
Sorting Signed Permutations by Inversions
in O(n logn) Time

Krister M. Swenson, Vaibhav Rajan, Yu Lin, and Bernard M.E. Moret

Laboratory for Computational Biology and Bioinformatics
EPFL (École Polytechnique Fédérale de Lausanne), Switzerland

{krister.swenson,vaibhav.rajan,yu.lin,bernard.moret}@epfl.ch

Abstract. The study of genomic inversions (or reversals) has been a mainstay
of computational genomics for nearly 20 years. After the initial breakthrough
of Hannenhalli and Pevzner, who gave the first polynomial-time algorithm for
sorting signed permutations by inversions, improved algorithms have been de-
signed, culminating with an optimal linear-time algorithm for computing the in-
version distance and a subquadratic algorithm for providing a shortest sequence
of inversions—also known as sorting by inversions. Remaining open was the
question of whether sorting by inversions could be done in O(n log n) time.

In this paper, we present a qualified answer to this question, by providing two
new sorting algorithms, a simple and fast randomized algorithm and a determin-
istic refinement. The deterministic algorithm runs in time O(n log n+ kn), where
k is a data-dependent parameter. We provide the results of extensive experiments
showing that both the average and the standard deviation for k are small constants,
independent of the size of the permutation. We conclude (but do not prove) that
almost all signed permutations can be sorted by inversions in O(n logn) time.

1 Introduction

Genomic rearrangements have been the subject of intense research over the last 10
years. Initially identified in the 1920s in the fly genome through genetic studies [14,15],
then studied in detail in chloroplast organelles in the 1980s (for instance in a series of
papers from Palmer’s lab, beginning with [9,10]), they were brought to the attention of
the computational community in the early 1990s [11]. A large number of papers have
since been published on the combinatorics and algorithmics of genomic rearrangements
(see [8] for a survey). Starting at the beginning of this century, genomic rearrangements
have assumed much more importance with the advent of whole-genome sequencing and
the emergence of comparative genomics as a major discipline in biocomputing.

Of the various genomic rearrangements studied, perhaps the simplest and best doc-
umented is the inversion (also called reversal in much of the Computer Science liter-
ature), through which a segment of a chromosome is reversed in place. In 1987, Day
and Sankoff [5] formalized a model of genomic inversions in which a chromosome is
represented as a permutation of signed gene indices, the sign indicating the direction
of transcription of the gene; in this framework, an inversion acts on an interval of the
permutation by reversing the order in which the indices appear within the interval and
by flipping the sign of each index. Sankoff later provided a probabilistic model [12]

S. Batzoglou (Ed.): RECOMB 2009, LNCS 5541, pp. 386–399, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Sorting Signed Permutations by Inversions in O(n logn) Time 387

and posed two fundamental questions about inversions in this framework: given two
signed permutations on the same index set, what is the smallest number of inversions
required to transform one permutation into the other and what is a sequence of inver-
sions implementing this transformation [11]. The first problem is thus to compute an
edit distance, where the edit operation is the inversion; the second is to return an edit
sequence—a problem usually known as “sorting,” since a simple re-indexing can turn
one of the permutations into the identity. Many years of work were needed to ascer-
tain the complexity of each of these problems. The breakthrough came in 1995, when
Hannenhalli and Pevzner provided a a polynomial-time algorithm to solve both prob-
lems. (In contrast, in 1997, Caprara [4] showed that both problems were NP-hard if
phrased in terms of unsigned permutations.) The running time for both problems has
been steadily reduced over the years. In 2001, our group gave an optimal linear-time
algorithm to compute the edit distance [1]; and in 2004, Tannier and Sagot, building on
the work of Kaplan and Verbin [7], gave a O(n

√
n logn) algorithm to produce a sort-

ing sequence. Remaining open was the question of whether signed permutations can be
sorted by inversions in O(n logn) time, just like sorting plain numbers.

In this paper, we give a qualified positive answer to this question by describing two
new algorithms for sorting signed permutations by inversions. The first is a random-
ized algorithm that runs in guaranteed O(n logn) time, but may fail; successive restarts
reduce the probability of failure, but we cannot guarantee that every permutation will
be sorted with high probability with a finite number of restarts, so that it is not a true
Las Vegas algorithm. (Indeed, we give a family of permutations that cannot be sorted
by this algorithm regardless of the number of restarts.) The other is a deterministic
algorithm that always sorts the permutation and runs in O(n logn+ kn) time, where k is
the number of successive “corrections” (detailed in Section 5) that must be applied—
a value, incidentally, that is not related to the edit distance d, although it is bounded
by it. We give a family of permutations for which k is Θ(n) (the worst-case value for
k) and thus for which our sorting algorithm will run in quadratic time. However, we
present the results of very extensive experimentation showing that the expected value
and the standard deviation of k are small constants (less than 1), independent of n,
so that the running time of the algorithm is, with high probability, O(n logn). Thus
we conclude (but do not prove) that almost all permutations can be sorted in optimal
O(n logn) time.

2 Preliminaries

A permutation π is written as (π1π2 . . .πn), where each element πi is a signed integer
and the absolute values of these elements are all distinct and form the set {1,2, . . . ,n}.
The absolute value of πi is denoted by |πi|. An inversion ρ(i, j) on a permutation
π = (π1 . . .πi . . .π j . . .πn) reverses all elements between πi and π j while changing their
signs giving (π1 . . .πi−1−π j . . .−πiπ j+1 . . .πn). We assume that every permutation of n
elements is framed by elements 0 and n + 1. In this way we consider each permutation
to be linear, noting that each linear permutation corresponds to n + 1 circular permu-
tations (of length n + 1), which are equivalent in terms of the sequences of inversions
used to sort them.

388 K.M. Swenson et al.

Two adjacent elements, πi and πi+1 for 0 ≤ i ≤ n + 1, form an adjacency. An adja-
cency is a non-breakpoint if and only if we have πi+1 − πi = 1, otherwise it is a break-
point. An oriented pair, (πi,π j), in a permutation is a pair of integers with opposite
signs such that πi + π j = ±1. The inversion induced by an oriented pair (πi,π j), called
an oriented inversion, is ρ(i, j − 1) for πi + π j = +1, and ρ(i + 1, j) for πi + π j = −1.
An oriented inversion always creates a non-breakpoint; we say that it heals the break-
point (or breakpoints—there could be two) to which the elements of the oriented pair
belonged before the inversion.

A framed common interval (FCI) [2] of a length n permutation is a substring of the
permutation, (as1s2 . . .skb) or (−bs1s2 . . . sk−a) (with s1s2 . . .sk possibly empty) such that

– for each i, 1 ≤ i ≤ k, |a| < |si| < |b|,
– for each l, |a| < l < |b|, there exists a j, 1 ≤ j ≤ k, with |s j| = l, and
– the FCI is not a union of shorter intervals with the above properties.

The substring s1s2 . . .sk is thus a (possibly empty) signed permutation of the integers
greater than a and less than b; elements a and b are called the frame elements. The
framed interval is said to be common in that it also exists, in its canonical form

(
+a+(a+

1)+(a + 2) . . .+b
)
, in the identity permutation. FCI B is nested inside FCI A if and only

if the left and right frame elements of A occur, respectively, before and after the frame
elements of B.

A component is comprised of the frame elements from an FCI along with all ele-
ments inside the FCI that are not used for a nested subinterval. A bad component is a
component where all elements have the same sign. Two components can only overlap at
the frame elements [3]. An inversion is said to be unsafe if it creates a bad component,
otherwise it is safe. A permutation is positive if it is not the identity permutation and
every element is positive. A positive permutation indicates the existence of at least one
bad component. Any permutation containing bad components can be transformed to
another permutation that does not contain any bad component in linear time [1]. Thus,
in the algorithms we describe, we assume that the input permutation does not contain
any bad components.

3 Background: Data Structures for Permutations

To implement an algorithm for sorting by inversions, we need a data structure for han-
dling permutations that supports two basic operations: (i) choose an oriented inversion,
and (ii) perform an inversion.

We now describe the data structure of Kaplan and Verbin [7] that stores a permutation
in linear space and allows us to perform an inversion in logarithmic time. The structure
is a splay tree, in which the nodes are ordered by the indices of the permutation, with
one additional flag maintained at each node.

To perform an inversion ρ(i, j) between (and including) indices i and j, index i−1 is
splayed and the right subtree of the root is split from the root yielding subtrees T<i and
T≥i where T<i (T≥i) contains all elements with indices less than (greater than or equal to)
i. Next, index j is splayed in T≥i and again the right subtree is split from its root yielding
subtrees Trev and T> j where T> j contains all elements with indices greater than j and

Sorting Signed Permutations by Inversions in O(n logn) Time 389

Trev contains the elements of the permutation that have to be reversed. Finally, there
are three subtrees: T<i, Trev and T> j. Now, actually reversing the elements in Trev can
take Θ(n) time since Θ(n) elements could be reversed in a single inversion. To achieve
logarithmic time complexity a lazy approach is taken: a reversed flag is maintained in
each node, which if turned on indicates that the subtree rooted at the node is reversed.
Now instead of immediately reversing a subtree, we just set its reversed flag. During an
inversion the reversed flag of the root of Trev is flipped and T<i is joined to Trev to get T≤ j.
This is achieved by making Trev the right child of the root of T<i, which still contains
the element at index i−1, yielding the tree T≤ j. T≤ j is then joined to T> j by splaying j
in T≤ j, after which T> j is made the right child of the root of T≤ j, yielding the final tree
which represents the permutation after the inversion. Since the only operation that takes
more than constant time is the splay and since splaying takes amortized logarithmic
time [13], each inversion takes amortized logarithmic time.

A tree could have several reversed flags, but the invariant maintained is that an in-
order traversal modified by the reversed flags yields the permutation. So to read the
permutation one would traverse a reversed subtree in reverse order while flipping signs
of elements read. Nested reversed flags cancel in the sense that a reversed flag on a
node within a reversed subtree, implies that the inner subtree (rooted at that node) is
not reversed. Thus, a subtree rooted at a node is reversed if and only if there is an odd
number of reversed flags in the path from the root to the node (including the node).

When a sequence of inversions is performed, reversed flags can get nested to arbi-
trarily deep levels. We can push the flag down a traversed path in the tree, by flipping
the sign of the element in the node, exchanging the left and right subtrees, and flipping
the reversed flags in both children. The reversed flag of a leaf is cleared by just flip-
ping its sign. Pushing down a flag takes constant time per node so the logarithmic time
complexity of splaying is maintained. By pushing down the flags in the splay path we
ensure that the three subtrees created (T<i, Trev and T> j) reflect the changes made in all
the previous inversions.

This is exactly the data structure described in [7]; it can handle a sequence of d inver-
sions in O(d logn) time. The data structure maintains only the state of the permutation
at each step (in a lazy way). However it does not maintain information about oriented
pairs, nor could it do so efficiently, as a single inversion could change the orientation
of Θ(n) pairs. Indeed, using this data structure to maintain the information necessary to
choose an oriented inversion at each step would increase the running time by a factor
of n.

To overcome this problem both Kaplan and Verbin [7] and Tannier et al. [16] used a
two-level version of the data structure in which a permutation is stored in linear blocks
of size O(

√
n logn) each. Corresponding to each block is a splay tree that maintains

information about all oriented pairs (πi,π j) such that either πi or π j is in the block.
Performing an inversion while maintaining information about all oriented pairs takes
O(

√
n logn) time and choosing an inversion at each sorting step takes O(logn) time, so

that the total time complexity of their algorithms is O(n
√

n logn).
In order to run in O(n logn) time, these algorithms need to be able to choose an

oriented inversion in logarithmic time and thus information to identify such inversions
must also be maintained in logarithmic time through an inversion.

390 K.M. Swenson et al.

4 Our Algorithm

Instead of addressing the data structure (by designing a new data structure that can
somehow process O(n) new pair orientations in logarithmic time), we address the root
question of identifying an oriented inversion. Our key contribution is that we need not
maintain information about all oriented inversions for every permutation at each sorting
step—a few suffice in most cases.

4.1 MAX Inversions

Definition 1. Let (πi,π j) be an oriented pair in a permutation and let π j be the negative
element in the pair. The oriented inversion corresponding to (πi,π j) is a MAX inversion
if π j has the maximum value of all negative elements in the permutation. The pair
(πi,π j) is called the MAX pair of the permutation.

For example the MAX inversion in the permutation (4 5 −3 1 −6 2 −7) is ρ(4,6), cor-
responding to the oriented pair (2,−3), and the MAX inversion in the permutation
(2 3 −1 −4) is ρ(1,3), corresponding to the oriented pair (0,−1). We maintain informa-
tion about only the MAX inversions in the data structure and correspondingly perform
a MAX inversion in each sorting step. The result is algorithm MAX.

Algorithm 1. MAX
1: while there exists a negative element in the permutation do
2: Find index of maximum negative element π j .
3: Find index of πi = |π j|−1.
4: Perform inversion corresponding to oriented pair (πi,π j).
5: end while

Because any permutation that contains a negative element contains a MAX inversion
and because any sequence of oriented safe inversions is optimal [6], we can conclude
as follows.

Lemma 1. In the absence of unsafe MAX inversions at any sorting step, algorithm
MAX produces an optimal sorting sequence.

Algorithm MAX fails to sort only when it is “stuck” at an all-positive permutation that
is not the identity, which happens when a MAX inversion was unsafe. (We deal with
unsafe inversions in the next section.) The same arguments hold mutatis mutandis if we
choose an oriented pair with the minimum negative element, yielding another algorithm,
algorithm MIN. Combining the two strategies and picking one at random at each step
gives us a randomized algorithm: algorithm RAND.

4.2 Maintaining Information through an Inversion

We now show how to maintain information about the maximum negative element of a
permutation through an inversion using the splay tree data structure. We describe the
process for MAX, but the obvious analog works for MIN.

Sorting Signed Permutations by Inversions in O(n logn) Time 391

Algorithm 2. RAND
while there exists a negative element in the permutation do

randomly select either MAX or MIN
if MAX then

Find index of maximum negative element π j .
Find index of πi = |π j|−1.
Perform inversion corresponding to oriented pair (πi,π j).

else if MIN then
Find index of minimum negative element πk.
Find index of πl = |πk|+1.
Perform inversion corresponding to oriented pair (πk,πl).

end if
end while

Let the maximum negative element of a subtree, MAXneg, be the element in the sub-
tree that has the maximum value among all negative elements in the subtree. The mini-
mum positive element, MINpos, of a subtree is defined similarly. These values are stored
in each node of the splay tree. Note that the MAXneg of the root node is the maximum
negative element of the permutation, that is, the negative element of the MAX pair of
the permutation. The MAXneg of a node is the maximum of the following three: the
MAXneg of the left subtree, the MAXneg of the right subtree, and the element in the node
if the element is negative. Also notice that whenever the reversed flag of a node is turned
on, MAXneg and MINpos are swapped. Therefore pushing down a reversed flag applies
this swap to the children, unless there is a cancellation of flags.

A splay operation performs a series of rotations based on the structure of the tree
and the index being queried. Each rotation changes at most three edges of a connected
subtree while maintaining the binary search tree property. MAXneg can be recalculated
for only the subtree that is affected, Recall that to perform an inversion ρ(i, j) the splay
tree is split into three subtrees which are rejoined after the reversed flag has been set for
one of the trees. The value of MAXneg can be kept for each of the subtrees in the process
by simply checking the children of the root after each operation.

By maintaining the MAXneg values in this fashion, one can maintain the invariant
that the MAXneg of the root node is the maximum negative element of the permutation
through any sequence of inversions. Since calculating MAXneg takes O(1) time per node,
these modifications do not alter the time complexity of the data structure.

Lemma 2. For any (signed) permutation of size n, there exists a data structure that
handles an inversion in O(logn) time while maintaining information about the maxi-
mum negative element of the permutation.

4.3 Finding the MAX Pair

We now describe how to obtain the elements of the MAX pair in a permutation using
the modified data structure described above.

First the maximum negative element of the permutation is located. If the element in
a node is not equal to the MAXneg of the node then MAXneg of the node lies in either

392 K.M. Swenson et al.

the left subtree or the right subtree of the node. Therefore starting at the root one can
go down the tree looking for the maximum negative element. Reversed flags must be
pushed down along the path to ensure that MAXneg values are updated and the correct
path is followed.

To find the second element of the MAX pair, a lookup vector of pointers (of n el-
ements) maps each element to the node that contains the element. These pointers do
not change throughout the computation and enable constant-time lookup of the node
containing the second element of the MAX pair.

4.4 Finding the Indices of the MAX Inversion

In absence of reversed flags, the indices of the MAX inversion can be obtained directly
from the current location of the nodes corresponding to the MAX pair. However, the
presence of a reversed flag indicates nodes that have outdated indices, forcing additional
work to retrieve the correct indices.

The index of a node (with respect to the current state of the permutation) can be
calculated using the index of the parent node and the sizes of the left and right subtrees.
Thus the current index of a node can be calculated whenever the reversed flag is pushed
down from it. The size of the subtree rooted at a node is easily maintained. If the node
is a right child, then its index is one more than the sum of its parent’s index and the size
of the left subtree. If the node is a left child, then its index is one less than the difference
of its parent’s index and the size of the right subtree. The index of the root is just the
size of its left subtree. Thus starting at the root, as the reversed flags are pushed down
along any path in the tree, the current indices can be calculated.

As one traverses the tree from the root searching for the maximum negative element,
the indices are recalculated. After the node corresponding to the second element in
the MAX pair is found using the lookup vector, its updated index can be retrieved by
traversing up to the root (using parent pointers) and returning down the same path,
pushing down the reversed flags and recalculating indices at each node.

4.5 Putting It All Together

The previous subsections detail all the steps for performing a MAX inversion. The
time complexity of each of these steps is easy to analyze. Pushing down the reversed
flag takes O(1) time per node. Thus, finding the maximum negative element and its
updated index takes O(logn) time. Finding the other element of the MAX pair takes
O(1) time and obtaining its updated index takes O(logn) time. Therefore the complexity
of finding the two indices (steps 2 and 3 in algorithm MAX) is O(logn). For each
inversion, maintaining MAXneg, MINpos, MINneg, and MAXpos in the nodes takes O(1)
time during split and join operations, and O(1) time for each rotation in the two splays.
Therefore performing the inversion in step 4 of algorithm MAX takes O(logn) time. So
we have proved:

Theorem 1. For any signed permutation of size n, a data structure exists that

– allows checking whether there exists an oriented inversion in O(1) time,

Sorting Signed Permutations by Inversions in O(n logn) Time 393

– allows performing a MAX (or MIN) inversion, while maintaining the permutation,
in O(logn) time,

– and is of size O(n).

Theorem 2. In the absence of unsafe inversions at any sorting step, algorithm MAX
produces an optimal sorting sequence in O(n logn) time.

5 Bypassing Bad Components

We saw that algorithms MAX and RAND can get stuck at a positive permutation by
choosing an unsafe inversion. We offer two strategies for recovery.

5.1 Randomized Restarts

For algorithm RAND we can simply restart the computation hoping that a better out-
come is met in the next run. Indeed, the experiments from Section 6 show that, for
most permutations, this simple approach suffices. However, this approach cannot al-
ways sort a permutation as there exists a family of permutations that it cannot handle.
For instance, take the permutation (3 1−4−2): both MAX and MIN inversions are unsafe
because they yield the same positive permutation (3 1 2 4); this small example can be
extended to any length by appending the requisite number of positive elements.

5.2 Recovering from an Unsafe Inversion: Tannier and Sagot’s Approach

Tannier and Sagot [17] introduced a powerful approach for finding and replacing un-
safe inversions. They noticed that it is computationally difficult to detect an unsafe
inversion as it is used; but it is of course trivial to find out that the process is stuck
at a positive permutation. Their approach is thus postmortem: their algorithm traces
the sorting process back to the most recent unsafe inversion and replaces it with a
safe one without invalidating other sorting inversions that have been applied. They
used an overlap graph to keep track of the remaining breakpoints (and whether or
not they are oriented). Using the overlap graph they can find the most recent unsafe
inversion, replace it with a safe inversion, and continue sorting without invalidating
those sorting inversions that have been applied after the most recent unsafe inver-
sion [17]. However, the process may have to be repeated, as, even after replacing an
unsafe inversion with a safe one, their algorithm may again get stuck at a positive
permutation.

5.3 Recovering from an Unsafe Inversion: Our Approach

We use the same general idea, but do not maintain the full overlap graph, as it is too
expensive to maintain. Denote by p1 the first positive permutation at which the algo-
rithm gets stuck and by pi the ith such positive permutation. Recovering from a positive
permutation pi involves three steps: finding the most recent unsafe inversion µi, replac-
ing µi with a safe inversion, and appending inversions without invalidating those sorting
inversions that had been applied after µi. We describe each of these steps in turn.

394 K.M. Swenson et al.

Finding the most recent unsafe inversion: In the trace-back phase, we undo the in-
versions that have been done so far in order to find the most recent unsafe inversion
µi. Note that an unsafe inversion is an inversion that, when undone, creates a good
component from bad components. Denote by π · S and π · ρ the result of applying the
inversions from the sequence of inversions S and the single inversion ρ to the permu-
tation π, respectively. Let U(π) be the set of unsafe inversions on a permutation π and
let B(π) be the set of bad components in π · µ for µ ∈ U(π). Undoing the inversion
ρ in π · ρ refers to performing ρ on π · ρ which yields π, and undoing the inversions
S = ρ1,ρ2, . . . ,ρn in π · S refers to performing the inversions of S in the reverse order
which yields π · S · ρn . . .ρ2 · ρ1 = π. The sequence of inversions on input permutation
π0 that results in the positive permutation pi is denoted by Si, so pi = π0 ·Si.

Remark 1. When undoing inversions from Si, the most recent unsafe inversion µi is the
first inversion met that turns an element in B(pi) from bad to good.

Finding µi is not trivial beause framed intervals can be nested. For example the positive
permutation (2 3 6 7 4 5 8 9 10 1) has two components: the one framed by the implicit
frame elements 0 and 11, and the nested component framed by the elements 3 and
8. Undoing the inversion ρ(2,7) will leave both bad components intact despite the fact
that it occurs within the frame elements of the larger component. Thus, in the trace-back
phase, ρ(2,7) cannot be an unsafe inversion. However, undoing the inversions µ(5,7)
and µ(4,5) will make the inner component good and so these two inversions, had they
have been performed, would have been unsafe. The following remark characterizes
undoing an unsafe inversion in terms of the components in B(pi).

Remark 2. An inversion is the most recent unsafe inversion µi if and only if it is the most
recent inversion to change the indices of a proper nonempty subset of the elements from
some component b ∈ B(pi).

The trace-back algorithm is thus as follows: start undoing the inversion sequence Si,
checking after each inversion whether there exist components in B(pi) with both changed
and unchanged indices and stop undoing when an unsafe inversion is found. This can
be done by keeping an ancillary splay tree where nodes represent adjacencies in the
permutation rather than permutation elements.

If every adjacency in pi were a breakpoint, the most recent inversion would be un-
safe; the heart of the problem, then, is with non-breakpoints and how they interact with
the undoing of unsafe inversions. We present a labeling of the ancillary tree so that the
safety check can be carried out by a constant-time comparison on the two adjacencies
broken by an inversion. Each adjacency has a label indicating the innermost overlying
component along with a label that is set only for non-breakpoints. For a given compo-
nent, each group of consecutive non-breakpoints (ignoring nested components) gets a
unique second label. Thus an inversion displaces only a fraction of the elements of a
component if and only if both broken adjacencies are labeled as non-breakpoints with
the same component and non-breakpoint labels.

In the example, the permutation (2 3 6 7 4 5 8 9 10 1) has component label X for
adjacencies (0,2), (2,3), (8,9), (9,10), (10,1), and (1,11), and component label Y for the
others. The non-breakpoint labels are the same for (2,3), (8,9), and (9,10), but different
between (6,7) and (4,5). Inversion ρ(2,7) acts upon non-breakpoints with the same pair

Sorting Signed Permutations by Inversions in O(n logn) Time 395

of labels while inversion µ(5,7) acts upon non-breakpoints with different component
labels and µ(4,5) acts upon non-breakpoints with different non-breakpoint labels.

We can list the endpoints of the components of a permutation in linear time [1,2].
A simple traversal of the permutation, keeping one stack for each label, can perform
the node labeling described above. Thus the setup of the ancillary tree can be done in
O(n) time. Let S1

i be the sequence of inversions applied before µi in Si and S2
i be the

sequence of inversions applied after µi in Si. Each safe inversion in S2
i that is undone

before encountering µi will cost O(logn) time so the total cost for finding a most recent
unsafe inversion is O(n + |S2

i | logn).

Finding a safe inversion given an unsafe inversion

Lemma 3. Given an unsafe oriented inversion µi and the bad component b created by
µi, one can find at least one safe inversion νi to replace µi in O(n) time.

Proof. A bad component could have been created in one of three ways when µi was
applied. Without loss of generality we ignore the symmetric counterpart to the first case
below (both cannot happen at once), leaving us with two cases to consider.

– (±π0 . . . +l+x1 . . . +xs ±πx . . . −r−xk−1 . . . −xs+1︸ ︷︷ ︸
±πx+1 . . . ±πn)

where the braced inversion creates the bad component
b = +l+x1 . . .+xs+xs+1 . . . +xk−1+r, and

– (±π0 . . . +l+x1 . . . +xl −xr−1 . . . −xl+1︸ ︷︷ ︸
+xr . . .xk−1+r . . .±πn)

where the braced inversion creates the bad component
b = +l+x1 . . .+xl+xl+1 . . . +xr−1+xr . . . +xk−1+r.

For the first case we examine the substrings +l+x1 . . . +xs and −r−xk−1 . . .−xs+1, one of
which must contain at least two elements because any bad component contains at least
4 elements. Since the component (l, . . . ,r) is an FCI, if L = +l+x1 . . . +xs contains two
or more elements then there must exist a w ≥ l such that w + 1 is not in L. Likewise,
if R = −r−xk−1 . . . −xs+1 contains two or more elements then there must exist a −v with
absolute value at most r such that v − 1 is not in R. Thus, (w,−(w+ 1)) or ((v − 1),−v)
define oriented pairs, and consequently, oriented inversions. These oriented inversions
must be different from µ. After applying (w,−(w + 1)) or ((v − 1),−v) we are left with
some elements from the interval [l,r) grouped on the left with positive signs and some
elements from the interval (l,r] grouped on the right with negative signs, so that any
component created by this inversion must be good, and the inversion must be safe.

For the second case, there exists a smallest −xy in the subsequence −xr−1 . . .−xl+1 and,
consequently, +(xy − 1) in either +l+x1 . . . +xl or +xr . . .xk−1+r. Again, this oriented pair
implies an oriented inversion. If this inversion does not create a bad component, we are
done. If it does create such a bad component, it produces an instance of the first case. If
we have −xy = −xl+1, the symmetric argument applies to the largest element.

For the first case we find this inversion by a linear scan of the elements in R and L,
each time checking whether the index of its potential counterpart in an oriented pair is
on L and R, respectively. Since a lookup table of indices can be initialized in linear time,
the whole process will take linear time. For the second case we do a linear scan of the
negative elements within the interval to find the minimum. Thus, the safe inversion νi

to replace µi can be found in O(n) time.

396 K.M. Swenson et al.

Appending inversions to the sorting sequence: After we get the permutation qi =
π · S1

i , we apply the safe inversion νi on qi. Note that the inversions in S2
i remain valid

because νi only acts within the elements in B(pi). Now we would like to ensure that the
sequence of inversions S′

i we append after νi does not create the same adjacencies as
those in S2

i . We achieve this by renaming the permutation qi in the following way.
By definition, qi ·µi has at least one bad component created by µi along with a pos-

sibly nonempty set G(qi ·µi) of good components. The inversions that sort the compo-
nents of G(qi · µi) correspond exactly to the sequence S2

i . Thus, our desired sequence
S′

i of inversions should only displace (if at all) such components without affecting their
structure.

Say there is a component c of length m with left frame element l. The canonical form
ĉ of c is a permutation of length m with ĉ[i] = c[i]− l +1, 1 ≤ i ≤ m, where p[i] denotes
the ith element of a permutation p. Components c and d are said to be structurally
equivalent if and only if we have ĉ = d̂.

Lemma 4. Let qi be a permutation without a bad component and µi be an inversion
such that qi ·µi has at least one bad component and a set of good components G(qi ·µi).
There exists a q′

i where any sequence S′
i that sorts q′

i to the identity, when applied to qi,
will result in a permutation whose only components are those in G(qi ·µi).

Proof. Rename the permutation qi · µi such that all breakpoints from components in
G(qi · µi) become non-breakpoints and then undo µi to get q′

i. Note that this renaming
leaves one structurally equivalent bad component in place of each bad component, so
that the renaming is unique. A inversion sequence that sorts q′

i to the identity heals all
breakpoints from the bad components in qi ·µi; moreover, it does not heal any breakpoint
from components of qi that are in G(qi ·µi) due to the nesting property of FCIs.

For example, take qi = (2 3 6 7 4 −8 −5 −9 10 −1) and µi = µ(6,7). Now qi · µi is (2
3 6 7 4 5 8 −9 10 −1), so that G(qi · µi) is comprised of the components framed by
the pair (of frame elements) (0,11) and the pair (8,10). qi · µi is renamed to q′

i · µi =
(1 2 5 6 3 4 7 8 9 10), yielding q′

i = (1 2 5 6 3 −7 −4 8 9 10). The sorting sequence
S′

i = (ρ(3,6),ρ(3,4),ρ(4,7)) for q′
i can be applied to qi to get (2 3 4 5 6 7 8 −9 10 −1).

Lemma 5. Given a permutation p with a set of bad components B(p), permutation p′,
that has one structurally equivalent bad component in place of each b ∈ B(p) and only
non-breakpoints everywhere else, can be constructed in linear time.

Proof. If an adjacency is not part of a bad component then label it with a null value; oth-
erwise label it by the bad component of which it is part of. Also label adjacencies with
the left and right endpoints of each component, which can be done in linear time [1,2].
We use a stack R, the top of which we denote by t(R). Perform the following steps until
the end of the permutation is reached, i.e., until we have i = n.

1. Label each element p′[i] with the value p′[i−1]+1 until an adjacency correspond-
ing to a bad component is encountered.

2. If the adjacency is a left endpoint, then push onto R the value p[i−1]− p′[i−1] and
go to step 3. If it is a right endpoint, then pop the top element. If the next breakpoint
is labeled with a bad component, then go to step 3 otherwise go to step 1.

Sorting Signed Permutations by Inversions in O(n logn) Time 397

3. Label each element p′[i] = p[i]−t(R) until an adjacency with a different component
label is reached, then go to step 2.

The renaming procedure takes linear time and works correctly because every bad com-
ponent is renamed to a structurally equivalent component in step 2.

Overall running time analysis: We call this algorithm, with the recovery phase in-
cluded, MAX-RECOVER or RAND-RECOVER, depending on whether algorithm
MAX or algorithm RAND is used in the forward-sorting phase. If algorithm MAX
or RAND gets stuck at a positive permutation pi, we proceed by undoing inversions
until a permutation qi is found such that qi ·µi has fewer bad components than qi. Find-
ing such a qi and µi alone takes O(n + |S2

i | logn) time. The inversions undone in this
step are not discarded as they can be applied after replacing the unsafe inversion µi

with a sequence of at least two safe inversions. Notice that each inversion undone in
the trace-back must be done or undone on a splay tree at most three times and that S2

i
and S2

j for any two pi and p j, i �= j, must be disjoint. Thus the O(n logn) term describes
the amount of time spent for undoing inversions over the entire course of the algorithm
and just a linear amount of work beyond that must be done in each recovery phase.

Theorem 3. The running time of MAX-RECOVER or RAND-RECOVER is O(n logn+
kn) where k is the total number of unsafe inversions performed in the algorithm.

In Section 6 we show strong empirical evidence that, on random permutations of length
n, the average value and standard deviation of k remain constant (about 1

2) even as n
grows very large, leading us to conjecture that these algorithms sort almost all permu-
tations in O(n logn) time. In the worst case, however, RAND-RECOVER and MAX-
RECOVER can use Θ(n2) time, as in the following family of permutations: build a
permutation of length n by starting with the identity permutation of length n mod
5 as the first block, followed by n/5 copies of the block i(i + 3)(i + 1)−(i + 4)−(i +
2)(i + 5), each of which shares its first element with the last element of the preceding
block.

6 Experimental Results

We present experimental results for algorithms MAX, RAND, MAX-RECOVER and
RAND-RECOVER. All of the experiments are on random permutations of length 100,
200, 500, 1000, 2000, 5000, 10,000 and 20,000. For each length, we tested our algo-
rithms on 1,000,000 permutations.

Table 1. The failure rates for MAX, RAND and RAND+RESTART

Length 100 200 500 1,000 2,000 5,000 10,000 20,000
MAX 39.5% 38.9% 39.0% 39.1% 39.3% 39.3% 39.3% 39.2%

RAND 39.0% 39.2% 39.5% 39.5% 39.6% 39.5% 39.6% 39.5%
RAND-RESTART 17.2 % 17.1 % 16.8 % 16.4 % 16.3 % 16.2 % 16.0 % 16.0 %

398 K.M. Swenson et al.

Table 2. Number of recovery steps (k) for MAX-RECOVER: Average and Standard Deviation

Length 100 200 500 1,000 2,000 5,000 10,000 20,000
AVE(k) 0.513 0.518 0.522 0.524 0.524 0.525 0.524 0.525

SD(k) 0.765 0.770 0.772 0.774 0.773 0.775 0.774 0.777

Table 3. Number of recovery steps (k) for RAND-RECOVER: Average and Standard Deviation

Length 100 200 500 1,000 2,000 5,000 10,000 20,000
AVE(k) 0.485 0.489 0.492 0.493 0.495 0.495 0.495 0.499

SD(k) 0.690 0.694 0.697 0.697 0.698 0.698 0.698 0.699

0 1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of recovery steps: k

P
ro

po
rt

io
n

of
 tr

ia
ls

Fig. 1. The distribution of k for MAX-RECOVER on random permutations of length 10,000

Table 1 lists the failure rates for algorithm MAX and algorithm RAND. Algorithm
MAX and algorithm RAND produce an optimal sorting sequence with frequency 61%.
We also include the failure rates for RAND-RESTART: the simple heuristic that runs
RAND on the input permutation a second time if it fails to sort at the first attempt. The
failure rate for RAND-RESTART reduces to 16% (≈ 0.39×0.39), which suggests that
the two runs are independent with respect to the failure rate.

Tables 2 and 3 summarize the details of the number of recovery steps, k, that we ob-
serve in algorithms MAX-RECOVER and RAND-RECOVER. The average value and
the standard deviation of k remain constant as n grows. Figure 1 shows the distribution
of k for MAX-RECOVER on random permutations of length 10,000. This figure is rep-
resentative of the observed distribution for the other lengths as well. The similarity to
the inverse exponential function suggests that the upper bound for the average value of
k is a constant.

7 Conclusions

We have given two new algorithms for sorting signed permutations by inversions, one
a fast heuristic that works on most permutations, the other a deterministic algorithm
that sorts all permutations and takes O(n logn) time on almost all of them. We have
given the results of very extensive experimentation to confirm these claims. We have
thus taken a major step towards a final resolution of the sorting problem. Future work

Sorting Signed Permutations by Inversions in O(n logn) Time 399

includes a formal proof that our deterministic algorithm sorts almost all permutations in
O(n logn) time and designing an algorithm to deal with the few remaining permutations
where our algorithm takes more time.

References

1. Bader, D.A., Moret, B.M.E., Yan, M.: A fast linear-time algorithm for inversion distance
with an experimental comparison. J. Comput. Biol. 8(5), 483–491 (2001)

2. Bergeron, A., Heber, S., Stoye, J.: Common intervals and sorting by reversals: a marriage of
necessity. In: Proc. 2nd European Conf. Comput. Biol. ECCB 2002, pp. 54–63 (2002)

3. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to
genome comparison. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp.
68–79. Springer, Heidelberg (2003)

4. Caprara, A.: Sorting by reversals is difficult. In: Proc. 1st Int’l Conf. Comput. Mol. Biol.
(RECOMB 1997), pp. 75–83 (1997)

5. Day, W.H.E., Sankoff, D.: The computational complexity of inferring phylogenies from chro-
mosome inversion data. J. Theor. Biol. 127, 213–218 (1987)

6. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip (polynomial algorithm for
sorting signed permutations by reversals). In: Proc. 27th Ann. ACM Symp. Theory of Com-
put (STOC 1995), pp. 178–189. ACM Press, New York (1995)

7. Kaplan, H., Verbin, E.: Efficient data structures and a new randomized approach for sorting
signed permutations by reversals. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.)
CPM 2003. LNCS, vol. 2676, pp. 170–185. Springer, Heidelberg (2003)

8. Moret, B.M.E., Warnow, T.: Advances in phylogeny reconstruction from gene order and con-
tent data. In: Zimmer, E.A., Roalson, E.H. (eds.) Molecular Evolution: Producing the Bio-
chemical Data, Part B, Methods in Enzymology, vol. 395, pp. 673–700. Elsevier, Amsterdam
(2005)

9. Palmer, J.D.: Chloroplast and mitochondrial genome evolution in land plants. In: Herrmann,
R. (ed.) Cell Organelles, pp. 99–133. Springer, Heidelberg (1992)

10. Palmer, J.D., Thompson, W.F.: Rearrangements in the chloroplast genomes of mung bean
and pea. Proc. Nat’l Acad. Sci., USA 78, 5533–5537 (1981)

11. Sankoff, D.: Edit distance for genome comparison based on non-local operations. In: Apos-
tolico, A., Galil, Z., Manber, U., Crochemore, M. (eds.) CPM 1992. LNCS, vol. 644, pp.
121–135. Springer, Heidelberg (1992)

12. Sankoff, D., Goldstein, M.: Probabilistic models for genome shuffling. Bull. Math. Biol. 51,
117–124 (1989)

13. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–686 (1985)
14. Sturtevant, A.H.: A crossover reducer in Drosophila melanogaster due to inversion of a sec-

tion of the third chromosome. Biol. Zent. Bl. 46, 697–702 (1926)
15. Sturtevant, A.H., Dobzhansky, T.: Inversions in the third chromosome of wild races of

drosophila pseudoobscura and their use in the study of the history of the species. Proc. Nat’l
Acad. Sci., USA 22, 448–450 (1936)

16. Tannier, E., Bergeron, A., Sagot, M.-F.: Advances on sorting by reversals. Disc. Appl.
Math. 155(6–7), 881–888 (2007)

17. Tannier, E., Sagot, M.-F.: Sorting by reversals in subquadratic time. In: Sahinalp, S.C.,
Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 1–13. Springer,
Heidelberg (2004)

	Sorting Signed Permutations by Inversions in $O(nlogn)$ Time
	Introduction
	Preliminaries
	Background: Data Structures for Permutations
	Our Algorithm
	MAX Inversions
	Maintaining Information through an Inversion
	Finding the MAX Pair
	Finding the Indices of the MAX Inversion
	Putting It All Together

	Bypassing Bad Components
	Randomized Restarts
	Recovering from an Unsafe Inversion: Tannier and Sagot's Approach
	Recovering from an Unsafe Inversion: Our Approach

	Experimental Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

