
Sorting Signed Permutations by Inversions

in O(nlogn) Time

KRISTER M. SWENSON, VAIBHAV RAJAN, YU LIN, and BERNARD M.E. MORET

ABSTRACT

The study of genomic inversions (or reversals) has been a mainstay of computational geno-
mics for nearly 20 years. After the initial breakthrough of Hannenhalli and Pevzner, who
gave the first polynomial-time algorithm for sorting signed permutations by inversions, im-
proved algorithms have been designed, culminating with an optimal linear-time algorithm
for computing the inversion distance and a subquadratic algorithm for providing a shortest
sequence of inversions—also known as sorting by inversions. Remaining open was the question
of whether sorting by inversions could be done in O(nlogn) time. In this article, we present a
qualified answer to this question, by providing two new sorting algorithms, a simple and fast
randomized algorithm and a deterministic refinement. The deterministic algorithm runs in
time O(nlogn + kn), where k is a data-dependent parameter. We provide the results of ex-
tensive experiments showing that both the average and the standard deviation for k are small
constants, independent of the size of the permutation. We conclude (but do not prove) that
almost all signed permutations can be sorted by inversions in O(nlogn) time.

Key words: algorithms, combinatorics, computational molecular biology, genomic rearrange-

ments, phylogenetic trees.

1. INTRODUCTION

Genomic rearrangements have been the subject of intense research over the last 10 years. Initially

identified in the 1920s in the fly genome through genetic studies (Sturtevant, 1926; Sturtevant and

Dobzhansky, 1936), then studied in detail in chloroplast organelles in the 1980s (Palmer, 1992; Palmer and

Thompson, 1981), they were brought to the attention of the computational community in the early 1990s

(Sankoff, 1992). A large number of papers have since been published on the combinatorics and algorithmics

of genomic rearrangements (Moret and Warnow, 2005; Fertin et al., 2009). Starting at the beginning of this

century, genomic rearrangements have assumed much more importance with the advent of whole-genome

sequencing and the emergence of comparative genomics as a major discipline in biocomputing.

Of the various genomic rearrangements studied, perhaps the simplest and best documented is the inversion

(also called reversal in much of the computer science literature), through which a segment of a chromosome

is reversed in place. In 1987, Day and Sankoff formalized a model of genomic inversions in which a

chromosome is represented as a permutation of signed gene indices, the sign indicating the direction of

Laboratory for Computational Biology and Bioinformatics, EPFL (École Polytechnique Fédérale de Lausanne),
Lausanne, Switzerland.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 17, Number 3, 2010

Mary Ann Liebert, Inc.

Pp. 489–501

DOI: 10.1089/cmb.2009.0184

489

transcription of the gene; in this framework, an inversion acts on an interval of the permutation by revers-

ing the order in which the indices appear within the interval and by flipping the sign of each index. Sankoff

later provided a probabilistic model (Sankoff and Goldstein, 1989) and posed two fundamental questions

about inversions in this framework: given two signed permutations on the same index set, what is the smallest

number of inversions required to transform one permutation into the other and what is a sequence of

inversions implementing this transformation (Sankoff, 1992). The first problem is thus to compute an edit

distance, where the edit operation is the inversion; the second is to return an edit sequence—a problem

usually known as ‘‘sorting,’’ since a simple re-indexing can turn one of the permutations into the identity.

Many years of work were needed to ascertain the complexity of each of these problems. The breakthrough

came in 1995, when Hannenhalli and Pevzner provided a a polynomial-time algorithm to solve both prob-

lems. (In contrast, in 1997, Caprara [1997] showed that both problems were NP-hard if phrased in terms of

unsigned permutations.) The running time for both problems has been steadily reduced over the years. In

2001, our group gave an optimal linear-time algorithm to compute the edit distance (Bader et al., 2001); and

in 2004, Tannier and Sagot, building on the work of Kaplan and Verbin (2003), gave a O(n
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n log n
p

)algorithm

to produce a sorting sequence. Remaining open was the question of whether signed permutations can be

sorted by inversions in O(nlogn) time, just like sorting plain numbers.

In this article, we give a qualified positive answer to this question by describing two new algorithms for

sorting signed permutations by inversions. The first is a randomized algorithm that runs in guaranteed

O(nlogn) time, but may fail; successive restarts reduce the probability of failure, but we cannot guarantee that

every permutation will be sorted with high probability with a finite number of restarts, so that it is not a true

Las Vegas algorithm. (Indeed, we give a family of permutations that cannot be sorted by this algorithm

regardless of the number of restarts.) The other is a deterministic algorithm that always sorts the permutation

and runs in O(nlognþ kn) time, where k is the number of successive ‘‘corrections’’ (detailed in Section 5) that

must be applied—a value, incidentally, that is not related to the edit distance d, although it is bounded by it.

We give a family of permutations for which k is Y(n) (the worst-case value for k) and thus for which our

sorting algorithm will run in quadratic time. However, we present the results of very extensive experi-

mentation showing that the expected value and the standard deviation of k are small constants (less than 1),

independent of n, so that the running time of the algorithm is, with high probability, O(nlogn). Thus, we

conclude (but do not prove) that almost all permutations can be sorted in optimal O(nlogn) time.

2. PRELIMINARIES

A permutation p is written as (p1p2 . . . pn), where each element pi is a signed integer and the absolute

values of these elements are all distinct and form the set f1, 2, . . . , ng. The absolute value of pi is denoted

by jpij. An inversion r(i, j) on a permutation p¼ (p1 . . . pi . . . pj . . . pn) reverses all elements between pi and

pj while changing their signs giving (p1 . . . pi� 1� pj . . . � pipjþ 1 . . . pn). We assume that every permu-

tation of n elements is framed by elements 0 and nþ 1. In this way we consider each permutation to be

linear, noting that each linear permutation corresponds to nþ 1 circular permutations (of length nþ 1),

which are equivalent in terms of the sequences of inversions used to sort them. The span of an inversion

r(i, j) is the closed interval on the natural numbers [i, j] and two spans [i, j] and [k, l] overlap if and only if

either i< k and k< j or k< i and j< l.

Two adjacent elements, pi and piþ 1 for 0� i� nþ 1, form an adjacency. An adjacency is a non-

breakpoint if and only if we have piþ 1� pi¼ 1, otherwise it is a breakpoint. An oriented pair, (pi,pj), in a

permutation is a pair of integers with opposite signs such that piþ pj¼�1. The inversion induced by an

oriented pair (pi,pj), called an oriented inversion, is r(i, j� 1) for piþ pj¼þ1, and r(iþ 1, j) for

piþ pj¼�1. An oriented inversion always creates a non-breakpoint; we say that it heals the breakpoint (or

breakpoints—there could be two) to which the elements of the oriented pair belonged before the inversion.

A framed common interval (FCI) (Bergeron et al., 2002) of a length n permutation is a substring of the

permutation, (as1s2 . . . skb)or (� bs1s2 . . . sk� a)(with s1s2 . . . sk possibly empty) such that

� for each i, 1� i� k, jaj< jsij< jbj,
� for each l, jaj< l< jbj, there exists a j, 1� j� k, with jsjj ¼ l, and
� the FCI is not a union of shorter intervals with the above properties.

490 SWENSON ET AL.

The substring s1s2 . . . sk is thus a (possibly empty) signed permutation of the integers greater than a and

less than b; elements a and b are called the frame elements. The framed interval is said to be common in

that it also exists, in its canonical form (þ aþ (aþ 1)þ (aþ 2) . . . þ b), in the identity permutation. FCI B

is nested inside FCI A if and only if the left and right frame elements of A occur, respectively, before and

after the frame elements of B.

A component is comprised of the frame elements from an FCI along with all elements inside the FCI that

are not used for a nested subinterval. A non-trivial component is a component that is comprised of at least 4

elements. A bad component is a component where all elements have the same sign. Two components can

only overlap at the frame elements (Bergeron and Stoye, 2003). An inversion is said to be unsafe if it

creates a bad component, otherwise it is safe. A permutation is positive if it is not the identity permutation

and every element is positive. A positive permutation indicates the existence of at least one bad component.

Any permutation containing bad components can be transformed to another permutation that does not

contain any bad component in linear time (Bader et al., 2001). Thus, in the algorithms we describe, we

assume that the input permutation does not contain any bad components.

3. BACKGROUND: DATA STRUCTURES FOR PERMUTATIONS

To implement an algorithm for sorting by inversions, we need a data structure for handling permutations

that supports two basic operations: (i) choose an oriented inversion, and (ii) perform an inversion.

We now describe the data structure of Kaplan and Verbin (2003) that stores a permutation in linear space

and allows us to perform an inversion in logarithmic time. The structure is a splay tree, in which the nodes

are ordered by the indices of the permutation, with one additional flag maintained at each node.

To perform an inversion r(i, j) between (and including) indices i and j, index i� 1 is splayed and the

right subtree of the root is split from the root yielding subtrees T<i and T�i where T<i (T�i) contains all

elements with indices less than (greater than or equal to) i. Next, index j is splayed in T�i and again the

right subtree is split from its root yielding subtrees Trev and T>j where T>j contains all elements with indices

greater than j and Trev contains the elements of the permutation that have to be reversed. Finally, there are

three subtrees: T<i, Trev and T>j. Now, actually reversing the elements in Trev can take Y(n) time since Y(n)

elements could be reversed in a single inversion. To achieve logarithmic time complexity a lazy approach is

taken: a reversed flag is maintained in each node, which if turned on indicates that the subtree rooted at the

node is reversed. Now instead of immediately reversing a subtree, we just set its reversed flag. During an

inversion the reversed flag of the root of Trev is flipped and T<i is joined to Trev to get T� j. This is achieved

by making Trev the right child of the root of T<i, which still contains the element at index i� 1, yielding the

tree T� j, T� j is then joined to T>j by splaying j in T� j, after which T>j is made the right child of the root of

T� j, yielding the final tree which represents the permutation after the inversion. Since the only operation

that takes more than constant time is the splay and since splaying takes amortized logarithmic time (Sleator

and Tarjan, 1985), each inversion takes amortized logarithmic time.

A tree could have several reversed flags, but the invariant maintained is that an inorder traversal modified

by the reversed flags yields the permutation. So to read the permutation one would traverse a reversed

subtree in reverse order while flipping signs of elements read. Nested reversed flags cancel in the sense that

a reversed flag on a node within a reversed subtree, implies that the inner subtree (rooted at that node) is not

reversed. Thus, a subtree rooted at a node is reversed if and only if there is an odd number of reversed flags

in the path from the root to the node (including the node).

When a sequence of inversions is performed, reversed flags can get nested to arbitrarily deep levels. We

can push the flag down a traversed path in the tree, by flipping the sign of the element in the node, exchanging

the left and right subtrees, and flipping the reversed flags in both children. The reversed flag of a leaf is cleared

by just flipping its sign. Pushing down a flag takes constant time per node so the logarithmic time complexity

of splaying is maintained. By pushing down the flags in the splay path we ensure that the three subtrees

created (T<i, Trev and T>j) reflect the changes made in all the previous inversions.

This is exactly the data structure described in Kaplan and Verbin (2003); it can handle a sequence of d

inversions in O(dlogn) time. The data structure maintains only the state of the permutation at each step (in

a lazy way). However it does not maintain information about oriented pairs, nor could it do so efficiently,

as a single inversion could change the orientation of Y(n) pairs. Indeed, using this data structure to

SORTING SIGNED PERMUTATIONS BY INVERSIONS IN O(N LOGN) TIME 491

maintain the information necessary to choose an oriented inversion at each step would increase the running

time by a factor of n.

To overcome this problem, both Kaplan and Verbin (2003) and Tannier et al. (2007) used a two-level

version of the data structure in which a permutation is stored in linear blocks of size O(
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n log n
p

)each.

Corresponding to each block is a splay tree that maintains information about all oriented pairs (pi,pj) such

that either pi or pj is in the block. Performing an inversion while maintaining information about all oriented

pairs takes O(
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n log n
p

)time and choosing an inversion at each sorting step takes O(log n) time, so that the

total time complexity of their algorithms is O(
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n log n
p

).

In order to run in O(nlogn) time, these algorithms need to be able to choose an oriented inversion in

logarithmic time and thus information to identify such inversions must also be maintained in logarithmic

time through an inversion.

4. OUR ALGORITHM

Instead of addressing the data structure (by designing a new data structure that can somehow process

O(n) new pair orientations in logarithmic time), we address the root question of identifying an oriented

inversion. Our key contribution is that we need not maintain information about all oriented inversions for

every permutation at each sorting step—a few suffice in most cases.

4.1. MAX inversions

Definition 1. Let (pi,pj) be an oriented pair in a permutation and let pj be the negative element in the

pair. The oriented inversion corresponding to (pi,pj) is a MAX inversion if pj has the maximum value of all

negative elements in the permutation. The pair (pi,pj) is called the MAX pair of the permutation.

For example the MAX inversion in the permutation (4 5 �3 1 �6 2 �7) is r(4,6), corresponding to

the oriented pair (2, �3), and the MAX inversion in the permutation (2 3 �1 �4) is r(1,3), corresponding

to the oriented pair (0, �1). We maintain information about only the MAX inversions in the data struc-

ture and correspondingly perform a MAX inversion in each sorting step. The result is algorithm MAX

(Algorithm 1).

Because any permutation that contains a negative element contains a MAX inversion and because any

sequence of oriented safe inversions is optimal (Hannenhalli and Pevzner, 1995), we can conclude as

follows.

Lemma 1. In the absence of unsafe MAX inversions at any sorting step, algorithm MAX produces an

optimal sorting sequence.

Algorithm MAX fails to sort only when it is ‘‘stuck’’ at an all-positive permutation that is not the

identity, which happens when a MAX inversion was unsafe. (We deal with unsafe inversions in the next

section.) The same arguments hold mutatis mutandis if we choose an oriented pair with the minimum

negative element, yielding another algorithm, algorithm MIN. Combining the two strategies and picking

one at random at each step gives us a randomized algorithm: algorithm RAND (Algorithm 2).

4.2. Maintaining information through an inversion

We now show how to maintain information about the maximum negative element of a permutation

through an inversion using the splay tree data structure. We describe the process for MAX, but the obvious

analog works for MIN.

Algorithm 1 MAX

1: while there exists a negative element in the permutation do

2: Find index of maximum negative element pj.

3: Find index of pi¼ jpjj � 1.

4: Perform inversion corresponding to oriented pair (pi,pj).

5: end while

492 SWENSON ET AL.

Let the maximum negative element of a subtree, MAXneg, be the element in the subtree that has the

maximum value among all negative elements in the subtree. The minimum positive element, MINpos, of a

subtree is defined similarly. These values are stored in each node of the splay tree. Note that the MAXneg of the

root node is the maximum negative element of the permutation, that is, the negative element of the MAX pair

of the permutation. The MAXneg of a node is the maximum of the following three: the MAXneg of the left

subtree, the MAXneg of the right subtree, and the element in the node if the element is negative. Also notice

that whenever the reversed flag of a node is turned on, MAXneg and MINpos are swapped. Therefore, pushing

down a reversed flag applies this swap to the children, unless there is a cancellation of flags.

A splay operation performs a series of rotations based on the structure of the tree and the index being

queried. Each rotation changes at most three edges of a connected subtree while maintaining the binary

search tree property. MAXneg can be recalculated for only the subtree that is affected, Recall that to perform

an inversion r(i,j) the splay tree is split into three subtrees which are rejoined after the reversed flag has

been set for one of the trees. The value of MAXneg can be kept for each of the subtrees in the process by

simply checking the children of the root after each operation.

By maintaining the MAXneg values in this fashion, one can maintain the invariant that the MAXneg of the

root node is the maximum negative element of the permutation through any sequence of inversions. Since

calculating MAXneg takes O(1) time per node, these modifications do not alter the time complexity of the

data structure.

Lemma 2. For any (signed) permutation of size n, there exists a data structure that handles an

inversion in O(logn) time while maintaining information about the maximum negative element of the

permutation.

4.3. Finding the MAX pair

We now describe how to obtain the elements of the MAX pair in a permutation using the modified data

structure described above.

First the maximum negative element of the permutation is located. If the element in a node is not equal to

the MAXneg of the node then MAXneg of the node lies in either the left subtree or the right subtree of the

node. Therefore starting at the root one can go down the tree looking for the maximum negative element.

Reversed flags must be pushed down along the path to ensure that MAXneg values are updated and the

correct path is followed.

To find the second element of the MAX pair, a lookup vector of pointers (of n elements) maps each element

to the node that contains the element. These pointers do not change throughout the computation and enable

constant-time lookup of the node containing the second element of the MAX pair.

4.4. Finding the indices of the MAX inversion

In absence of reversed flags, the indices of the MAX inversion can be obtained directly from the current

location of the nodes corresponding to the MAX pair. However, the presence of a reversed flag indicates

nodes that have outdated indices, forcing additional work to retrieve the correct indices.

Algorithm 2 RAND

while there exists a negative element in the permutation do

randomly select either MAX or MIN

if MAX then

Find index of maximum negative element pj.

Find index of pi¼ jpjj � 1.

Perform inversion corresponding to oriented pair (pi,pj).

else if MIN then

Find index of minimum negative element pk.

Find index of pl¼ jpkj þ 1.

Perform inversion corresponding to oriented pair (pk,pl).

end if

end while

SORTING SIGNED PERMUTATIONS BY INVERSIONS IN O(N LOGN) TIME 493

The index of a node (with respect to the current state of the permutation) can be calculated using the index of

the parent node and the sizes of the left and right subtrees. Thus the current index of a node can be calculated

whenever the reversed flag is pushed down from it. The size of the subtree rooted at a node is easily maintained.

If the node is a right child, then its index is one more than the sum of its parent’s index and the size of the left

subtree. If the node is a left child, then its index is one less than the difference of its parent’s index and the size of

the right subtree. The index of the root is just the size of its left subtree. Thus starting at the root, as the reversed

flags are pushed down along any path in the tree, the current indices can be calculated.

As one traverses the tree from the root searching for the maximum negative element, the indices are

recalculated. After the node corresponding to the second element in the MAX pair is found using the lookup

vector, its updated index can be retrieved by traversing up to the root (using parent pointers) and returning

down the same path, pushing down the reversed flags and recalculating indices at each node.

4.5. Putting it all together

The previous subsections detail all the steps for performing a MAX inversion. The time complexity of each

of these steps is easy to analyze. Pushing down the reversed flag takes O(1) time per node. Thus, finding the

maximum negative element and its updated index takes O(logn) time. Finding the other element of the MAX

pair takes O(1) time and obtaining its updated index takes O(logn) time. Therefore, the complexity of finding

the two indices (steps 2 and 3 in algorithm MAX) is O(logn). For each inversion, maintaining MAXneg,

MINpos, MINneg, and MAXpos in the nodes takes O(1) time during split and join operations, and O(1) time for

each rotation in the two splays. Therefore, performing the inversion in step 4 of algorithm MAX takes

O(logn) time. So we have proved:

Theorem 1. For any signed permutation of size n, a data structure exists that

� allows checking whether there exists an oriented inversion in O(1) time,
� allows performing a MAX (or MIN) inversion, while maintaining the permutation, in O(logn) time,
� and is of size O(n).

Theorem 2. In the absence of unsafe inversions at any sorting step, algorithm MAX produces an

optimal sorting sequence in O(nlogn) time.

5. BYPASSING BAD COMPONENTS

We saw that algorithms MAX and RAND can get stuck at a positive permutation by choosing an unsafe

inversion. We offer two strategies for recovery.

5.1. Randomized restarts

For algorithm RAND, we can simply restart the computation hoping that a better outcome is met in the

next run. Indeed, the experiments from Section 6 show that, for most permutations, this simple approach

suffices. However, this approach cannot always sort a permutation as there exists a family of permutations

that it cannot handle. For instance, take the permutation (3 1 �4 �2): both MAX and MIN inversions are

unsafe because they yield the same positive permutation (3 1 2 4); this small example can be extended to

any length by appending the requisite number of positive elements.

5.2. Recovering from an unsafe inversion: Tannier and Sagot’s approach

Tannier and Sagot (2004) introduced a powerful approach for finding unsafe inversions and augmenting the

sorting sequence until it is optimal. They noticed that it is computationally difficult to detect an unsafe

inversion as it is applied; but it is of course trivial to find out that the process is stuck at a positive permutation.

Their approach is thus postmortem: their algorithm traces the sorting process back to the most recent unsafe

inversion and inserts two or more sorting inversions before the unsafe one without invalidating other sorting

inversions. (This ensures that the sorting sequence grows in every trace-back phase.) After the trace-back, the

sorting process continues from the state of the permutation just before the unsafe inversion. The new inversions

that are inserted are chosen such that the bad component created by the previous unsafe inversion is no longer

created and so, the (previously) unsafe inversion and all the inversions that followed it can be applied again.

494 SWENSON ET AL.

They use an overlap graph to keep track of the remaining breakpoints (and whether or not they are oriented).

Using the overlap graph they can find the most recent unsafe inversion, find and insert more inversions before

the unsafe one, and continue sorting without invalidating the inversions that have been applied after the most

recent unsafe inversion (Tannier and Sagot, 2004). However, the process may have to be repeated, as, even

after augmenting the sorting sequence, their algorithm may again get stuck at a positive permutation.

5.3. Recovering from an unsafe inversion: our approach

We use the same general idea, but do not maintain the full overlap graph, as it is too expensive to

maintain. Denote by p1 the first positive permutation at which the algorithm gets stuck and by pi the ith such

positive permutation. Recovering from a positive permutation pi involves three steps: finding the most

recent unsafe inversion mi, finding and inserting two other oriented inversions with the required properties

that can be applied before mi, and appending inversions without invalidating those sorting inversions that

had been applied after (and including) mi. We describe each of these steps in turn.

5.3.1. Finding the most recent unsafe inversion. In the trace-back phase, we undo the inversions

that have been done so far in order to find the most recent unsafe inversion mi. Note that an unsafe inversion is

an inversion that, when undone, creates a good component from bad components. Denote by p � S and p � r the

result of applying the inversions from the sequence of inversions S and the single inversion r to the

permutation p, respectively. Let U (p) be the set of unsafe inversions on a permutation p and let B(p) be the set

of bad components in p � m for l 2 U(p). Undoing the inversion r in p � r refers to performing r on p � r
which yields p, and undoing the inversions S¼ q1, q2, . . . , qnin p � S refers to performing the inversions of S

in the reverse order which yields p � S � qn . . . q2 � q1¼ p. The sequence of inversions on input permutation

p0 that results in the positive permutation pi is denoted by Si, so pi¼ p0 � Si.

Remark 1. When undoing inversions from Si, the most recent unsafe inversion mi is the first inversion met

that turns an element in B(pi) from bad to good.

Finding mi is not trivial because framed intervals can be nested. For example the positive permutation (2

3 6 7 4 5 8 9 10 1) has two components: the one framed by the implicit frame elements 0 and 11, and the

nested component framed by the elements 3 and 8. Undoing the inversion r(2,7) will leave both bad

components intact despite the fact that it occurs within the frame elements of the larger component. Thus,

in the trace-back phase, r(2,7) cannot be an unsafe inversion. However, undoing the inversions m(5,7) and

m(4,5) will make the inner component good and so these two inversions, had they been performed, would

have been unsafe. The following remark characterizes undoing an unsafe inversion in terms of the com-

ponents in B(pi).

Remark 2. An inversion is the most recent unsafe inversion mi if and only if it is the most recent inversion

to change the indices of a proper nonempty subset of the elements from some component in B(pi).

The trace-back algorithm is thus as follows: start undoing the inversion sequence Si, checking after each

inversion whether there exist components in B(pi) with both changed and unchanged indices and stop

undoing when an unsafe inversion is found. This can be done by keeping an ancillary splay tree where

nodes represent adjacencies in the permutation rather than permutation elements.

If every adjacency in pi were a breakpoint, the most recent inversion would be unsafe; the heart of the

problem, then, is with non-breakpoints and how they interact with the undoing of unsafe inversions. We

present a labeling of the ancillary tree so that the safety check can be carried out by a constant-time

comparison on the two adjacencies broken by an inversion. Each adjacency has a label indicating the

innermost overlying component along with a label that is set only for non-breakpoints. For a given com-

ponent, each group of consecutive non-breakpoints (ignoring nested components) gets a unique second label.

Thus an inversion displaces only a fraction of the elements of a component if and only if both broken

adjacencies are labeled as non-breakpoints with the same component and non-breakpoint labels.

In the example, the permutation (2 3 6 7 4 5 8 9 10 1) has component label X for adjacencies (0,2), (2,3),

(8,9), (9,10), (10,1), and (1,11), and component label Y for the others. The non-breakpoint labels are the

same for (2,3), (8,9), and (9,10), but different between (6,7) and (4,5). Inversion r(2,7) acts upon non-

breakpoints with the same pair of labels while inversion m(5,7) acts upon non-breakpoints with different

component labels and m(4,5) acts upon non-breakpoints with different non-breakpoint labels.

We can list the endpoints of the components of a permutation in linear time (Bader et al., 2001; Bergeron

et al., 2002). A simple traversal of the permutation, keeping one stack for each label, can perform the node

SORTING SIGNED PERMUTATIONS BY INVERSIONS IN O(N LOGN) TIME 495

labeling described above. Thus the setup of the ancillary tree can be done in O(n) time. Let S1
i be the

sequence of inversions applied before mi in Si and S2
i be the sequence of inversions applied after S1

i (including

mi) in Si. Each safe inversion in S2
i that is undone will cost O(logn) time so the total cost for finding a most

recent unsafe inversion is O(nþ jS2
i j log n).

5.3.2. Inserting oriented inversions before the unsafe inversion. Theorem 3 in Tannier et al.

(2007) shows that there always exists two oriented inversions n1i and n2i that are valid on the permutation

after the unsafe inversion mi is undone in the trace-back phase. According to Tannier et al. (2007), if

inversions n1i and n2i have the following properties then all the inversions after and including mi are safe,

valid, and can be applied at the end of the sorting sequence on the ith iteration:

� the span of n1i overlaps the span of mi, and
� either the span of n2i overlaps the span of n1i and does not overlap the span of mi, or the span of n2i

overlaps the span of mi and does not overlap the span of n1i.

In the following, we show how to find n1i and n2i in time proportional to the size of the bad component

that we created.

Lemma 3. Given an unsafe oriented inversion mi and the bad component b of size m created by mi, one

can always find two inversions n1i and n2i in O(m) time such that

1. (existence) n1i and n2i are valid sorting inversions when applied after S1
i .

2. (safety) after applying n1i and n2i, inversion mi does not create b.

3. (validity) after applying n1i and n2i, inversion mi and all the inversions in S2
i remain valid sorting

inversions and can be applied at the end of the sorting sequence of the ith run.

Proof. A bad component could have been created in one of three ways when mi was applied. Without

loss of generality we ignore the symmetric counterpart to the first scenario below (both cannot happen at

once). We also ignore the inverted versions of each scenario where the hurdle created has only negative

elements. This leaves us with three scenarios to consider.

� (– p0 . . . þ lþ x1 . . . þ xs – px . . . � r� xk� 1 . . . � xsþ 1
|ffl{zffl}

– pxþ 1 . . . – pn) where the braced inversion

creates the bad component b¼ þ lþ x1 . . . þ xsþ xsþ 1 . . . þ xk� 1þ r.
� (– p0 . . . þ lþ x1 . . . þ xl � xr� 1 . . . � xlþ 1

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
þ xr . . . xk� 1þ r . . . – pn) where the braced inversion

creates the bad component b¼ þ lþ x1 . . . þ xlþ xlþ 1 . . . þ xr� 1þ xr . . . þ xk� 1þ r.
� The third scenario is the same as the first, except that one or more bad components are created which

span the internal component þ l – x1 . . . – xs – xsþ 1 . . . – xk� 1þ r.

For the first scenario, write L¼ þ lþ x1 . . . þ xs and R¼ � r� xk� 1 . . . � xsþ 1 and examine the substrings

L and R. Since the component (l, . . . , r)is a bad component, there must exist an element t in L such that

either tþ 1 or t� 1 is negative and not in L. Assume w is the first such element we encounter by scanning

from þl to þxs. We locate the rightmost �(w� 1) or �(wþ 1) in R by scanning from �xsþ 1 to �r. Now,

there are two possibilities.

1. The rightmost element is �(w� 1). We have w> lþ 1 and thus (w,�(w� 1)) is an oriented pair;

consequently, there exists an oriented inversion, n1i, which is different from mi. Now consider the

position of those elements with absolute values between (and including) l and w� 1. Let y be the

element with the smallest value that does not appear to the left of w in L (such an element must exist

because l is to the left of w but w� 1 is in R). Thus y� 1 must appear to the left of w in L. Not that y

cannot be in R, as this would contradict the fact that w is the leftmost element in L with �(wþ 1) or

�(w� 1) in R. Thus y must be in L and to the right of w. After applying n1i, we will have the oriented

pair (y� 1,�y), and consequently, another oriented inversion n2i. Notice that the span of n1i overlaps

the span of mi and the span of n2i overlaps the span of n1i but not that of mi. So, the required properties

of safety and validity follow from Theorem 3 in Tannier et al. (2007).

2. The rightmost element is �(wþ 1). Note that (w,�(wþ 1)) is an oriented pair, so that there exists an

oriented inversion n11. This inversion must be different from mi as otherwise L would a bad com-

ponent in itself. Now we examine the substring to the right of w in L. Let z be the element with the

largest absolute value in that substring. Consider the following two cases:

496 SWENSON ET AL.

(a) The absolute value of z is less than w: we consider the elements with absolute values in the interval

[l,z]. Let y be the element with the largest absolute value in [l,z] that appears to the left of w (such

an element must exist because l is to the left of w but z is to the right of w in L). yþ 1 cannot be in

R, as this would contradict the fact that w is the leftmost element in L with �(wþ 1) or �(w� 1)

in R. Thus yþ 1 must be in L and to the right of w. After applying n1i, we will have the oriented

pair (y,�(yþ 1)), and consequently, another oriented inversion n2i. Notice that the span of n1i

overlaps the span of mi and the span of n2i overlaps the span of n1i but not that of mi. So, the

required properties of safety and validity follow from Theorem 3 in Tannier et al. (2007).

(b) The absolute value of z is larger than wþ 1: We consider the elements with absolute values in [z, r].

Let y be the element with the largest absolute value in [z, r] that appears to the left of �(wþ 1) in R

(such an element must exist because r is to the left of�(wþ 1) in R but z is in L). y� 1 cannot be to

the left of w in L, as this would contradict the fact that w is the leftmost element in L with�(wþ 1) or

�(w� 1) in R. Thus, y� 1 must be either to the right of w in L or to the right of �(wþ 1) in R. If

y� 1 is to the right of w in L, the oriented pair (�(y� 1),y) defines the oriented inversion n2i. Notice

that the spans of n1i and n2i overlap the span of mi but n1i and n2i do not overlap. If y� 1 is to the right

of �(wþ 1) in R, after applying n1i, we will have the oriented pair (y,�(y� 1)), and consequently,

another oriented inversion n2i. In this case the span of n1i overlaps the span of mi and the span of n2i

overlaps the span of n1i but not that of mi. So, the required properties of safety and validity follow

from Theorem 3 in Tannier et al. (2007).

For the second scenario (where the span of the unsafe inversion is a proper subset of the span of the bad

component), write L¼ þ lþ x1 . . . þ xl, M¼ � xr� 1 . . . � xlþ 1and R¼ � r� xk� 1 . . . � xsþ 1. In sub-

strings L and R, there must exist one element t such that �(tþ 1) or �(t� 1) is in M and the inversion

induced by this pair is not mi. Thus, the oriented pair (t,�(t� 1)) or (t,�(tþ 1)) defines the oriented

inversion n1i. Since n1i is different from mi, there will be some negative elements after applying n1i; assume

that the maximum negative element among them is �y. Thus, y� 1 must be positive and the oriented pair

(�y, þ(y� 1)) defines the other oriented inversion n2i. It is easy to verify that these inversions have the

required properties.

For the third scenario, if the innermost component is bad then we can find the two new inversions using

the first scenario. If it is good, then we find the inversions using the logic of the second scenario.

The linear-time complexity can be achieved by using a lookup vector that maps each element to its index in

the permutation. (This is created in the beginning and maintained throughout the sorting process.) Thus, for

the first scenario, with a single scan of L, we can find w and �(w� 1) and with another scan of elements

between l and w� 1 in the lookup vector, the pair ((y� 1),�y). The other scenarios can be analysed similarly.

Note that in no scenario do we need to scan any element that is not a part of b. Thus the inversions n1i and n2i

can be found in O(m) time. &

5.3.3. Appending inversions to the sorting sequence. After we get the permutation qi¼ p � S1
i , we

apply the two inversions n1i and n2i on qi. Now we would like to ensure that the sequence of inversions

S0iwe append after n2i does not invalidate the sequence li � S2
i . We achieve this by renaming the permutation

qi in the following way.

By definition, qi � mi has at least one bad component created by mi along with a possibly nonempty set

G(qi � mi) of good components. The inversions that sort the components of G(qi � mi) correspond exactly to

the sequence S2
i . Thus, our desired sequence S0iof inversions should only displace (if at all) such components

without affecting their structure.

Say there is a component c of length m with left frame element l. The canonical form ĉc of c is a

permutation of length m with ĉc[i]¼ c[i]� lþ 1, 1�i�m, where p[i] denotes the ith element of a permu-

tation p. Components c and d are said to be structurally equivalent if and only if we have ĉc¼ d̂d.

Lemma 4. Let qi be a permutation without a bad component and mi be an inversion such that qi � mi has

at least one bad component and a set of good components G(qi � mi). There exists a q0i where any sequence

S0ithat sorts q0i to the identity, when applied to qi, will result in a permutation whose only components are

those in G(qi � mi).

Proof. Rename the permutation qi � mi such that all breakpoints from components in G(qi � mi) become

non-breakpoints and then undo mi to get q0i. Note that this renaming leaves one structurally equivalent bad

SORTING SIGNED PERMUTATIONS BY INVERSIONS IN O(N LOGN) TIME 497

component in place of each bad component, so that the renaming is unique. A inversion sequence that sorts

q0i to the identity heals all breakpoints from the bad components in qi � mi; moreover, it does not heal any

breakpoint from components of qi that are in G(qi � mi) due to the nesting property of FCIs. &

For example, take qi¼ (2 3 6 7 4 �8 �5 �9 10 �1) and mi¼ m(6,7). Now qi � mi is (2 3 6 7 4 5 8 �9

10 �1), so that G(qi � mi) is comprised of the components framed by the pair (of frame elements) (0,11) and

the pair (8,10). qi � mi is renamed to q0i � li¼ (1 2 5 6 3 4 7 8 9 10), yielding q0i¼ (1 2 5 6 3 �7

� 4 8 9 10). The sorting sequence S0i¼ (q(3, 6), q(3, 4), q(4, 7))for q0ican be applied to qi to get (2 3 4 5 6 7

8 �9 10 �1).

Lemma 5. Given a permutation p with a set of bad components B(p), permutation p0, that has one

structurally equivalent bad component in place of each b 2 B(p)and only non-breakpoints everywhere else,

can be constructed in linear time.

Proof. If an adjacency is not part of a bad component then label it with a null value; otherwise label it

by the bad component of which it is part of. Also label adjacencies with the left and right endpoints of each

component, which can be done in linear time (Bader et al., 2001; Bergeron et al., (2002). We use a stack R,

the top of which we denote by top(R). Perform the following steps until the end of the permutation is

reached, i.e., until we have i¼ n.

1. Label each element p0[i] with the value p0[i� 1]þ 1 until an adjacency corresponding to a bad

component is encountered.

2. If the adjacency is a left endpoint, then push onto R the value p[i� 1]� p0[i� 1] and go to step 3. If it

is a right endpoint, then pop the top element. If the next breakpoint is labeled with a bad component,

then go to step 3 otherwise go to step 1.

3. Label each element p0[i]¼ p[i]� top(R) until an adjacency with a different component label is

reached, then go to step 2.

The renaming procedure takes linear time and works correctly because every bad component is renamed to

a structurally equivalent component in step 2. &

5.3.4. Overall running time analysis. We call this algorithm, with the recovery phase included,

MAX-RECOVER or RAND-RECOVER, depending on whether algorithm MAX or algorithm RAND is used

in the forward-sorting phase. If algorithm MAX or RAND gets stuck at a positive permutation pi, we proceed

by undoing inversions until a permutation qi is found such that qi � mi has fewer bad components than qi.

Finding such a qi and mi alone takes O(nþ jS2
i j log n) time. The inversions undone in this step are not

discarded as they can be applied after inserting at least two more inversions. Notice that each inversion

undone in the trace-back must be done or undone on a splay tree at most three times and that S2
i and S2

j for

any two pi and pj, i= j, must be disjoint. Thus, the O(nlogn) term describes the amount of time spent for

undoing inversions over the entire course of the algorithm and just a linear amount of work beyond that

must be done in each recovery phase.

Theorem 3. The running time of MAX-RECOVER or RAND-RECOVER is O(nlognþ kn) where k is

the total number of unsafe inversions performed in the algorithm.

In Section 6, we show strong empirical evidence that, on random permutations of length n, the average

value and standard deviation of k remain constant (about 1
2
) even as n grows very large, leading us to

conjecture that these algorithms sort almost all permutations in O(nlogn) time. In the worst case, however,

RAND-RECOVER and MAX-RECOVER can use Y(n2) time, as in the following family of permutations:

build a permutation of length n by starting with the identity permutation of length n mod 5 as the first block,

followed by n=5 copies of the block i(iþ 3)(iþ 1)�(iþ 4)�(iþ 2)(iþ 5), each of which shares its first

element with the last element of the preceding block.

6. EXPERIMENTAL RESULTS

We present experimental results for algorithms MAX, RAND, MAX-RECOVER, and RAND-

RECOVER. All of the experiments are on random permutations of length 100, 200, 500, 1000, 2000, 5000,

10,000, and 20,000. For each length, we tested our algorithms on 1,000,000 permutations.

498 SWENSON ET AL.

Table 1 lists the failure rates for algorithm MAX and algorithm RAND. Algorithm MAX and algorithm

RAND produce an optimal sorting sequence with frequency 61%. We also include the failure rates for

RAND-RESTART: the simple heuristic that runs RAND on the input permutation a second time if it fails to

sort at the first attempt. The failure rate for RAND-RESTART reduces to 16% (�0.39�0.39), which

suggests that the two runs are independent with respect to the failure rate.

Tables 2 and 3 summarize the details of the number of recovery steps, k, that we observe in algorithms

MAX-RECOVER and RAND-RECOVER. The average value and the standard deviation of k remain con-

stant as n grows. Figure 1 shows the distribution of k for MAX-RECOVER on random permutations of length

10,000. This figure is representative of the observed distribution for the other lengths as well. The similarity

to the inverse exponential function suggests that the upper bound for the average value of k is a constant.

Table 1. Failure Rates for MAX, RAND, and RANDþRESTART

Length 100 200 500 1,000 2,000 5,000 10,000 20,000

MAX 39.5% 38.9% 39.0% 39.1% 39.3% 39.3% 39.3% 39.2%

RAND 39.0% 39.2% 39.5% 39.5% 39.6% 39.5% 39.6% 39.5%

RAND-RESTART 17.2% 17.1% 16.8% 16.4% 16.3% 16.2% 16.0% 16.0%

Table 2. Number of Recovery Steps (k) for MAX-RECOVER: Average and Standard Deviation

Length 100 200 500 1,000 2,000 5,000 10,000 20,000

Average (k) 0.513 0.518 0.522 0.524 0.524 0.525 0.524 0.525

SD (k) 0.765 0.770 0.772 0.774 0.773 0.775 0.774 0.777

Table 3. Number of Recovery Steps (k) for RAND-RECOVER: Average and Standard Deviation

Length 100 200 500 1,000 2,000 5,000 10,000 20,000

Average (k) 0.485 0.489 0.492 0.493 0.495 0.495 0.495 0.499

SD (k) 0.690 0.694 0.697 0.697 0.698 0.698 0.698 0.699

0 1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of recovery steps: k

P
ro

po
rt

io
n

of
 tr

ia
ls

FIG. 1. The distribution of k for MAX-RECOVER on random permutations of length 10,000.

SORTING SIGNED PERMUTATIONS BY INVERSIONS IN O(N LOGN) TIME 499

Finally, Figure 2 shows the running time of MAX-RECOVER run on randomly generated signed permu-

tations of sizes 100 through 50,000, normalized by the running time of mergesort run on an array of integers

of matched size. The normalization makes it much easier to discern the asymptotic behavior—the ratio

displayed should be Y(1) and, in particular, it should not show any tendency to rise as n increases. Moreover,

normalizing by the running time of another, well studied procedure that runs in the same time regardless of

the input data helps in smoothing out small variations due to the memory hierarchy (Moret and Shapiro,

1994). Figure 2 supports our conjecture, as running time ratios are tightly grouped and remain within the same

range for all values of n tested. We also note that MAX-RECOVER runs fast: our implementation is not fine-

tuned in any way and yet sorts permutations of size 50,000 in 2 seconds on one core of a 4-processor, 16-core

Dell PowerEdge R905 with 128GB of memory and 2.2GHz AMD 8354 processors running Linux.

7. CONCLUSION

We have given two new algorithms for sorting signed permutations by inversions, one a fast heuristic that

works on most permutations, the other a deterministic algorithm that sorts all permutations and takes

O(nlogn) time on almost all of them. We have given the results of very extensive experimentation to confirm

these claims. We have thus taken a major step towards a final resolution of the sorting problem. Future work

includes a formal proof that our deterministic algorithm sorts almost all permutations in O(nlogn) time and

designing an algorithm to deal with the few remaining permutations where our algorithm takes more time.

ACKNOWLEDGMENTS

A preliminary version of this work appeared in the proceedings of the 13th Annual International Con-

ference on Research in Computational Molecular Biology (RECOMB’09).

 30

 40

 50

 60

 70

 80

 90

 100

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

Permutation Length

FIG. 2. Normalized running time of RAND-RECOVER on random permutations of sizes from 100 to 50,000. Shown

is the ratio to the running time of mergesort on arrays of matching size.

500 SWENSON ET AL.

DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Bader, D., Moret, B., and Yan, M. 2001. A fast linear-time algorithm for inversion distance with an experimental

comparison. J. Comput. Biol. 8, 483–491.

Bergeron, A., and Stoye, J. 2003. On the similarity of sets of permutations and its applications to genome comparison.

Lect. Notes Comput. Sci. 2697, 68–79.

Bergeron, A., Heber, S., and Stoye, J. 2002. Common intervals and sorting by reversals: a marriage of necessity. Proc.

2nd Eur. Conf. Comput. Biol. 54–63.

Caprara, A. 1997. Sorting by reversals is difficult. Proc. RECOMB’97 75–83.

Day, W., and Sankoff, D. 1987. The computational complexity of inferring phylogenies from chromosome inversion

data. J. Theor. Biol. 127, 213–218.

Fertin, G., Labarre, A., Rusu, I., et al. 2009. Combinatorics of Genome Rearrangements. MIT Press, Cambridge, MA.

Hannenhalli, S., and Pevzner, P. 1995. Transforming cabbage into turnip (polynomial algorithm for sorting signed

permutations by reversals). Proc. 27th Annu. ACM Symp. Theory Comput. 178–189.

Kaplan, H., and Verbin, E. 2003. Efficient data structures and a new randomized approach for sorting signed per-

mutations by reversals. Lecture Notes Comput. Sci. 2676, 170–185.

Moret, B., and Shapiro, H. 1994. An empirical assessment of algorithms for constructing a minimum spanning tree.

DIMACS Monog. 15, 99–117.

Moret, B., and Warnow, T. 2005. Advances in phylogeny reconstruction from gene order and content data. Methods

Enzymol. 395, 673–700.

Palmer, J. 1992. Chloroplast and mitochondrial genome evolution in land plants, 99–133. In Herrmann, R., ed., Cell

Organelles. Springer Verlag, New York.

Palmer, J., and Thompson, W. 1981. Rearrangements in the chloroplast genomes of mung bean and pea. Proc. Natl.

Acad. Sci. USA 78, 5533–5537.

Sankoff, D. 1992. Edit distance for genome comparison based on non-local operations. Lect. Notes Comput. Sci. 644,

121–135.

Sankoff, D., and Goldstein, M. 1989. Probabilistic models for genome shuffling. Bull. Math. Biol. 51, 117–124.

Sleator, D., and Tarjan, R. 1985. Self-adjusting binary search trees. J. ACM 32, 652–686.

Sturtevant, A. 1926. A crossover reducer in Drosophila melanogaster due to inversion of a section of the third

chromosome. Biol. Zent. Bl. 46, 697–702.

Sturtevant, A., and Dobzhansky, T. 1936. Inversions in the third chromosome of wild races of Drosophila pseu-

doobscura and their use in the study of the history of the species. Proc. Natl. Acad. Sci. USA 22, 448–450.

Tannier, E., and Sagot, M.-F. 2004. Sorting by reversals in subquadratic time. Lect. Notes Comput. Sci. 3109, 1–13.

Tannier, E., Bergeron, A., and Sagot, M.-F. 2007. Advances on sorting by reversals. Disc. Appl. Math. 155, 881–888.

Address correspondence to:

Dr. Krister M. Swenson

EPFL IC IIF LCBB

INJ 211 (Bâtiment INJ)

Station 14

Lausanne 1015, Switzerland

E-mail: akswenson@uottawa.ca

SORTING SIGNED PERMUTATIONS BY INVERSIONS IN O(N LOGN) TIME 501

