
Research Article

Hurdles and Sorting by Inversions:

Combinatorial, Statistical, and Experimental Results

KRISTER M. SWENSON, YU LIN, VAIBHAV RAJAN, and BERNARD M.E. MORET

ABSTRACT

As data about genomic architecture accumulates, genomic rearrangements have attracted
increasing attention. One of the main rearrangement mechanisms, inversions (also called
reversals), was characterized by Hannenhalli and Pevzner and this characterization in turn
extended by various authors. The characterization relies on the concepts of breakpoints,
cycles, and obstructions colorfully named hurdles and fortresses. In this paper, we study the
probability of generating a hurdle in the process of sorting a permutation if one does not
take special precautions to avoid them (as in a randomized algorithm, for instance). To do
this we revisit and extend the work of Caprara and of Bergeron by providing simple and
exact characterizations of the probability of encountering a hurdle in a random permuta-
tion. Using similar methods we provide the first asymptotically tight analysis of the prob-
ability that a fortress exists in a random permutation. Finally, we study other aspects of
hurdles, both analytically and through experiments: when are they created in a sequence of
sorting inversions, how much later are they detected, and how much work may need to be
undone to return to a sorting sequence.

Key words: algorithms, combinatorial optimization, computational molecular biology, dynamic

programming, genomic rearrangements.

1. INTRODUCTION

The advent of high-throughput techniques in genomics has led to the rapid accumulation of data

about the genomic architecture of large numbers of species. As biologists study these genomes, they are

finding that genomic rearrangements, which move single genes or blocks of contiguous genes around the

genome, are relatively common features: entire blocks of one chromosome can be found in another chro-

mosome in another species. The earliest findings of this type go back to the pioneering work of Sturtevant on

the fruit fly (Sturtevant and Beadle, 1936; Sturtevant and Dobzhansky, 1936), but it was the advent of large-

scale sequencing that moved this aspect of evolution to the forefront of genomics.

The best documented type of rearrangement is the inversion (also called reversal), in which a block of

consecutive genes is removed and put back in (the same) place in the opposite orientation (on the other

Laboratory for Computational Biology and Bioinformatics, EPFL (Ecole Polytechnique Fédérale de Lausanne), and
Swiss Institute of Bioinformatics, Lausanne, Switzerland.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 16, Number 10, 2009

Mary Ann Liebert, Inc.

Pp. 1339–1351

DOI: 10.1089/cmb.2009.0156

1339

strand, as it were). The most fundamental computational question then becomes: given two genomes, how

efficiently can such an operation as inversion transform one genome into the other? Since an inversion does

not affect gene content (the block is neither shortened nor lengthened by the operation), it makes sense to

view these operations as being applied to a signed permutation of the set f1, 2, . . . , ng.
Hannenhalli and Pevzner (1995a, b) showed how to represent a signed (linear) permutation of n elements

as a breakpoint graph (also called, more poetically, a diagram of reality and desire) (Setubal and Meidanis,

1997), which is a graph on 2nþ 2 vertices (2 vertices per element of the permutation to distinguish signs,

plus 2 vertices that denote the extremities of the permutation) with colored edges, where edges of one color

represents the adjacencies in one permutation and edges of the other color those in the other permutation. In

such a graph, every vertex has indegree 2 and outdegree 2 and so the graph has a unique decomposition into

cycles of even length, where the edges of each cycle alternate in color. Hannenhalli and Pevzner introduced

the notions of hurdles and fortresses and proved that the minimum number of inversions needed to convert

one permutation into the other (also called ‘‘sorting’’ a permutation) is given by the number of elements of

the permutation plus 1, minus the number of cycles, plus the number of hurdles, and plus 1 if a fortress is

present. Caprara (1999) showed that hurdles were a rare feature in a random signed permutation. Bergeron

(2005) provided an alternate characterization in terms of framed common intervals and went on to show

that unsafe inversions, that is, inversions that could create new obstructions such as hurdles, were rare

(Bergeron et al., 2002) when restricted to adjacency creating inversions. Kaplan and Verbin (2003) cap-

italized on these two findings and proposed a randomized algorithm that sorts a signed permutation without

paying heed to unsafe inversions, finding that, in practice, the algorithm hardly needed any restarts to

provide a proper sorting sequence of inversions, although they could not prove that it is in fact a proper Las

Vegas algorithm.

In this article, we extend Bergeron’s result about the possibility of creating a hurdle by doing an

inversion. Her result is limited to inversions that create new adjacencies, but these are in the minority: in a

permutation without hurdles, any inversion that increases the number of cycles in the breakpoint graph is a

candidate. Using Sankoff’s randomness hypothesis (Sankoff and Haque, 2006), we show that the proba-

bility that any cycle-splitting inversion is unsafe is Y(n�2). We then revisit Caprara’s complex proof and

provide a simple proof, based on the framed intervals introduced by Bergeron, that the probability that a

random signed permutation on n elements contains a hurdle is Y(n�2). Finally, we show that this approach

can be extended to prove that the probability such a permutation contains a fortress is Y(n�15). Our results

are elaborated for circular permutations, but simple (and by now standard) adaptations show that they also

hold for linear permutations.

Framed common intervals considerably simplify our proofs; indeed, our proofs for hurdles and fortresses

depend mostly on the relative scarcity of framed intervals. Our results add credence to the conjecture that

an algorithm choosing random sorting inversions is a Las Vegas algorithm, i.e., that it returns a sorting

sequence with high probability after a constant number of restarts. Because this result suggests that the

probability of failure of such an algorithm is O(1) when working on a permutation of n elements, one could

consider designing an algorithm that runs faster by using a stochastic, rather than a deterministic, data

structure, yet remains a Las Vegas algorithm. Indeed, how fast a signed permutation can be sorted by

inversions remains an open question: while we have an optimal linear-time algorithm to compute the

number of inversions needed (Bader et al., 2001), computing one optimal sorting sequence takes sub-

quadratic time—O(n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n log n
p

), either stochastically with the algorithm of Kaplan and Verbin or deter-

ministically with the similar approach of Tannier and Sagot (2004).

2. PRELIMINARIES

Let Sn denote the set of signed permutations over n elements; a permutation p in this set will be written

as p¼ (p1p2 . . . pn), where each element pi is a signed integer and the absolute values of these elements are

all distinct and form the set f1, 2, . . . , ng. Given such a p, a pair of elements (pi, piþ 1) or (pn, p1) is called

an adjacency whenever we have piþ 1� pi¼ 1 (for 1� i� n� 1) or p1� pn¼ 1; otherwise, this pair is

called a breakpoint. We shall use R0
n to denote the set of permutations in which every permutation is

entirely devoid of adjacencies. Bergeron et al. (2002) proved the following result about jR0
nj.

Lemma 1. (Bergeron et al., 2002). For all n4 1, 1
2
jRnj5 jR0

nj5 jRnj.

1340 SWENSON ET AL.

For any signed permutation p and the identity I¼ (12 . . . n), we can construct the breakpoint graph for the

pair (p, I). Since there is one-to-one mapping between p and the corresponding breakpoint graph for (p, I),

we identify the second with the first and so write that p contains cycles, hurdles, or fortresses if the

breakpoint graph for (p, I) does; similarly, we will speak of other properties of a permutation p that are in

fact defined only when p is compared to the identity permutation.

A framed common interval (FCI) of a permutation (made circular by considering the first and last

elements as being adjacent) is a substring of the permutation, as1s2 . . . skb or � bs1s2 . . . sk� a such that:

� for each i, 1� i� k, jaj< jsij< jbj, and
� for each l, jaj< l< jbj, there exists a j with jsjj ¼ l, and
� it is not a concatenation of substrings satisfying the previous two properties.

So the substring s1s2 . . . sk is a signed permutation of the integers that are greater than a and less than b; a

and b form the frame. The framed interval is said to be common, in that it also exists, in its canonical form,

þ aþ (aþ 1)þ (aþ 2) . . . þ b, in the identity permutation. Framed intervals can be nested. The span of an

FCI is the number of elements between a and b, plus two, or b� aþ 1. A component is comprised of all

elements inside a framed interval that are not inside any nested subinterval, plus the frame elements. A bad

component is a component whose elements all have the same sign.

In a circular permutation, a bad component A separates bad components B and C if and only if every

substring containing an element of B and an element of C also has an element of A in it. We say that A

protects B if A separates B from all other bad components. A superhurdle is a bad component that protects

another bad component. A fortress is a permutation that has an odd number (larger than 1) of hurdles, all of

which are superhurdles. The smallest superhurdles are equivalent to intervals f¼þ(i)þ(iþ 2)þ(iþ 4)þ
(iþ 3)þ(iþ 5)þ(iþ 1)þ(iþ 6) or the reverse f 0 ¼�(iþ 6)�(iþ 1)�(iþ 5)�(iþ 3)�(iþ 4)�(iþ 2)�(i).

A hurdle is a bad component that is not protected by a superhurdle.

We will use the following useful facts about FCIs; all but fact 3 follow immediately from the definitions:

1. A bad component indicates the existence of a hurdle.

2. To every hurdle can be assigned a unique bad component.

3. FCIs never overlap by more than two elements. Two FCIs can only overlap at their endpoints (Bergeron and

Stoye, 2003) and at most both the endpoints of an FCI can overlap with other FCIs.

4. An interval shorter than 4 elements cannot be bad.

3. THE RARITY OF HURDLES AND FORTRESSES

In this section, we provide asymptotic characterizations in Y() terms of the probability that a hurdle or

fortress is found in a signed permutation selected uniformly at random. Each proof has two parts, an upper

bound and a lower bound; for readability, we phrase each part as a lemma and develop it independently. We

begin with hurdles; the characterization for these structures was already known, but the original proof of

Caprara (1999) is very complex.

Theorem 1. The probability that a random signed permutation on n elements contains a hurdle is

Y(n�2).

Lemma 2 (Upper bound for shorter than n� 1). The probability that a random signed permutation

on n elements contains a hurdle spanning no more than n� 2 elements is O(n�2).

Proof. Fact 4 tells us that we need only consider intervals of at least four elements. Call F�n� 2 the

indicator random variable corresponding to the event that an FCI spanning no more than n� 2 and no less

than four elements exists. Call F(i)�n� 2 the indicator random variable corresponding to event that such an

FCI exists with a left endpoint at pi. We thus have F�n� 2¼ 1 if and only if there exists an i, 1� i� n, with

F(i)�n� 2¼ 1. Note that F(i)�n� 2¼ 1 implies either pi¼ a or pi¼�b for some FCI. Thus we can write

Pr (F(i)�n� 2¼ 1)�
Xn� 2

l¼ 4

1

2(n� 1)

n� 2

l� 2

� �� 1

(1)

HURDLES AND SORTING BY INVERSIONS 1341

since 1
2(n� 1)

is the probability the right endpoint matches the left endpoint (pl is �a or b if pi is �b or a

respectively) of an interval of span l and n� 2
l� 2

� �� 1
is the probability that the appropriate elements are inside

the frame. We can bound the probability from (1) as

Pr(F(i)�n� 2¼ 1)� 1

2(n� 1)

Xn� 4

l¼ 2

n� 2

l

� �� 1

� 1

n� 1

Xdn / 2e� 1

l¼ 2

n� 2

l

� �� 1

� 1

n� 1

Xffiffinp
l¼ 2

1

n� 2

� �l

þ
Xdn / 2e� 1

l¼
ffiffi
n
p
þ 1

n� 2

l

� �� 1
0
@

1
A (2)

where the second term is no greater than

Xdn / 2e� 1

l¼
ffiffi
n
p
þ 1

n� 2

l

� �� 1

�
Xdn / 2e� 1

l¼
ffiffi
n
p
þ 1

1

2

� � ffiffi
n
p
þ 1

2 O(1 / n2) (3)

and the first term can be simplified

Xffiffinp
l¼ 2

l

n� 2

� �l

¼
X4

l¼ 2

l

n� 2

� �l

þ
Xffiffinp
l¼ 5

l

n� 2

� �l

�
X4

l¼ 2

l

n� 2

� �l

þ
Xffiffinp
l¼ 5

n

n� 2

ffiffiffi
n
p

n

� �5

2 O 3 ·
16

(n� 2)2
þ

ffiffiffi
n
p

n� 5 / 2

� �
¼O(n� 2): (4)

To compute Pr (F�n� 2) we use the union bound on Pr(
Sn

i¼ 1 F(i)�n� 2). This removes the factor of 1
n� 1

from (2) yielding just the sum of (4) and (3) which is O(n�2). The probability of observing a hurdle in some

subsequence of a permutation can be no greater than the probability of observing a FCI (by fact 2). Thus we

know the probability of observing a hurdle that spans no more than n� 2 elements is O(n�2). &

We now proceed to bound the probability of a hurdle that spans n� 1 or n elements. Call intervals with

such spans n-intervals. For a bad component spanning n elements with a¼ i, there is only a single

b¼ (i� 1) that must be a’s left neighbor (in the circular order), and for a hurdle spanning n� 1 elements

with a¼ i, there are only two configurations (‘‘þ(i� 2)þ(i� 1) þi’’ and its counterpart ‘‘þ(i� 2) �(i� 1)

þi’’) that will create a framed interval. Thus the probability that we see an n-interval with a particular a¼ i

is O(1/n) and the expected number of n-intervals in a permutation is O(1).

We now use the fact that a bad component is comprised of elements with all the same sign. Thus the

probability that an n-interval uses all the elements in its span (i.e., there exist no nested subintervals) is

O(2�n). Call a bad component that does not use all of the elements in its span (i.e., there must exist nested

subintervals) a fragmented interval.

Lemma 3 (Upper bound for n-intervals). The probability that a fragmented n-interval is a hurdle is

O(n�2).

Proof. We divide the analysis into three cases where the fragment-causing subinterval is of span

1. n� 1,

2. 4 through n� 2, and

3. less than 4.

The existence of a subinterval of span n� 1 precludes the possibility of the frame elements from the larger

n-interval being in the same component, so there cannot be a hurdle using this frame. We have already

1342 SWENSON ET AL.

established that Pr (F�n� 2) is O(n�2). Thus we turn to the third case. If an interval is bad, then the frame

elements of any fragmenting subinterval must have the same sign as the frame elements of the larger one. If

we view each such subinterval and each element not included in such an interval as single characters, we

know that there must be at least n/3 signed characters. Since the signs of the characters are independent, the

probability that all characters have the same sign is 1/2O(n) and is thus negligible.

Thus the probability of a bad n-interval is O(n�2). Now using fact 4 we conclude that the probability of

existence of a hurdle in a random signed permutation on n elements is O(n�2). &

Lemma 4 (Lower bound). The probability that a signed permutation on n elements has a hurdle with

a span of four elements is O(n�2).

Proof. Call hk the hurdle with span four that starts with element 4kþ 1. So the subsequence that

corresponds to hk must be þ(4kþ 1)þ(4kþ 3)þ(4kþ 2)þ(4kþ 4) or �(4kþ 4)�(4kþ 2)�(4kþ 3)�
(4kþ 1). We can count the number of permutations with h0, for instance. The four elements of h0 are

contiguous in 4!(n� 3)!2n permutations of length n. In c¼ 2 /(4!24) of those cases, the contiguous elements

form a hurdle, so the total proportion of permutations with h0 is

c
4!(n� 3)!2n

n!2n
2 X

1

n3

� �
:

Similarly, the proportion of permutations that have both h0 and h1 is

F2¼ c2 (4!)2(n� 6)!2n

n!2n
2 O

1

n6

� �

and, therefore, the proportion of permutations that have at least one of h0 or h1 is

2 · c
4!(n� 3)!2n

n!2n
�F2: (5)

We generalize (5) to count the proportion of permutations with at least one of the hurdles h0, h1, . . . , hbn / 4c;
this proportion is at least

n

4

j k
· c

4!(n� 3)!2n

n!2n
� bn / 4c

2

� �
F2 (6)

which is O(n�2) since the second term is O(n�4). &

Now we turn to the much rarer fortresses.

Theorem 2. The probability that a random signed permutation on n elements includes a fortress is

Y(n�15).

Lemma 5 (Upper bound). The probability that a random signed permutation on n elements includes a

fortress is O(n�15).

Proof. We bound the probability that at least three superhurdles occur in a random permutation by

bounding the probability that three non-overlapping bad components of length seven exist. We divide the

analysis into three cases depending on the number l of elements spanned by a bad component.

1. For one of the three FCIs we have n� 14� l� n� 11.

2. For one of the three FCIs we have 17� l� n� 15.

3. For all FCIs we have 7� l< 17.

As we did in Lemma 2 (equation 1), we can bound the probability that we get an FCI of length l starting at a

particular position by

Pr (Fl¼ 1)� 1

2(n� 1)

n� 2

l� 2

� �� 1

: (7)

HURDLES AND SORTING BY INVERSIONS 1343

In the first case, the probability that the FCI is a superhurdle is O(n�11 � 2�n) if the FCI is not fragmented

and O(n�15) if it is (using the same technique as for the proof of Lemma 3). In the second case the

probability is at most

n
Xn� 15

l¼ 17

Fl¼ n
Xn� 17

k¼ 15

1

2(n� 1)

n� 2

k

� �� 1

which, by the same reasoning used for equation 2 to derive O(n�2), is O(n�15). Thus the first two cases both

give us an upper bound of O(n�15).

Fact 3 tells us that any pair of FCIs can overlap only on their endpoints. Thus, if we first consider the

probability of finding a smallest FCI, we know that no other FCI will have an endpoint inside it. So the

probability of having a second FCI, conditioned on having a smaller first one, is dependent only on the size

of the first. The same reasoning extends to the probability of having a third conditioned on having two

smaller FCIs. Since each of the three FCIs spans less than seventeen elements, the probability of each FCI

appearing is at most n
P17

l¼ 7 Fk ¼O(n� 5), and the probability of there being at least three of them is

O(n�15). &

We now turn to the lower bound. Consider the probability of the existence, among random permutations,

of a permutation with exactly three superhurdles spanning seven elements each. A lower bound on this

probability is a lower bound on the probability of existence of a fortress in a random permutation.

Lemma 6 (Lower bound). The probability that a random signed permutation on n elements includes a

fortress is O(n�15).

Proof. Denote by F3,7(n) the number of permutations on n elements with exactly 3 superhurdles

spanning 7 elements each. To create such a permutation, choose a permutation of length n� 18 (with zero

adjacencies and without hurdles), select three elements, and extend each of these three elements to a

superhurdle, renaming the elements of the permutation as needed. That is, replace element þi by the

framed interval of length 7 f¼þ(i)þ(iþ 2)þ(iþ 4)þ(iþ 3)þ(iþ 5)þ(iþ 1)þ(iþ 6) and rename all the

elements with magnitude j to have magnitude jþ 6 (for those with j jj> jij). After extending the three

selected elements, we get a permutation on n elements where there are exactly 3 superhurdles each

spanning 7 elements.

From Lemma 1 and the results about the rarity of hurdles from the previous section, we have

F3, 7(n)4
(n� 18)!2n� 18

2

�
1�O(n� 2)

� n� 18

3

� �

where (n� 18)!2n� 18

2
(1�O(n� 2)) is a lower bound for the number of permutations of length n� 18 (with zero

adjacencies and without hurdles) and n� 18
3

� �
is the number of ways to choose the elements for extension.

Therefore, we have

F3, 7(n)

n!2n
4

(n� 18)!2n� 18

2

�
1�O(n� 2)

� n� 18

3

� �
1

n!2n

2 X(n� 15) (8)

&

4. ON THE PROPORTION OF UNSAFE CYCLE-SPLITTING INVERSIONS

We now build on results from the previous section to show that the results of Bergeron et al. (2002) about

oriented inversions can be extended to so-called cycle-splitting inversions. Our results depend on a con-

jecture of Sankoff and Haque (2006), which we support with a new experiment.

Denote the two vertices representing a permutation element pi in the breakpoint graph by p�i and pþi (p8
can denote either). Think of embedding the breakpoint graph on a circle as follows: we place all 2n vertices

on the circle so that:

1344 SWENSON ET AL.

1. pþi and p�i are adjacent on the circle,

2. p�i is clockwise-adjacent to pþi if and only if pi is positive, and

3. a p�i is adjacent to a p�iþ 1 if and only if pi and piþ 1 are adjacent in p.

For two vertices v1¼ p�i and v2¼ p�j (i 6¼ j) that are adjacent on the circle, add the edge (v1, v2)—a reality

edge (also called a black edge); also add edges (pþi , p�iþ 1) for all i and (pþn , p�1)—the desire edges (also

called gray edges). The breakpoint graph is just as described in Hannenhalli and Pevzner (1995a), but its

embedding clarifies the notion of orientation of edges, which plays a crucial role in our study of unsafe

inversions.

In the breakpoint graph, two reality edges on the same cycle are convergent if a traversal of their cycle

visits each edge in the same direction in the circular embedding; otherwise they are divergent. Any

inversion that acts on a pair of divergent reality edges splits the cycle to which the edges belong; con-

versely, no inversion that acts on a pair of convergent reality edges splits their common cycle. (An

inversion that acts upon a pair of reality edges in two different cycles simply merges the two cycles.)

An inversion can be denoted by the set of elements in the permutation that it rearranges; for instance, we

can write r¼fpi, piþ 1, . . . , pjg. The permutation obtained by applying an inversion r to a permutation p is

denoted by rp. Thus, using the same r, we have rp¼ (p1 . . . pi� 1� pj . . . � pipjþ 1 . . . pn). We call a pair

(p, r) unsafe if p does not contain a hurdle but rp does. A pair (p, r) is oriented if rp contains more

adjacencies than p does. A pair (p, r) is cycle-splitting if rp contains more cycles than p does. (When p is

implied from the context, we call r unsafe, oriented, or cycle-splitting, respectively, without referring to p.)

Note that every oriented inversion is a cycle-splitting inversion. An inversion r on a permutation p is a

sorting inversion whenever we have d(rp)¼ d(p)� 1.

Let p be a random permutation without hurdles and r a randomly chosen oriented inversion on p.

Bergeron et al. (2002) proved that the probability that the pair (p, r) is unsafe is O(n�2). However, not every

sorting inversion for a permutation without hurdles is necessarily an oriented inversion; on the other hand,

it is necessarily a cycle-splitting inversion. The result in Bergeron et al. (2002) thus applies only to a small

fraction of all sorting inversions. We now proceed to study all inversions that can increase the cycle count.

We show that, under Sankoff’s randomness hypothesis (stated below), the proportion of these inversions

that are unsafe is O(n�2).

Sankoff and Haque (2006), built graphs by effectively fixing desire edges, one to each vertex, and then

randomly connecting each vertex to exactly one reality edge. Equivalently we can view this process as

fixing reality edges and then randomly connecting each vertex to exactly one desire edge. However, the

orientation of a reality edge in the breakpoint graph is not independent of the orientation of the other reality

edges. Thus, in this random generation process (where they are independent), it is possible to generate a

graph that does not correspond to a permutation. Sankoff and Haque (2006) proposed a Randomness

Hypothesis in this regard; it states that the probabilistic structure of the breakpoint graph is asymptotically

independent of whether or not the generated graph is consistent with a permutation. In the randomly

constructed graphs, every reality edge induces a direction independently and each direction has a proba-

bility of 1
2
, so the expected number of reality edges with one orientation equals that with the other

orientation. Our own experiments support the randomness hypothesis in this respect, as illustrated in

Figure 1, which shows the number of edges inducing a clockwise orientation on a cycle of length 500 from

2000 random permutations of length 750. Observations (the vertical bars) match a binomial distribution

(the black dots). The randomness hypothesis is important inasmuch as it is considerably simpler to analyze

a random breakpoint graph than a random signed permutation.

We proceed by analyzing the random breakpoint graph to show that the number of cycle-splitting

inversions over all permutations of length n is y(n2)jSnj. By showing that the total number of unsafe cycle-

splitting inversions over all permutations is at most jSnj, we conclude that a random inversion applied to a

random permutation creates a hurdle with probability O(n�2).

The number of cycle-splitting inversions in a permutation p equals the number of pairs of divergent

reality edges in the breakpoint graph for p. Consider a cycle containing L reality edges and let k of them

share the same orientation; the number of pairs of divergent reality edges in this cycle is then k(L� k).

Thus, under the randomness hypothesis, the expected number of pairs of divergent reality edges for a cycle

containing L reality edges is

XL

k¼ 0

L

k

� �
1

2

� �L

k(L� k)¼ 1

4
L(L� 1)

HURDLES AND SORTING BY INVERSIONS 1345

by the binomial theorem. We also know that the maximum number of pairs of divergent reality edges for a

cycle with L reality edges is 1
4

L2. Thus at least half of the cycles with L reality edges have at least 1
4

L2� 1
2

L

pairs of divergent reality edges (for L> 2).

Using the randomness hypothesis, Sankoff and Haque (2006) have shown that in a random breakpoint

graph (with 2n vertices) the expected number of reality edges in the largest cycle is 2
3

n. Since the maximum

number of reality edges in the largest cycle is n, at least half the random breakpoint graphs have a cycle

with at least 1
3

n reality edges. So, for all random breakpoint graphs, at least 1
4

of them have at least 1
36

n2� 1
6

n

pairs of divergent reality edges. Hence, under the randomness hypothesis, the number of pairs (p,r), where r

is a cycle-splitting inversion of p, is Y(n2)jSnj.
Let Hn 2 Rn be the subset of permutations over n elements where each permutation contains one or more

hurdles. Given a permutation h 2 Hn, at most n
2

� �
pairs of (p, r) can yield this specific h. Since

jHnj ¼H 1
n2 jRnj
� �

, the number of unsafe pairs (p, r) is O(jSnj) and thus so is the number of unsafe cycle-

splitting pairs. Therefore, under the randomness hypothesis, for a random permutation p 2 Rn, if r is a

cycle-splitting inversion on p, the probability that r is unsafe is O(n�2). Unlike the result from Bergeron

about oriented inversions, this result is conditioned on Sankoff’s randomness hypothesis, which remains to

be proved. All experimental work to date appears to confirm the correctness of that hypothesis; and under

this hypothesis, our result extends that of Bergeron from a small fraction of candidate inversions to all

candidate (i.e., cycle-splitting) inversions.

5. EXPERIMENTAL RESULTS

In this section, we focus on statistical properties of hurdles as they arise in the context of algorithms for

sorting by inversions, in particular, the algorithms of Kaplan and Verbin (2003) and of Tannier and Sagot

(2004), or any algorithm that chooses cycle-splitting inversions uniformly at random. Through various

experiments we study the behavior of unsafe inversions in random sorting sequences; our results suggest

that randomized approaches to sorting by inversions should work very well in practice.

Select uniformly at random a pair (p, r) made of a length i permutation p and an oriented inversion r on p.

From Bergeron et al. (2002), we know that (p, r) is unsafe with probability O(i�2). Applying r to p and

200 220 240 260 280 300
0

50

100

150

200

of reality edges inducing a clockwise direction

of

 o
cc

ur
re

nc
es

FIG. 1. The number of edges inducing a clockwise direction in cycles of length 500, taken from random permuta-

tions. Black dots are the expected values from the binomial distribution while white bars are experimental values.

1346 SWENSON ET AL.

gluing the resulting adjacencies gives a new permutation p0, which is a sample drawn from the uniform

distribution on the set of permutations R0
i� 1 if r creates one adjacency or on the set of permutations R0

i� 2 if

r creates two adjacencies. Now we can apply a random oriented inversion r0 to p0. Note, however, that the

probability that (p0, r0) is unsafe need not be O((i� 1)�2) (or O((i� 2)�2)). The reason is that we cannot

uniformly select a random pair of permutation and oriented inversion by first uniformly selecting a

permutation and then uniformly selecting an oriented inversion on that permutation. Indeed, we can select a

pair only in the very first step since the pair fixes the permutation (but not the permutation and an inversion)

in the second step.

To study the effect of random selection of pairs rather than random selection of permutation followed by

random selection of inversion, and to see how these selections are affected, if at all, by restricting the

choice of inversions to oriented inversions or allowing any cycle-splitting inversion, we define four ran-

domized algorithms as follows:

� Algorithm RO: Uniformly select a random permutation p, then in every iteration uniformly select and apply a

random oriented inversion r.
� Algorithm ROp: Uniformly select a pair of permutation and oriented inversion (p, r), apply r on p, then in every

subsequent iteration uniformly select and apply a random oriented inversion r.
� Algorithm RC: Uniformly select a random permutation p, then in every iteration uniformly select and apply a

random cycle-splitting inversion r.
� Algorithm RCp: Uniformly select a pair of permutation and cycle-splitting inversion (p, r), apply r on p, then in

every subsequent iteration uniformly select and apply a random cycle-splitting inversion r.

Each of these algorithms applies a randomly selected inversion at each step. A single run in each algorithm

stops in a positive permutation that may or may not be the identity. If it is not the identity, then at least one

unsafe inversion was used; our experiments as described below are designed to characterize these unsafe

inversions.

All of our experiments are on random permutations with no adjacencies nor hurdles and with lengths

between 20 and 500. For each length, we tested each of the randomized algorithms on 100,000 runs.

Table 1 lists the failure rates for the four algorithms. (A run of the algorithm fails when it stops at a

positive permutation that is not the identity.) The failure rates of algorithms RO and ROp are close to 37%,

which matches the experimental results of Kaplan and Verbin (2003), whose algorithm is essentially

algorithm RO. Given any permutation without adjacencies, these two randomized algorithms always apply

an oriented inversion to create adjacencies; the adjacencies are then glued to get a shorter permutation

without adjacencies for the next iteration. If the probability of selecting an unsafe inversion is Y(i�2) at

each step for permutations of length i without adjacencies (modulo some dependencies as one progresses

through the sorting), the upper bound for the overall probability of failure at completion for a permutation

of length n is O(
Pn

i¼ 2 i�2)¼O(1).

Table 1 also shows that the two approaches—uniformly selecting a random pair of permutation and

oriented (cycle-splitting) inversion in algorithm ROp (RCp) and uniformly selecting a permutation and then

uniformly selecting an oriented (cycle-splitting) inversion in algorithm RO (RC)—have very similar failure

rates. Thus, choosing a random pair of permutation and oriented (or cycle-splitting) inversion in the first

step does not change the behavior of the randomized algorithm. (However, we currently have no expla-

nation to offer for the lower failure rate for oriented inversions than for cycle-splitting inversions.)

To deal with the failed instances, Kaplan and Verbin (2003) proposed a random-restart strategy; under

this strategy, one keeps restarting until the algorithm succeeds. Table 2 shows the average number of

Table 1. Failure Rates for Algorithm RO, Algorithm ROp,

Algorithm RC, and Algorithm RCp

Length 20 50 100 200 500

Algorithm RO 36.45% 36.90% 37.1% 36.7% 37.4%

Algorithm ROp 36.33% 37.06% 37.4% 37.4% 36.7%

Algorithm RC 37.39% 40.31% 41.4% 42.3% 41.5%

Algorithm RCp 37.45% 40.15% 41.0% 41.5% 42.3%

HURDLES AND SORTING BY INVERSIONS 1347

restarts needed for our four algorithms. The results for oriented inversions are once again in accord with the

experimental results of Kaplan and Verbin.

We now study the failed instances for algorithms RO and RC in detail. A run of any of the randomized

algorithms fails if it applies at least one unsafe inversion. Figure 2 shows the distribution of the first unsafe

inversion for algorithm RC on permutations of length 100. (The distribution of the first unsafe inversion for

algorithm RO is identical.) We analyze random permutations (generated by applying d uniformly chosen

inversions and filtering out those with distance less than d) at seven different distances from the identity

(d¼ 20, 40, 60, 80, 90, 95, 100). Note that, for a distance d, the entire distribution lies to the left of d in

the horizontal axis, since the first unsafe inversion has to occur within the first d inversions. We find that the

first unsafe inversion, if any, usually occurs in the second half of the sorting sequence, indeed, among the

last few inversions. Thus, for any permutation, the randomized approach constructs most of the sorting

sequence and fails, if at all, when the permutation is nearly sorted.

Define the gap length as the number of inversions applied after the first unsafe inversion and until the

algorithm gets stuck. The gap length can be also viewed as the minimum number of inversions over which

to backtrack in order to correct a failed instance. Figure 3 shows the distribution of the gap length for

algorithm RC on the same permutations of length 100. It is interesting to point out that permutations at

different distances from the identity (d¼ 20, 40, 60, 80, 90, 95, 100) have essentially the same distribution of

gap length. The gap length (if any) is usually very small, which implies that backtracking a minimum

number of steps to replace the unsafe inversion with a safe one should outperform a method that does a full

restart.

Table 2. Average Number of Trials Needed

to Sort with Random-Restart Strategy

Length 20 50 100 200 500

Algorithm RO 0.61 0.59 0.59 0.59 0.59

Algorithm ROp 0.60 0.60 0.58 0.58 0.59

Algorithm RC 0.65 0.69 0.71 0.72 0.75

Algorithm RCp 0.66 0.69 0.72 0.73 0.74

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

the position of the first unsafe inversion

th
e

pr
op

or
tio

n
of

 o
cc

ur
re

nc
es

d=20

d=40

d=60

d=80

d=90

d=95

d=100

FIG. 2. The distribution of the first unsafe inversion for algorithm RC on permutations of length 100.

1348 SWENSON ET AL.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

the gap length

th
e

pr
op

or
tio

n
of

 o
cc

ur
re

nc
es

FIG. 3. The distribution of the gap length for algorithm RC on permutations of length 100.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

of inversions before the first unsafe inversion

of

 in
ve

rs
io

ns
 a

fte
r

th
e

la
st

 u
ns

af
e

in
ve

rs
io

n

d=20

d=40

d=60

d=80

d=90

d=95

d=100

FIG. 4. The number of inversions after the last unsafe inversion, as a function of the number of inversions before the

first unsafe inversion.

HURDLES AND SORTING BY INVERSIONS 1349

Tannier and Sagot (2004) showed that not all of the inversions applied after the first unsafe inversion

have to be undone in a backtracking approach. They showed that inversions applied after the last unsafe

inversion are valid sorting inversions and, in fact, form the tail of an optimal sorting sequence. Thus both

the head (before the first unsafe inversion) and the tail (after the last unsafe inversion) can be re-used. As

the correction can itself introduce unsafe inversions, their algorithm uses successive iterations, in which

lists of sorting inversions are appended to the head and other lists are prepended to the tail, until the entire

sorting sequence is constructed.

Figure 4 shows the average number of inversions after the last unsafe inversion (n>l) as a function of the

number of inversions before the first unsafe inversion (n< f). The distributions are for permutations of

length 100 and for different distances (d¼ 20, 40, 60, 80, 100), under algorithm RC. (The distributions for

algorithm RO are nearly identical.) The diagonal (drawn only for distance 100) shows the ideal situation

where n>lþ n< f¼ d (which can occur only when there is no unsafe inversion). Each of the other lines is a

linear regression fit of the data for a fixed distance. These lines are not perfect diagonals, but they come

close, indicating that, for most permutations, nearly all inversions occur before the first unsafe inversion or

after the last unsafe inversion. The approach of Tannier and Sagot will thus give most of the sorting

sequence in a single iteration for a majority of instances. Put in structural, rather than algorithmic, words,

valid sorting inversions make up a very large proportion of random inversions, even when the failed

sequence selects an unsafe inversion very early.

6. CONCLUSION

We have both extended and simplified results of Bergeron and Caprara on the expected structure of

signed permutations and their behavior under inversions. These extensions demonstrate the mathematical

power of the framed common interval framework developed by Bergeron and the potential uses of the

randomness hypothesis proposed by Sankoff and Haque to bind the asymptotic properties of valid and

randomized breakpoint graphs. Our results confirm the evasive nature of hurdles (and, even more strongly,

of fortresses); indeed, these structures are both so rare and, more importantly, so hard to create accidentally

that they can be ignored in almost all cases. (Of course, if a permutation does have a hurdle, that hurdle

must be handled if we are to sort the permutation; but handling initial hurdles takes only linear time—the

cost comes when attempting to avoid creating a new one, i.e., when testing cycle-splitting inversions for

safeness.) Moreover, our experimental results regarding the first occurrence of an unsafe inversion, the gap

length, and the fraction of a failed sorting sequence that can be reused all suggest possible paths for

improving on the results of Kaplan and Verbin and of Tannier and Sagot for sorting by inversions.

ACKNOWLEDGMENTS

A preliminary version of this work (Swenson et al., 2008) appeared in the proceedings of the 6th

RECOMB Workshop on Comparative Genomics (RECOMB-CG’08), in volume 5267 of Lecture Notes in

Bioinformatics (Springer Verlag, pp. 241–251).

DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Bader, D., Moret, B., and Yan, M. 2001. A linear-time algorithm for computing inversion distance between signed

permutations with an experimental study. J. Comput. Biol. 8, 483–491.

Bergeron, A. 2005. A very elementary presentation of the Hannenhalli–Pevzner theory. Discrete Appl. Math. 146, 134–

145.

1350 SWENSON ET AL.

Bergeron, A., Chauve, C., Hartman, T., et al. 2002. On the properties of sequences of reversals that sort a signed

permutation. Proc. JOBIM’02 99–107.

Bergeron, A. and Stoye, J. 2003. On the similarity of sets of permutations and its applications to genome comparison.

Lect. Notes Comput. Sci. 2697, 68–79.

Caprara, A. 1999. On the tightness of the alternating-cycle lower bound for sorting by reversals. J. Combin. Optimi-

zation 3, 149–182.

Hannenhalli, S. and Pevzner, P. 1995a. Transforming cabbage into turnip (polynomial algorithm for sorting signed

permutations by reversals). Proc. 27th Annu. ACM Symp. Theory Comput. (STOC’95) 178–189.

Hannenhalli, S. and Pevzner, P. 1995b. Transforming mice into men (polynomial algorithm for genomic distance

problems). Proc. 36th Annu. IEEE Symp. Found. Comput. Sci. (FOCS’95) 581–592.

Kaplan, H., and Verbin, E. 2003. Efficient data structures and a new randomized approach for sorting signed per-

mutations by reversals. Lect. Notes Comput. Sci. 2676, 170–185.

Sankoff, D., and Haque, L. 2006. The distribution of genomic distance between random genomes. J. Comput. Biol. 13,

1005–1012.

Setubal, J., and Meidanis, J. 1997. Introduction to Computational Molecular Biology. PWS Publishers, Boston.

Sturtevant, A., and Beadle, G. 1936. The relation of inversions in the x-chromosome of Drosophila melanogaster to

crossing over and disjunction. Genetics 21, 554–604.

Sturtevant, A., and Dobzhansky, T. 1936. Inversions in the third chromosome of wild races of Drosophila pseu-

doobscura and their use in the study of the history of the species. Proc. Natl. Acad. Sci. USA 22, 448–450.

Swenson, K., Lin, Y., Rajan, V., et al. 2008. Hurdles hardly have to be heeded. Lect. Notes Comput. Sci. 5267, 239–249.

Tannier, E., and Sagot, M. 2004. Sorting by reversals in subquadratic time. Lect. Notes Comput. Sci. 3109, 1–13.

Address correspondence to:

Dr. Krister M. Swenson

Department of Computer Science

EPFL

Lausanne, Switzerland

E-mail: Krister.swenson@epfl.ch

HURDLES AND SORTING BY INVERSIONS 1351

