes. A scenario from A to B is a sequence of rearrangements that transforms A

into B. An inversion scenario from A to B contains only inversions, and DCJ scenario contains only DCJ

operations. Since an inversion can always be realized by one DCJ operation, an inversion scenario is always

a DCJ scenario.

Note that the application of an inversion on a given genome only affects a single chromosome of the

genome. Thus, an inversion scenario on a genome A can always be decomposed into a set of independent

inversion scenarios, each acting on a single chromosome of genome A. In the following, we will restrict our

study of inversion scenarios to unichromosomal genomes.
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2.3. Perfection and commutation

The following definition of perfection is used in Bérard et al. (2004, 2007), Figeac and Varré (2004), and

Sagot and Tannier (2005):

Definition 1 (Perfection). A rearrangement scenario from genome A to genome B is perfect if all

common intervals of A and B are also intervals in the intermediate genomes of the scenario.

In this paper we introduce a new, more restrictive class of perfection that we call ultra-perfection.

Definition 2 (Ultra-Perfection). A rearrangement scenario from genome A to genome B is ultra-

perfect if all sub-scenarios are perfect.

The difference between the two notions is illustrated by the following example. Consider the two

genomes (8 �3 �1 4 2 8) and (8 1 2 3 4 8) that have no common intervals, except trivial ones. Definition 1

implies that any inversion scenario between the two genomes is perfect. However, as we will show in

Section 3, none of these scenarios is ultra-perfect. In particular, the scenario depicted in Figure 1 creates the

common interval {2, 3, 4} between chromosomes C2 and C4, but destroys it in C3.

General ultra-perfect DCJ scenarios can break and rearrange chromosomes. For example, genome (8 1 2

3 4 8) (8 5 6 7 8 8) can be transformed into genome (8 1 2 7 8 8)(8 5 6 3 4 8) with one DCJ operation, and a

subsequent scenario may remain ultra-perfect as long as intervals {1, 2, 3, 4} and {5, 6, 7, 8} are not

re-created.

As we will see, the notion of ultra-perfection is intimately related with commutation of inversions. We

first recall the definition of commutation used in Bérard et al. (2004): two sets of blocks commute if they

are either disjoint or one is included in the other. Two inversions commute if their associated sets of blocks

commute. For example, in the scenario depicted in Figure 1 the first and the second inversions commute,

while the second inversion and the third do not commute. An inversion scenario is commuting if all pairs of

inversions contained in the scenario commute.

When considering circular chromosome, the definition of commutation must be adapted. Indeed, in a

circular chromosome containing the set of blocks G, an inversion associated to a set S�G produces the

same result as an inversion associated to the set G\S. We thus introduce the circularly commuting property

defined as: given a set G of blocks, two subsets S and T of G commute circularly if S and T commute, or G \

S and T commute. For example, in Figure 1, the second inversion and the third inversion do not commute,

but they commute circularly.

FIG. 1. An inversion scenario that sorts (8 �3 �1 4 2

8) into (8 1 2 3 4 8).
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Note that in Bérard et al. (2008) a less stringent definition of perfection is used for DCJ scenarios. In this

version, the notion of common interval is relaxed to allow subsets of common intervals that form circular

chromosomes.

3. ULTRA-PERFECT SCENARIOS

We now consider the problem of computing an ultra-perfect scenario between two genomes. In Section

3.1, we show that each maximal common interval can be considered independently. This implies an ultra-

perfect scenario that first sorts each substring associated with a maximal common interval, and then sorts

the whole genome in its final configuration. Section 3.2 then describes conditions for the existence of ultra-

perfect DCJ scenarios between substrings associated to each maximal common interval.

Throughout the section we refer to a substring of a genome associated with an interval as a segment of

the genome. The segment of a genome A induced by an interval I is denoted AI.

3.1. Independent DCJ sorting of maximal common intervals

The following proposition states that, in any ultra-perfect DCJ scenario between genomes A and B, the

segments induced by maximal common intervals of A and B are sorted independently.

Proposition 1. Let I be a maximal common interval between genomes A and B. If S is an ultra-perfect

DCJ scenario from A to B, then there exists an equal length ultra-perfect scenario S0 ¼SIT such that SI is

an ultra-perfect DCJ scenario transforming AI into BI.

Proof. Let C be a genome obtained by applying some (possibly empty) prefix of S, and D be the

genome obtained by applying some subsequent operations of S on C. Since S is ultra-perfect, I is an

interval of C and D. Say that the operation transforming the intermediate genome C into the intermediate

genome D modifies I if CI=DI.

Let f be an operation of S such that f modifies I and the operation e preceding f does not modify I. If f cuts

no adjacency created by e, then simply switch the order of e and f. Otherwise we replace e and f by two

DCJs e0 and f0 such that e0 precedes f0, through the following process: say e cuts the adjacency (u v) and (y

x), u being a block belonging to I, to create (u x) and (y v), and that f then cuts (u x) and (t s) to create (u s)

and (t x). Then take DCJs e0 and f0 such that e0 cuts the adjacency (u v) and (t s) to create (u s) and (t v), and

f0 cuts (t v) and (y x) to create (t x) and (y v). In this way, any operations modifying I can be moved to the

beginning of the DCJ scenario. Each move does not effect the ultra-perfection of the scenario since e0

cannot create an interval that is later broken: any new interval created by e0 (and later broken by some DCJ

g) would have to include some elements of I and some adjacent elements to I. But this implies the existence

of a larger interval that would be broken by g in the original scenario.

Moreover, at the end of this process, the scenario obtained can be decomposed into two sequences SI and

T such that all operations in SI modify I but no operation in T modifies I. Then, SI is an ultra-perfect DCJ

scenario between the segments AI and BI. &

3.2. Ultra-perfect scenarios between unichromosomal genomes

Proposition 1 implies that, for each maximal common interval I of A and B, the ultra-perfect sorting of AI

into BI can be examined independently from the rest of the scenario. We now give characterizations of the

existence of ultra-perfect DCJ scenarios between unichromosomal genomes A and B by establishing

properties of commuting inversion scenarios.

Ultra-perfect inversion scenarios. First, we characterize ultra-perfect inversion scenarios.

Proposition 2. An inversion scenario between two linear genomes is ultra-perfect if and only if the

scenario is commuting.

Proof. Bérard et al. (2007) shows that a commuting inversion scenario is always perfect. So, if a

scenario S is commuting, then all sub-scenarios of S are commuting and thus perfect. Commutation then

implies ultra-perfection.
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Next, let S be an ultra-perfect scenario. Suppose that S is not commuting. Then there exists two

inversions in S, e preceding f, such that e and f do not commute but e and f commute with all inversions in

S between e and f.

Say, without loss of generality, that the genome looks like UVWXY before applying inversion e where U,

V, W, X, and Y represent sets of blocks. In this configuration e¼ {V, W} and f¼ {V, X}, and all inversions in

the scenario between e and f, then, do not change the relative order of V, W, and X to each other (since they

commute with e and f). So e creates the order WVX while f creates the order WXV. But this contradicts the

hypothesis that S is ultra-perfect since the interval {W, X} is destroyed by e and recreated by f. &

In Bérard et al. (2007), it was shown that the commuting inversion scenarios between linear genomes

could be characterized in terms of the structure of a tree, called the strong interval tree, representing the set

of all common intervals. The strong interval tree of two linear genomes is a tree whose vertices are the

common intervals that commute with any other common interval and there is an edge (I, J) between two

vertices if J� I and there exist no third vertex K such that J�K� I. The strong interval tree was first

described in Heber and Stoye (2001), Landau et al. (2005), and Bergeron et al. (2005), and it was inspired

from a data structure called the PQ-tree. PQ-trees are used to represent all consecutive-ones orderings of

the columns of a matrix that has the consecutive-ones property.

In the remainder of the section, we develop the counterpart characterization for DCJ scenarios by relating

ultra-perfect DCJ scenarios to a tree representing the set of all common intervals between two circular

genomes. We present the circular common interval tree that is the circular analogue of the strong interval

tree. Circular common interval trees are inspired from an analogous structure of a PQ-tree, called a PC-tree.

The PC-tree was introduced in Hsu (2001) and Hsu and McConnell (2003), where it was used to represent

all circular-ones orderings of the columns of a matrix that has the circular-ones property.

Circular common interval tree. Here, we define a tree representing the set of all common intervals

between two circular genomes. Let G be a set of n blocks, and A and B be two circular genomes on G. A

circular common interval of A and B is either a singleton block, or a subset I of G such that I is a common

interval between A and B, and jIj= n� 1. The circular strong intervals of A and B are the circular common

intervals of A and B that commute circularly with any other circular common interval.

We now define the circular common interval tree of two circular genomes.

Definition 3. The circular common interval tree of two circular genomes A and B, denoted by T (A, B)

is defined as follows: the vertices of T (A, B) are the circular strong intervals of A and B that commute with

any other circular strong interval; a vertex J is a child of a vertex I if J� I, and there exist no third vertex K

such that J�K� I.

For example, let us consider the following circular genomes A¼ (2 4 3 1 5) and C¼ (1 2 3 4 5). The circular

common intervals of A and C are {1, 5}, {1, 5, 2}, {4, 3}, {2, 4, 3}, and the singletons f1g . . . f5g. The circular

strong intervals are all the circular common intervals. The vertices of the circular common interval tree T (A, C)

are {1, 5}, {4, 3} and the singletons. Remark that {1, 5, 2} and {2, 4, 3} are excluded from T (A, C) because they

do not commute, although being circularly commuting. The tree T (A, C) is depicted in Figure 2a.

Given a vertex I of T (A, B), two orderings, either both circular, or both linear, of the set of children of I

can be inferred from the orderings of the blocks in A and B corresponding to I. Following the notation of

Bérard et al. (2007), the vertex I is linear if both orderings are identical or reciprocal, otherwise the vertex I

is prime. If I is a linear vertex, I has a positive sign if both orderings are identical, and a negative sign if they

are reciprocal (Fig. 2).

A circular common interval tree is definite if its vertices are linear. For example, in Figure 2, the left-

hand tree (a) is definite, while the middle one (b) is not definite.

The definition of linear or prime vertices, and definite trees, also hold for the strong interval tree of two

linear genomes (signed linear permutations). Given a vertex I of the strong interval tree of two linear

genomes A and B, if I is linear (resp. prime), we also say that the common interval I between A and B is

linear (resp. prime) Bérard et al. (2007) (Fig. 2c).

Ultra-perfect DCJ scenarios. In Bérard et al. (2007), it was shown that the existence of a perfect

inversion scenario between unichromosomal linear genomes A and B was conditioned on properties of the

strong interval tree of A and B: there exists a commuting scenario if and only if the strong interval tree is
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definite. In the following, we give the equivalent theorem for DCJ scenarios with circular common interval

trees: there exists an ultra-perfect DCJ scenario if and only if the circular common interval tree is definite.

We start by stating an obvious but useful property of ultra-perfect DCJ scenarios.

Property 1. Let A and B be unichromosomal genomes on the same set of blocks G. G is a common

interval between A and B. So, if a DCJ scenario S from A to B is ultra-perfect, then any operation in S is

either an inversion, or a circularization, or a linearization.

The circular version of a unichromosomal genome A is A itself if A is already a circular genome,

otherwise it is the circular genome obtained by applying the circularization DCJ on A. We denote by Ac the

circular version of a genome A.

Theorem 1. Let A and B be two unichromosomal genomes with the same set of blocks. There exists an

ultra-perfect DCJ scenario from A to B if and only if the circular common interval tree of Ac and Bc is

definite.

Proof. Let T¼ T(Ac, Bc) be a circular common interval tree of Ac and Bc.

First, if T is definite, then an inversion scenario S composed of inversions whose associated sets are the

vertices of T that have a sign different from their parents is a commuting inversion scenario from Ac to Bc.

So, S is an ultra-perfect scenario. Say e S f is the DCJ scenario from A to B where e is the eventual

circularization transforming A into Ac and f is the eventual linearization transforming Bc into B. It is easy to

see that e S f is an ultra-perfect scenario from A to B.

Now, if T is not definite, let I be a vertex of T that is prime. Since a DCJ scenario from A to B contains

only inversions, circularization and linearization, then there exists no ultra-perfect DCJ scenario that sorts

AI into BI. &

For example, consider the linear genomes A¼ (8 3 1 5 2 4 8) and B¼ (8 1 2 3 4 5 8). The circular common

interval tree of the circular versions of A and B is depicted in Figure 2a. Since it is a definite tree, then there

exists the following ultra-perfect DCJ scenario:

( � 3 1 5 2 4 � ) circularization (4 � 5 � 1 2 3) inversion of f1g
(3 1 5 2 4) inversion of f4, 3g (4 � 5 1 2 3) inversion of f5g
(� 4 1 5 2� 3) inversion of f1, 5g (4 5 1 2 3) linearization

(� 4 � 5 � 1 2 � 3) inversion of f4g ( � 1 2 3 4 5 �)
(4 � 5 � 1 2 � 3) inversion of f3g

4. ULTRA-PERFECTION IN PRACTICE

The number of datasets available to test the concept of ultra-perfection is currently very low. In this

section, we study four of them. The first one goes back to early 20th century and documents inversions

FIG. 2. Let genomes A¼ (2 4 3 1

5), B¼ (2 4 1 3 5), and C¼ (1 2 3 4

5). (a) The circular common interval

tree of genomes A and C. (b) The

circular common interval tree of

genomes B and C. (c) The strong

interval tree of genomes (8 2 4 3 1

5 8) and (8 1 2 3 4 5 8). Rectan-

gular nodes correspond to linear

vertices and round nodes to prime

vertices. The signs of linear vertices

are indicated by a þ or � symbol.

a b c
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linking chromosomes of thirteen closely related drosophila flies. Almost none of the pairwise comparisons

in this dataset are perfect or ultra-perfect, which underlies the apparent randomness of inversions in this

group. The second dataset compares two drosophila species—D. melanogaster and D. yakuba—whose

common ancestor dates back to more than 12 million years: one chromosome displays a remarkable ultra-

perfect scenario. The third dataset comes from the comparison of the human chromosome 17 with the

mouse chromosome 11, where a parsimonious ultra-perfect scenario of twelve inversions exists. Finally we

discuss near ultra-perfection using the comparison of the human, mouse, and rat chromosome X.

4.1. Inversions in chromosome 3 of Drosophila pseudoobscura

In a landmark article on genome rearrangements, Dobzhansky and Sturtevant (1938) described a phy-

logeny of various strains of D. pseudoobscura using polytene chromosomes. These chromosomes exist in

cells that undergo several rounds of DNA replication, without cell division, forming huge chromosomes

with a characteristic banding patterns that reflects gene order.

Figure 3 shows the subtree that relates 13 strains, one of them predicted, in which each adjacent pair is

separated by one inversion. We translated the gene orders into signed permutations on 19 blocks, with the

identity permutation labeling the Standard arrangement. The edges are labeled by the set of blocks that are

reversed. The topology of the tree is the unique parsimonious topology corresponding to reversals, due to

the additivity of the pairwise distances.

There are 66 pairwise scenarios of length 2 or more implied by the tree. Only 8 of the 21 scenarios of

length 2 are ultra-perfect. Of the remaining scenarios none are ultra-perfect and 8 are perfect; 7 of which

are trivially perfect as the first and last permutations are bereft of non-trivial common intervals. The

exception is the comparison of strains Tree line and Pikes Peak. Table 1 gives the detailed results in terms

of length of scenario between pairs of permutations.

This example clearly illustrates ultra-perfection as an uncommon feature of inversion scenarios. Random

inversions, even those that disrupt clusters of co-expressed genes, are possible (Meadows et al., 2010), and

it takes only a few overlapping inversions to lose common intervals. Herein lies the significance of

identifying ultra-perfect scenarios.

4.2. Comparing chromosomes 3R of D. melanogaster and D. yakuba

The next dataset comes from the 12 Drosophila sequencing project and is based on the breakpoints and

inversions identified between the 3R chromosomes of D. yakuba and D. melanogaster Schaeffer et al.

FIG. 3. Phylogenetic tree of 13

strains of Drosophila flies. The rel-

ative gene order of the strains is

modeled by signed permutations of

19 blocks. Each edge of the tree is

labeled by the set of inverted blocks

between two adjacent strains.
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(2008); Ranz et al. (2007). In Schaeffer et al. (2008), the authors identify 9 inversions separating the two

species, and analysis of their suggested 12 breakpoints yields the signed permutations:

Dmel¼ ( � 1 2 3 4 5 6 7 8 9 10 11 12 13 �)
Dyak¼ ( � 1 10 � 3 4 � 8 6 � 7 � 5 9 2 11 � 12 13 �):

Figure 4a gives the strong intervals tree resulting from the comparison of those two permutations: it

contains only linear vertices and indicates an ultra-perfect scenario of length 9, obtained by inverting the

sets in the shaded vertices of the tree. This scenario corresponds to that proposed in Schaeffer et al. (2008).

In Ranz et al. (2007), the authors propose a parsimonious scenario of length 7, depicted in Figure 4b. This

scenario is based not only on parsimony, but also on additional genomic information used by the authors to

perform mandatory inversions.

4.3. The human chromosome 17 and the mouse chromosome 11

The comparison between the human chromosome 17 with the mouse genome reveals that the whole

human chromosome is syntenic with a major section of mouse chromosome 11 (Bourque et al., 2004).

Comparison of the blocks common in human, rat and mouse, yields the following permutations for the

human and mouse:

H17¼ ( � 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 �)
M11¼ ( � 7 � 8 6 � 5 4 � 3 1 2 � 10 � 9 11 12 � 13 16 � 15 14 17 � 18 19 �)

The most striking feature of these permutations is the existence of an ultra-perfect scenario that is also most

parsimonious. Figure 5 displays this scenario, of length 12, as shaded vertices of the corresponding strong

intervals tree.

For these two permutations, there exist other parsimonious sorting scenarios that are not ultra-perfect.

These scenarios can be partitioned into 21 distinct traces computed with baobabLUNA (Braga, 2009).

(For further detail, see online Supplementary Material at www.liebertonline.com/cmb.) Figure 6 displays,

FIG. 4. (a) The strong intervals

tree resulting from the comparison

of chromosomes 3R of D. melano-

gaster and D. Yakuba. Reversing the

intervals corresponding to shaded

blocks yield an ultra-perfect sce-

nario of length 9 proposed in

Schaeffer et al. (2008). (b) The

parsimonious scenario of length 7

proposed in Ranz et al. (2007).

a b

Table 1. Detailed Results

Length n Ultra-perfect Perfect Trivial

2 21 8 8 0

3 20 0 1 1

4 12 0 3 2

5 10 0 4 4

6 3 0 0 0
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side-by-side, the segment of permutations M11 and H17 containing blocks 1 to 10 sorted by a non ultra-

perfect scenario and by an ultra-perfect scenario, showing the disruption of gene synteny.

4.4. Imperfect sorting

When no ultra-perfect scenario exists, we wish to define a way to score scenarios that are nearly ultra-

perfect. There is no easy or straightforward way to do this: the competing parameters include broken

common intervals, overlapping inversions, prime intervals and parsimony. In this section, we propose a first

measure that is relatively simple to define, and that allows us to compare scenarios that would otherwise be

difficult to rank.

Our first simplification is that, when trying to build a scenario for two or more species, each common

interval should be sorted independently. Since linear common intervals are rather easy to sort with an ultra-

perfect scenario, we focus on the sorting of individual prime common intervals.

A scenario S between two or more species can be represented as an unrooted tree whose nodes are the

genomes, and whose branches are the rearrangement operations. Removing an operation r from a scenario S
is done by cutting the branch labeled by r yielding two subtrees called subscenarios. We have:

Definition 4. The imperfection score of a scenario S is the minimum number of operations that can be

removed from S such that each of the remaining subscenarios is ultra-perfect.

FIG. 5. The strong intervals tree

resulting from the comparison of

human chromosome 17 and mouse

chromosome 11. Reversing the in-

tervals corresponding to shaded

blocks yield an ultra-perfect sce-

nario of length 12. This scenario is

also parsimonious.

FIG. 6. Two parsimonious sce-

narios that sort the segment of per-

mutations M11 and H17 containing

blocks 1 to 10. The scenario on the

right is ultra-perfect, and the sce-

nario on the left is not.
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Our goal is to find, among all possible scenarios with minimum imperfection score, one that is of minimum

length.

It turns out that the data on human, mouse, and rat chromosomes X is a very interesting instance of this

problem: there are prime common intervals in both the Human-Mouse and the Human-Rat strong interval

trees. The prime common interval in the Human-Mouse comparison is maximal, but there is no ultra-

perfect scenario since the induced permutation from Bérard et al. (2007), (8 �4 6 1 �3 �5 2 8), does not

have a commuting scenario, even with circularization.

The following permutations, obtained from the blocks of Bourque et al. (2004), model the homologous

blocks of the human, mouse, and rat chromosomes X:

H¼ ( � 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 �)
M¼ ( � � 6 � 5 4 13 14� 15 16 1 � 3 9 � 10 11 12 � 7 8 � 2 �)
R¼ ( � � 13 � 4 5 � 6 � 12 � 8 � 7 2 1 � 3 9 10 11 14 � 15 16 �)

We first apply single block inversions (they have no impact on the perfection of a scenario) that create an

adjacency in one genome that already exists in the other two. There are 5 of them in the chromosome data:

{4} and {15} applied to the human chromosome, {7} and {10} applied to the mouse chromosome, and {6}

applied to the rat chromosome. The resulting chromosomes are the following, renamed with a subscript that

indicates how far the new chromosome is from the original.

Hþ 2¼ ( � 1 2 3 � 4 5 6 7 8 9 10 11 12 13 14 � 15 16 �)
Mþ 2¼ ( � � 6 � 5 4 13 14 � 15 16 1 � 3 9 10 11 12 7 8 � 2 �)
Rþ 1¼ ( � � 13 � 4 5 6 � 12 � 8 � 7 2 1 � 3 9 10 11 14 � 15 16 �)

Next, there are three adjacencies that are shared by the rodents, but are not in the human lineage, and that

require inversions longer than single blocks: (1� 3), (4 13) and (�3 9). The corresponding inversions

associated to the sets, {2, 3},{4, 5, 6, 7, 8, 9, 10, 11, 12} and {2, 9, 10, 11, 12} can be applied to the Hþ2

genome to yield Hþ5¼ (8 1 �3 9 10 11 12 2 �8 �7 �6 �5 4 13 14 �15 16 8).

In the next section, we will construct an ultra-perfect scenario for the three permutations Hþ5, Mþ2 and

Rþ1. Since the first two inversions applied to the Hþ2 chromosome are commuting, the imperfection score

of the global scenario will be 1, obtained by removing inversion {2, 9, 10, 11, 12}, which is the best that

can be achieved. The scenario between Hþ2 and Hþ5 is also parsimonious, since it constructs 3 adjacencies

present in both the mouse and rat genome, implying that any alternate solution should have the same length.

Up to commutation of the two initial inversions, it is easy to show that this is the only solution constructing

the 3 adjacencies.

4.5. The ultra-perfect median of three genomes

After applying the inversions of the preceding section, the three genomes are the following, where

adjacencies common to all three chromosomes are indicated by dots:

Hþ 5¼ ( � 1 � � 3 � 9 � 10 � 11 12 2 � 8 � � 7 � 6 � � 5 � 4 � 13 14 � � 15 � 16 �)
Mþ 2¼ ( � � 6 � � 5 � 4 � 13 14 � � 15 � 16 1 � � 3 � 9 � 10 � 11 12 7 � 8 � 2 �)
Rþ 1¼ ( � � 13 � � 4 � 5 � 6 � 12 � 8 � � 7 2 1 � � 3 � 9 � 10 � 11 14 � � 15 � 16 �)

It is convenient, at this point, to relabel the blocks so that the remaining differences are more apparent.

There are six blocks that we label with respect to the Hþ5 genome order:

1 � � 3 � 9 � 10 � 11
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{

1

12
z}|{

2

2
z}|{

3

� 8 � � 7
zfflfflfflfflfflffl}|fflfflfflfflfflffl{

4

� 6 � � 5 � 4 � 13
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

5

14 � � 15 � 16
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{

6

This yields the new representation:

Hþ 5¼ ( � 1 2 3 4 5 6 �)
Mþ 2¼ ( � 5 6 1 2 � 4 � 3 �)
Rþ 1¼ ( � � 5 � 2 4 3 1 6 �)
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Given three genomes, deciding if an ultra-perfect scenario connecting them exists begins with a simple

check. Indeed, the median of three genomes belongs to all implied pairwise scenarios, thus must share all

common intervals of all pairs of genomes. Formally we have:

Proposition 3. The median M of an ultra-perfect scenario linking three permutations A, B and C

contains all common intervals of A and B, of A and C, and of B and C.

In order to apply Proposition 3 to the mammal chromosomes, we first compute their common intervals:

Hþ 5 and Mþ 2: f1, 2g, f3, 4g, f5, 6g, f2, 3, 4g, f1, 2, 3, 4g
Hþ 5 and Rþ 1:f3, 4g, f2, 3, 4g, f1, 2, 3, 4g, f2, 3, 4, 5g, f1, 2, 3, 4, 5g
Mþ 2 and Rþ 1:f1, 6g, f2, 4g, f3, 4g, f2, 3, 4g, f1, 2, 3, 4g, f1, 2, 3, 4, 6g

The—unique—permutation that contains all these intervals is a circular chromosome! Its block order, (5

6 1 2 �4 �3), is the circularization of the mouse genome. It is then a simple exercise to transform the

median into each genome. The whole scenario has 7 inversions, 5 of them inverting single blocks; the

remaining 2 inversions are {3, 4} towards the human chromosome, and {2, 3, 4} towards the rat chro-

mosome (Fig. 7).

5. CONCLUSION

In this article, we showed that reality is seldom perfect or ultra-perfect, but some comparisons yield

surprising results. When inversions occur in a seemingly random way, as in the dataset on drosophila

strains, very few common intervals are found, even for close species. The comparison between D. mela-

nogaster and D. yakuba has an ultra-perfect scenario that is not parsimonious, and up to the exchange of

commuting inversions, a unique parsimonious scenario. In this case, it is interesting to note that both these

scenarios are proposed in the literature. We also found an ultra-perfect scenario, involving the complete

human chromosome 17, that is also parsimonious. This, together with the fact that gene synteny is con-

served on an unusually large scale, is notable.

The search for an ultra-perfect scenario for the human, mouse, and rat X chromosome leads to a

surprising circular median, deduced by combinatorial techniques. We are certainly not inferring that actual

species had circular X chromosomes. The fact that the number of blocks is quite small, n¼ 6, might be the

simplest explanation: more than half of the random trios of permutations on six elements have a circular

median. However, the remarkable preservation of the circular order of blocks between the human and

mouse X chromosome asks for a more satisfying answer. Are there some biological mechanisms that would

allow rearrangement operations that preserve a circular order? Among the well known combinatorial

operations with this property are the shift operation, or a double centromeric inversion.

FIG. 7. An ultra-perfect scenario

between chromosomes Hþ5, Mþ2

and Rþ1. The location where the

circular median is cut is shown by

thin arrows. The set of inverted

blocks is shown between each pair

of permutations.

THEORY AND PRACTICE OF ULTRA-PERFECTION 1229



On the algorithmic side, the circular common interval tree allows us to easily find the set of inversions of

an ultra-perfect scenario between two genomes; ultra-perfect DCJ scenarios are essentially ultra-perfect

inversion scenarios on a circular version of the genomes. In the case of multiple genomes, the existence and

computation of an ultra-perfect scenario should be easy to characterize using the sets of inversions cor-

responding to pairwise genomes. In the case of nearly ultra-perfect scenario, methods still have to be

developed but most efforts will likely lead to hardness results. However, interesting instances of the

problem, such as rearrangements between human and rodents, are still quite manageable by manual

techniques, and should get easier with the sequencing of additional rodent genomes. It is also relatively

easy to score scenarios: the scenario proposed by GRIMM (Tesler, 2002) for the human, mouse and rat

chromosome X has an imperfection score of 2.
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