
Evolution of Whole Genomes Through Inversions:
Duplicates, Ancestors, and Edit Scenarios

Krister M. Swenson

November 10, 2009

Abstract

Advances in sequencing technology are yielding DNA sequence data at an alarming rate – a
rate reminiscent of Moore’s law. Biologists’ abilities to analyze this data, however, have not
kept pace. On the other hand, the discrete and mechanical nature of the cell life-cycle has
been tantalizing to computer scientists. Thus in the 1980s,pioneers of the field now called
Computational Biology began to uncover a wealth of computerscience problems, some
confronting modern Biologists and some hidden in the annalsof the biological literature.
In particular, many interesting twists were introduced to classical string matching, sorting,
and graph problems.

One such problem, first posed in 1941 but rediscovered in the early 1980s, is that of sorting
by inversions (also called reversals): given two permutations, find the minimum number of
inversions required to transform one into the other, where an inversion inverts the order of
a subpermutation. Indeed, many genomes have evolved mostlyor only through inversions.
Thus it becomes possible to trace evolutionary histories byinferring sequences of such
inversions that led to today’s genomes from a distant commonancestor. But unlike the
classic edit distance problem where string editing was relatively simple, editing permutation
in this way has proved to be more complex.

In this dissertation, we extend the theory so as to make theseedit distances more broadly
applicable and faster to compute, and work towards more powerful tools that can accurately
infer evolutionary histories. In particular, we present work that for the first time consid-
ers genomic distances betweenany pair of genomes, with no limitation on the number of
occurrences of a gene. Next we show that there are conditionsunder which an ancestral
genome (or one close to the true ancestor) can be reliably reconstructed. Finally we present
new methodology that computes a minimum-length sequence ofinversions to transform
one permutation into another in, on average,O(n log n) steps, whereas the best worst-case
algorithm to compute such a sequence usesO(n

√
n log n) steps.

keywords: inversions, reversals, sorting, pairwise distance, duplications, median, genomes,
evolution, phylogeny, orthology, positional homology

2

Résuḿe

Les avancées dans la technologie de séquencage sont en train de fournir une quantité de
données génétiques à un rythme alarmant - un rythme rappelant la loi de Moore. Cependant,
la capacité des biologistes à analyser toutes ces données ne suit pas le même rythme. la
nature mécanique et discrète du cycle cellulaire a toujours attiré les informaticiens. Dans
les années 1980, les pionniers du domaine maintenant appelé Biologie Computationelle ont
commencé à découvrir une quantité de problèmes informatiques dont certains qui posaient
déjá problème aux biologistes, d’autres étant cachésdans les annales de la littérature. En
particulier, il fut introduit de nouvelles variations sur des problèmes classiques de string
matching, tri et graphes.

Un de ces problèmes, posé d’abord en 1941 mais redécouvert dans le début des années 80,
est celui de l’assortiment parinversion (aussi appeléreversal): étant donné deux permu-
tations, trouver le nombre minimum d’inversion nécessaires pour transformer l’une dans
l’autre, une inversion inversant l’ordre d’une sous-permutation. En effet, beaucoup de
génomes ont évolué surtout ou uniquement par inversion.Il devient donc possible de re-
tracer l’histoire évolutive en inférant de telles séquences d’inversions qui ont amené aux
génomes actuels à partir d’un ancêtre commun distant. Mais à la différence du problème
classique de distance edit ou le string editing était relativement simple, l’édition de permu-
tation de cette façon s’est révélée être plus complexeque cela.

Dans cette dissertation, nous alimentons la théorie pour ´elargir le champ d’application des
edit distances et accélérer leur temps de calcul. Nous concevons aussi des outils plus
puissants permettant d’inférer les histoires évolutives de manière plus précise. En parti-
culier, nous présentons un travail qui pour la première fois prend en considérations les
distances génomiques entren’importequelle paire de génomes, sans aucune limitation sur
le nombre d’occurrences d’un gène. Ensuite nous montrons qu’il y a des conditions sous
lesquelles un génome ancestral (ou un génome proche de véritable ancêtre) peut être re-
construit fiablement. Enfin nous présentons une nouvelle m´ethodologie qui calcule une
séquence d’inversion minimum pour transformer une permutation en une autre en moyenne
en O(n log n) étapes, alors que l’algorithme du worst-case se calcule enO(n

√
n log n)

étapes.

mots cĺes: inversions, reversals, sorting, pairwise distance, duplications, median, genomes,
evolution, phylogeny, orthology, positional homology

3

4

Acknowledgements

Bernard Moret is the best advisor a research student could hope for. He fosters the unrestrictive environ-
ment necessary to release the (very personal) enthusiasm for discovery, while possessing the technical
ability and breadth of knowledge to move a student through the difficult moments. He also has a knack
for attracting interesting people, without whom I would nothave started, let alone completed, any of
this work. Mark Marron was the first to show me how research is done, and was a good companion
through my years in New Mexico. I was fortunate to have met andbefriended students with whom I
worked closely: Yu Lin, Mark Marron, Nick Pattengale, and Vaibhav Rajan. Among my office mates
who provided a daily laugh as well as a serious conversation from time to time (you know who you are:
Alexandros, Alisa, Eric, Jijun, Kremena, Monique, Oana, Sukanya, Yann, and Zak) Xiuwei Zhang and
Guojing Cong made a particular effort to help me on my way; thank you. I will miss you.

My family has prepared me well for this environment. My parents raised me in a way that allowed
for natural curiosity because they had no expectations. They would treat me exactly as they do even
if I had quit my education at high school and were still working at the movie theatre. By living a full
and happy life in Washington D.C. my sister continues to showme how to make the best of whatever
situation I’m in and my brother taught me an important lessonabout being a teacher: don’t lecture!

Finally I would like to acknowledge the people in New Hampshire who skillfully sparked my interest
for Computer Science: Thomas Cormen and Pilar De La Torre.

5

6

Contents

1 Introduction and Background 9
1.1 Introduction 9
1.2 Background 12

1.2.1 The Breakpoint Graph 12

2 Ignoring Hurdles and Fortresses 15
2.1 Hurdles and Fortresses as Framed Common Intervals 15
2.2 The Rarity of Hurdles and Fortresses 16

2.2.1 Hurdles .17
2.2.2 Fortresses .. . 19

3 Unequal Gene Content 21
3.1 Insertions and Deletions 22
3.2 Duplicate Elements 23

3.2.1 Problem Definitions 23
3.2.2 Background .. 24

3.3 Approximating the One to Many Duplicate Assignment (OtMDA) Problem 26
3.3.1 Unrestricted Insertions 26
3.3.2 Our Algorithm .. 28
3.3.3 Experimental Results 28

3.4 Applying the Cover to the Many to Many Duplicate Assignment(MtMDA) Problem . . . 30
3.4.1 Background .. 31
3.4.2 Constructing a Small Cover 31
3.4.3 Experimental Design 33
3.4.4 Experimental Results 35
3.4.5 Improved Heuristics 39
3.4.6 Saturation .. . 39
3.4.7 Sophisticated Tree Reconstruction 41
3.4.8 Conclusion and Future Directions 44

3.5 Towards a Practical Solution to the One to Many DuplicateAssignment (OtMDA) Problem 45
3.5.1 The Generalized Breakpoint Graph 45
3.5.2 The Consequences of An Assignment 46
3.5.3 The Cycle Maximization Problem 46
3.5.4 Buried Operations 49
3.5.5 Chains and Stars .. . 50
3.5.6 Reduced Forms .. 51
3.5.7 An Approximation Framework 52
3.5.8 Conclusion .. 53

3.6 NP-Hardness Proof for OtMCM, MtMCM, RDD, OtMRD, and MtMRD 54

7

3.6.1 Triangle Matching 54
3.6.2 Preliminaries 54
3.6.3 TriM to OtMCM . 55
3.6.4 TriM to MtMCM, ERD, OtMRD, and MtMRD 57

4 Reconstructing Ancestors 59
4.1 Noninterfering Inversions 59

4.1.1 Definitions .. 60
4.1.2 Maximum Sets of Commuting Inversions 61
4.1.3 Maximum Sets of Noninterfering Inversions 61
4.1.4 Handling Multiple Permutations 65
4.1.5 Two Notes on Hurdles .. . 65
4.1.6 Experimental Results 65
4.1.7 Conclusions .. . 66

4.2 Inversion Signatures 68
4.2.1 Notation and Definitions 68
4.2.2 Methods . 69
4.2.3 Results and Discussion 72
4.2.4 Conclusions .. . 77

5 Sorting By Inversions inO(n log n) Time 79
5.1 Preliminaries 79
5.2 Background: Data Structures for Permutations 80
5.3 Our Algorithm 81

5.3.1 MAX inversions .. 81
5.3.2 Maintaining information through an inversion 82
5.3.3 Finding the MAX pair .. . 83
5.3.4 Finding the indices of the MAX inversion 83
5.3.5 Putting it all together 83

5.4 Bypassing Bad Components 84
5.4.1 Randomized restarts 84
5.4.2 Recovering from an unsafe inversion: Tannier and Sagot’s approach 84
5.4.3 Recovering from an unsafe inversion: Our approach 84

5.5 Experimental Results 89
5.6 Conclusions 90

6 Conclusion 91

8

Chapter 1

Introduction and Background

1.1 Introduction

Inside each organism, the machine of life is constantly turning. Messenger RNAs are copied directly
from the DNA strand and interact with each other in potentially complicated ways before finally produc-
ing proteins. On top of this, proteins interact to create a physical scaffold on which other proteins carry
out the necessities of sustaining the machine. In an attemptto understand this cycle of life biologists
rely on clues gained through observation, but unfortunately these processes are too small and too vital to
an organism’s survival to be directly observed. On the otherhand, many recent technological advance-
ments in chemistry and engineering have enabled new assays to probe these molecular workings. No
new technology has so dramatically fueled the increase in data collection as DNA sequencing. But the
influx of new data has posed more new questions than answers. Indeed, the process of life is encoded
into the DNA strand in a way so convoluted that most have only attempted to describe its structure in a
statistical manner.

Yet there exists work — actually older than the discovery of the double helix [90] — observing
specific events that modify the genetic code. In particular,Sturtevant [74] noticed that a substrand of
the fruit fly DNA can be inverted; in some strains of fruit fly the sequence of genes on the chromosome
appears in reverse order. Further, he showed that theseinversionswere linked to the phenotype of those
individuals that possessed it: male flies with a particular inversion had few or no male offspring [75].
So as early as 1936, evolutionary histories between speciesof fruit fly were being inferred based on
inversion histories [76].

By 1941 genomes were being modeled by permutations so as to study properties of their evolution;
all permutations of up to 5 elements were being tabulated, byhand, with minimum inversion scenarios
being calculated between them [77]. It was not until 1982 that the fundamental problem was posed:
given two permutations, find a shortest scenario of inversions to transform one into the other, where
an inversion inverts the order of a substring of the permutation [91]. So, for two such permutations
(5 3 2 4 1) and (1 2 3 4 5), a shortest scenario would have three inversions:

(5 3 2 4 1)
(5 3 4 2 1)
(5 4 3 2 1)
(1 2 3 4 5)

Ten years later the more biologically relevantsignedversion of the problem was stated: given twosigned
permutations, find a shortest scenario ofsignedinversions to transform one into the other, where a signed
inversion inverts the order and the signs of the elements in asubstring of the permutation [65]. In this

9

setting the pair of permutations from above would require a scenario of five signed inversions:

(5 3 2 4 1)
(5 3 2 -1 -4)
(5 -3 2 -1 -4)
(1 -2 3 -5 -4)
(1 2 3 -5 -4)
(1 2 3 4 5)

Over the following three years a flurry of work on the subject culminated in an impressive theory describ-
ing the exact inversion distance between two genomes, basedupon structure apparent in the so-called
breakpointgraph, and provided a polynomial time algorithm to compute this distance and to extract a
shortest scenario of inversions [42] (The unsigned versionof the problem was later shown to be APX-
Hard [14]).

On its own, an accurate evolutionarydistancehas proved useful in phylogenetic tree reconstruction
[58]. For this reason, much effort has been spent trying to improve the original, somewhat difficult,
algorithm that was presented in 1995. In 2001 this effort culminated in a linear time algorithm to
compute the minimum inversion distance between two genomesthat efficiently analyzes the structure
of the breakpoint graph [8]. However, it remains an open question as to how fast a minimum inversion
scenariocan be calculated; the fastest algorithm takes (in the worstcase)O(n

√
n log n) time [87].

Unfortunately current methods have yet to make a large impact due to methodological as well as
modeling and data limitations. Indeed, the number of whole genomes sequenced ten years ago was
extremely low, the cost of producing one being prohibitive.More importantly, until the turn of the
century, no consideration had been payed to the fact that many genomes cannot be represented by a
permutation.

On the other hand, recent research is considering more complex evolutionary models that compare
genomes with unequal gene content; the ice was broken by Sankoff’s group (and, in particular, El-
Mabrouk) [34, 66, 32] near the turn of the century. Along withformulating many problems for the first
time, they showed that deletions of contiguous segments canbe handled within the framework of the
breakpoint graph. For a deeper introduction into this area (including examples) see Section 3.2.2.

Sequencing is also cheaper now. A full bacterial genome can be sequenced for only three thousand
dollars. Consequently, a few thousand prokaryotic and tensof eukaryotic sequences now exist. With
talk of the one-thousand-dollar genome on the horizon the number of fully sequenced organisms is sure
to increase dramatically.

Of late, more difficult questions have been addressed by the community. How many minimum
sorting scenarios between two permutations exist [11, 19] and which is the most likely? What are some
properties of these scenarios [61]? Can we sample all minimum scenarios to extract useful information
like average inversion length or breakpoint reuse statistics [1, 51, 55]? These are questions that still lack a
satisfactory answer [56]. Another such question is that of ancestor reconstruction; given a phylogenetic
tree and known genomes at the leaves of the tree, what are the most likely genomes for the internal
nodes? In 2002, Bourque and Pevzner [17] associated this question with a better understood problem
called themedianproblem: given three permutations, find a fourth that minimizes the pairwise distance
between it and the other three.

In this dissertation, we make progress in three of the aforementioned areas. We improve on the work
of Bourque and Pevzner and offer a new perspective for attacking the ancestral reconstruction problem
in Chapter 4. In Chapter 3 we describe foundational work for computing the inversion distance in the
presence of duplicate genes. In particular we offer the onlyknown (constant factor) approximation
algorithm for finding the evolutionary distance between anygenome and the identity permutation along
with an algorithm that, in practice, accurately predicts the distance between any two genomes. We show
that this algorithm, combined with good tree reconstruction techniques can reconstruct phylogenies

10

better than the other known methods (Section 3.4.7). Finally, in Chapter 5 we show that we can find a
sorting scenario between most pairs of permutations inO(n log n) time. Supporting much of the work
presented here is the simplifying assumption that certain structures in genomes are rarely encountered.
We justify the use of this assumption in Chapter 2.

All of the work presented has been accomplished by close collaboration with Bernard Moret. Most of
the work presented has included collaboration with some subset of past and current lab mates including
Guojing Cong, Joel Earnest-DeYoung, Yu Lin, Mark Marron, Nick Pattengale, Vaibhav Rajan, and Jijun
Tang. We will only present work which we feel we were instrumental in seeing through, indicating
collaborations at the beginning of each section.

11

1.2 Background

In our study, we represent a chromosome ofn genes by a signed permutation on the elements{1, 2, . . . , n},
that is, a permutation with positive or negative signs associated to each element. The signs reflect the
fact that genes can be coded in reverse order on the strand (itwould be read on the other of the two
strands that compose a DNA molecule). Aninversionρ(i, j) is a permutation that, when applied toπ,
reverses the order and the sign of the segment ofπ that begins at theith gene and ends at thejth one.
Thus

ρ(i, j) =
(
1, . . . , i− 1,−j,−(j− 1), . . . ,−(i+ 1),−i, j + 1, . . . , n

)
,

and we denoteπ · ρ as the composition ofρ with π. For example, withπ = (2 4 1−3) andρ(2, 3)=(1 −3
−2 4) we getπ · ρ(2, 3) = (2 −1 −4 −3).

An n gene chromosome could be linear or circular, but note that most models of evolution (ours
being that of inversions) are unaffected by a change in representation from linear to circular or vice-
versa. Each linear permutation corresponds ton + 1 circular permutations (of lengthn + 1), which
are equivalent in terms of the scenario of inversions used tosort them: if we join the ends of a linear
permutation to form a circular permutation then an inversion ρ(i, j) can be thought of as inverting the
subpermutation fromi to j, or as inverting the rest of the permutation while fixing the subpermutation
from i to j in place. Thus, throughout this presentation we will consider permutations to be either linear
or circular as we see fit. Without loss of generality we consider that every linear permutation has an
implicit far left element 0 and implicit far right elementn+ 1.

SayI represents the identity permutation (1 2 3 4. . .n). Then we can define the following genome
comparison problems:

Problem 1.2.1. Thesorting by inversions problemfor signed permutationsπ1 andπ2 asks for a mini-
mum length scenario of inversionsρ1, ρ2, . . . , ρd that transformsπ1 into π2. In other wordsπ1 ·ρ1 · . . . ·
ρd = π2.

We callρ1, ρ2, . . . , ρd anedit scenario.

Problem 1.2.2. The inversion distance problemfor signed permutationsπ1 andπ2 asks ford(π1, π2),
the minimum number of inversions needed to transformπ1 into π2. The numberd(π1, π2) is called the
inversion distance.

Note that an edit scenario takesπ1 toπ2 if and only if that scenario takesπ1 ·π−1
2 to I. This motivates

the following equivalent, but simpler formulations:

Problem 1.2.3(SBI problem). Thesorting by inversions problemfor signed permutationπ asks for a
minimum length scenario of inversionsρ1, ρ2, . . . , ρd that transformsπ1 into the identity permutation.
In other wordsπ1 · ρ1 · . . . · ρd = I.

Problem 1.2.4(ID problem). Theinversion distance problemfor signed permutationπ asks ford(π), the
minimum number of inversions needed to transformπ into I. The numberd(π1) is called theinversion
distance.

For example, withπ1 = (3 2 −1 4) andπ2 = (−1 3 −4 2) we have minimum edit scenarioρ(2, 3) ·
ρ(3, 4) · ρ(1, 2) · ρ(2, 2), which is also a minimum edit scenario forπ1 · π−1

2 = (2 4 1−3).

1.2.1 The Breakpoint Graph

The breakthrough in the SBI problem came when Kececioglu andSankoff [47] and Bafna and Pevzner
[10] independently derived bounds based on a graph theoretic framework. Although the frameworks
were different and neither were the one that would eventually be used in the final theory, both groups

12

Cycle A

Component 1

Cycle B

Component 2

= 2 1

Cycle C

3 4 −56 −70 8

0+ 1− 1+2− 2+3− 3+ 4− 4+ 5−5+6− 6+ 7−7+ 8−

π

Figure 1.1: A permutation and its breakpoint graph. Desire edges are shown in gray, reality edges in
black.

noticed a close correlation between the number of cycles in their graphs and the inversion distance.
Kececioglu and Sankoff [48] again gave improved algorithmsand bounds for sorting signed permutation
while, only 2 years after the original Kececioglu paper, Hannenhalli and Pevzner solidified the theory
in the landmark paper [42], presenting an exact formula for calculating the distance based on certain
structures found in thebreakpoint graph. The following exposition describes this correspondence.

Each permutation element will be represented by two vertices; one for each “side” of the element.
Edges are included that represent adjacent elements in the permutations. Figure 1.1 shows the breakpoint
graph forπ = (3 2 1 4 6−7 −5). The fully sorted identity permutationI has adjacencies between
consecutive integers. Thus, our desired configuration is represented by the gray edges in the graph. The
black edges, on the other hand, represent the reality of the adjacencies in the current permutation.

To computed(π) we must look further into the structure of the breakpoint graph. Denote the two
vertices representing a permutation elementπi in the breakpoint graph byπ−

i andπ+
i (π± can denote

either). Embed the breakpoint graph on a line as follows: place all2n vertices on the line so that:

1. π+
i andπ−

i are adjacent,

2. π−
i is left of π+

i if and only if πi is positive, and

3. π±
i is adjacent toπ±

i+1 if and only if πi andπi+1 are contiguous inπ.

Also add a vertex0+ as the leftmost vertex and(n + 1)− as the rightmost vertex. For two vertices
v1 = π±

i andv2 = π±
j (i 6= j) that are adjacent on the line, add the edge(v1, v2)—a reality edge; also

add edges(π+
i , π

−
i+1) for all i along with(0+, π−

1) and(π+
n , (n + 1)−)—the desire edges.

The breakpoint graph is just as described in [42], but its embedding clarifies the notion of orientation
of edges. Note that since the degree of every vertex is exactly 2, the graph decomposes naturally into
cycles. Say inversionρ(i, j) acts upona reality edge if it is either theith or j + 1st reality edge from
the left. Say an inversionacts upona desire edge if the edge is incident to the rightmost vertex of the
ith reality edge or leftmost vertex of thej + 1st reality edge. The vertices that connect the acted upon
reality and desire edges are those that areaffectedby the inversion. In our example, the inversion over
substring “6 -7 -5” (also known asρ(5, 7)) acts upon reality edges(4+, 6−) and(5−, 8−). It acts upon
desire edges(6−, 5+) and(5−, 4+) while it affects vertices6− and5−.

Two reality edges on the same cycle areconvergentif a traversal of their cycle visits each edge in
the same direction in the linear embedding; otherwise they are divergent. The action of an inversion
ρ(i, j) on π is to swap the connectivity of reality edge(π±

i−1, π
±
i) and reality edge(π±

j , π
±
j+1). Thus,

any inversion that acts on a pair of divergent reality edges splits the cycle to which the edges belong,
so is called acycle-splittinginversion. Conversely, no inversion that acts on a pair of convergent reality
edges can split their common cycle. (An inversion that acts upon a pair of reality edges in two different
cycles simply merges the two cycles.) Notice that at most onecycle can be created by this action on the
graph. Thus we get the inequality

d(π) ≥ (n+ 1)− c(π), (1.1)

wherec(π) is the number of cycles in the breakpoint graph.

13

This lower bound cannot always be realized. Consider the prefix P = (3 2 1) of the permutation
from Figure 1.1 for example. An enumeration of all scenariosof 2 inversions shows thatP can be sorted
in no fewer than 3 inversions, whereas inequality 1.1 givesd(P) ≥ 4 − 2. Hannenhalli and Pevzner
[42] found the structures that indicate the gap between the lower and bound and the inversion distance,
and coined the terms “hurdles” and “fortresses” to refer to them. We will visit a full exposition of the
inversion distance in Chapter 2 and show strong evidence as to why we can safely use inequality 1.1
as an equality, an assumption that is particularly useful when dealing with duplicate elements (as in
Chapter 3).

14

Chapter 2

Ignoring Hurdles and Fortresses

(This is joint work with Yu Lin and Vaibhav Rajan)

The result of Hannenhalli and Pevzner [42] gives us

d(π) = (n+ 1)− c(π) + h(π) + {1, 0}, (2.1)

wheren is the length ofπ, c(π) andh(π) are the number of cycles and so-calledhurdlesin the break-
point graph ofπ, and{1, 0} is a correction factor that accounts for the possible occurrence of a rarely
occurring phenomenon, thefortress. We will see in this section that the machinery behind equation 2.1
is considerably more complicated than inequality 1.1. Further, for problems that require us to build
permutations in order to minimize distance, like the duplicate assignment problem in Section 3, it is
advantageous to optimize only one factor (cycles) rather than three (cycles, hurdles, and fortresses).
Fortunately, Caprara [24] showed that hurdles occur in onlyθ(n−2) proportion of the random permuta-
tions of lengthn, effectively justifying the use of inequality 1.1 as an equality. In this section we prove
the same result using markedly simpler means, a technique that also extends to the first analysis of the
rarity of fortresses.

In this section we consider the permutation to be circular. That is, the last elementπn is adjacent to
the first elementπ1.

2.1 Hurdles and Fortresses as Framed Common Intervals

A pair of elements in a circular permutation(πi, πi+1) is called abreakpointwhenever we haveπi+1 −
πi 6= 1 (for 1 ≤ i ≤ n − 1) or π1 − πn 6= 1. Since there is one-to-one mapping betweenπ and the
corresponding breakpoint graph, we identify the second with the first and so write thatπ contains cycles,
hurdles, or fortresses if its breakpoint graph does. LetΣn denote the set of signed permutations overn
elements andΣ0

n to denote the set of those permutations withn + 1 breakpoints. Bergeronet al [11]
proved the following result about|Σ0

n|.
Lemma 2.1.1([11]). For all n > 1, 1

2 |Σn| < |Σ0
n| < |Σn|.

Definition 2.1.2 (FCI). A framed common interval(FCI) of a permutation (made circular by consid-
ering the first and last elements as being adjacent) is a substring of the permutation,as1s2 . . . skb or
-bs1s2 . . . sk-a such that

• for eachi, 1 ≤ i ≤ k, |a| < |si| < |b|, and

• for eachl, |a| < l < |b|, there exists aj with |sj | = l, and

• it does not contain a proper substrings satisfying the previous two properties.

15

So the substrings1s2 . . . sk is a (possibly empty) signed permutation of the integers that are greater
thana and less thanb; a andb form theframe. The framed interval is said to be common, in that it also
exists as an interval

(
a(a + 1)(a + 2) . . . b

)
in the identity permutation. Recall the permutation from

Figure 1.1. The FCIs in the permutation can be illustrated asfollows.

0 3 2 1 4 6 -7 -5 8

In this example there are exactly two FCIs, one framed by 0 and4 and the other framed by 4 and 8.
Thespanof an FCI is the number of elements betweena andb, plus two, orb − a + 1. FCI B is

nestedinside FCIA if and only if the left and right frame elements ofA occur, respectively, before and
after the frame elements ofB. A componentis comprised of all elements inside a framed interval that
are not inside any nested subinterval, plus the frame elements. A bad componentis a component whose
elements all have the same sign, otherwise the component isgood. For example, the permutation from
Figure 1.1 has two components, the leftmost of which is bad.

Bad componentA separatesbad componentsB andC if and only if every substring containing
an element ofB and an element ofC also has an element ofA in it. We say thatA protectsB if A
separatesB from all other bad components. Asuperhurdleis a bad component that protects another bad
component. The component framed by 0 and 6 is a superhurdle inthe permutation

0 2 4 3 5 1 6 8 7 9

because it protects the nested component with frame elements 2 and 5. Ahurdle is a bad component
that is not a superhurdle. In the above permutation the components framed by 2 and 5, and 6 and 9 are
hurdles while in the permutation from Figure 1.1, only the leftmost component is a hurdle. Afortress
is a permutation that has an odd number (larger than 1) of hurdles, all of which are superhurdles. The
permutation of Figure 2.1 is one of the shortest possible fortresses.

We will use the following useful facts about FCIs; all but fact 3 follow immediately from the defini-
tions.

1. A bad component indicates the existence of a hurdle.

2. To every hurdle can be assigned a unique bad component.

3. Two FCIs can only overlap at their endpoints and at most both the endpoints of an FCI can overlap
with other FCIs [13].

4. An interval shorter than 4 elements cannot be bad.

2.2 The Rarity of Hurdles and Fortresses

In this section, we provide asymptotic characterizations of the probability that a hurdle or fortress is
found in a signed permutation selected uniformly at random.Each proof has two parts, an upper bound
and a lower bound; for readability, we phrase each part as a lemma and develop it independently.

0 2 4 3 5 1 6 8 10 9 11 7 12 14 16 15 17 13 18

Figure 2.1: A fortress and its breakpoint graph.

16

2.2.1 Hurdles

We begin with hurdles; the characterization for these structures was already known, but the original
proof of Caprara [24] is long and complex. The proof is based on the observation that more than
one component is unlikely to be found in a random permutationbecause the structure of an FCI is
so particular. Thus, most of the following proof evaluates the probability of seeing more than one
component.

Theorem 2.2.1.The probability that a random signed permutation onn elements contains a hurdle is
Θ(n−2).

Lemma 2.2.2(Upper bound for shorter thann− 1). The probability that a random signed permutation
onn elements contains a hurdle spanning no more thann− 2 elements isO(n−2).

Proof. Fact 4 tells us that we need only consider intervals of at least four elements. CallF≤n−2 the
indicator random variable corresponding to the event that an FCI spanning no more thann − 2 and no
less than four elements exists. CallF (i)≤n−2 the indicator random variable corresponding to event that
such an FCI exists with a left endpoint atπi. We thus haveF≤n−2 = 1 if and only if there exists ani,
1 ≤ i ≤ n, with F (i)≤n−2 = 1. Note thatF (i)≤n−2 = 1 implies eitherπi = a or πi = −b for some
FCI. Thus we can write

Pr
(
F (i)≤n−2 = 1

)
≤

n−2∑

l=4

1

2(n− 1)

(
n− 2

l − 2

)−1

(2.2)

since 1
2(n−1) is the probability the right endpoint matches the left endpoint (πl is -a or b if πi is -b or

a respectively) of an interval of spanl and
(n−2
l−2

)−1
is the probability that the appropriate elements are

inside the frame. We can bound the probability from (2.2) as

Pr
(
F (i)≤n−2 = 1

)
≤ 1

2(n − 1)

n−4∑

l=2

(
n− 2

l

)−1

≤ 1

n− 1

⌈n/2⌉−1
∑

l=2

(
n− 2

l

)−1

≤ 1

n− 1

(
√
n

∑

l=2

(l

n− 2

)l
+

⌈n/2⌉−1
∑

l=
√
n+1

(
n− 2

l

)−1)

(2.3)

where the second term is no greater than

⌈n/2⌉−1
∑

l=
√
n+1

(
n− 2

l

)−1

≤
⌈n/2⌉−1
∑

l=
√
n+1

(1

2

)√
n+1

∈ O(n−2) (2.4)

and the first term can be simplified
√
n

∑

l=2

(l

n− 2

)l
=

4∑

l=2

(l

n− 2

)l
+

√
n

∑

l=5

(l

n− 2

)l

≤
4∑

l=2

(l

n− 2

)l
+

√
n

∑

l=5

(n

n− 2

√
n

n

)5

∈ O
(

3× 16

(n− 2)2
+
√
n n−5/2

)

= O(n−2). (2.5)

17

To computePr(F≤n−2) we use the union bound onPr(
⋃n

i=1 F (i)≤n−2). This removes the factor of
1

n−1 from (2.3) yielding just the sum of (2.5) and (2.4) which isO(n−2). The probability of observing a
hurdle in some subsequence of a permutation can be no greaterthan the probability of observing an FCI
(by fact 2). Thus we know the probability of observing a hurdle that spans no more thann− 2 elements
isO(n−2).

We now proceed to bound the probability of a hurdle that spansn− 1 or n elements. Call intervals
with such spansn-intervals. For a bad component spanningn elements witha = i, there is only a single
b = (i−1) that must bea’s left neighbor (in the circular order), and for a hurdle spanningn−1 elements
with a = i, there are only two configurations (“+(i-2) +(i-1) +i” and its counterpart “+(i-2) −(i-1) +i”)
that will create a framed interval. Thus the probability that we see ann-interval with a particulara = i
isO(1/n) and the expected number ofn-intervals in a permutation isO(1).

We now use the fact that a bad component is comprised of elements with all the same sign. Thus
the probability that ann-interval uses all the elements in its span (i.e., there exist no nested subintervals)
is O(2−n). Call a bad component that does not use all of the elements in its span (i.e., there must exist
nested subintervals) afragmentedinterval.

Lemma 2.2.3(Upper bound for longer thann − 2). The probability that a fragmentedn-interval is a
hurdle isO(n−2).

Proof. We divide the analysis into three cases where the fragment-causing subinterval is of span

1. n− 1,

2. 4 throughn− 2, and

3. less than 4.

The existence of a subinterval of spann − 1 precludes the possibility of the frame elements from the
largern-interval being in the same component, so there cannot be a hurdle using this frame. We have
already established thatPr(F≤n−2) is O(n−2). Thus we turn to the third case. If an interval is bad,
then the frame elements of any fragmenting subinterval musthave the same sign as the frame elements
of the larger one. If we view each such subinterval and each element not included in such an interval
as single characters, we know that there must be at leastn/3 signed characters. Since the signs of the
characters are independent, the probability that all characters have the same sign is1/2O(n) and is thus
negligible.

Thus the probability of a badn-interval isO(n−2). Using fact 4 we conclude that the probability of
existence of a hurdle in a random signed permutation onn elements isO(n−2).

Lemma 2.2.4(Lower bound). The probability that a signed permutation onn elements has a hurdle
with a span of four elements isΩ(n−2).

Proof. Call hk the hurdle with span four that starts with element4k + 1. So the subsequence that
corresponds tohk must be+(4k + 1)+(4k + 3)+(4k + 2)+(4k + 4) or −(4k + 4)−(4k + 2)−(4k +
3)−(4k + 1). We can count the number of permutations withh0, for instance. The four elements ofh0
are contiguous in4!(n− 3)!2n permutations of lengthn. In c = 2/(4!24) of those cases, the contiguous
elements form a hurdle, so the total proportion of permutations withh0 is

c
4!(n − 3)!2n

n!2n
∈ Ω

(1

n3

)

.

18

Similarly, the proportion of permutations that have bothh0 andh1 is

F2 = c2
(4!)2(n− 6)!2n

n!2n
∈ O

(1

n6

)

and, therefore, the proportion of permutations that have atleast one ofh0 or h1 is

2× c
4!(n − 3)!2n

n!2n
− F2. (2.6)

We generalize (2.6) to count the proportion of permutationswith at least one of the hurdlesh0,h1,. . . ,h⌊n/4⌋;
this proportion is at least

⌊
n

4

⌋

× c
4!(n − 3)!2n

n!2n
−
(⌊n/4⌋

2

)

F2 (2.7)

which isΩ(n−2) since the second term isO(n−4).

2.2.2 Fortresses

Now we turn to the much rarer fortresses. We start by using thefact that the smallest fortress that could
exist requires the existence of an FCI spanning 19 elements (see figure 2.1), a very unlikely event.

Theorem 2.2.5.The probability that a random signed permutation onn elements includes a fortress is
Θ(n−15).

Lemma 2.2.6(Upper bound). The probability that a random signed permutation onn elements includes
a fortress isO(n−15).

Proof. We bound the probability that at least three superhurdles occur in a random permutation by
bounding the probability that three non-overlapping bad components of length seven exist. We divide
the analysis into three cases depending on the numberl of elements spanned by a bad component.

1. For one of the three FCIs we haven− 14 ≤ l ≤ n− 11.

2. For one of the three FCIs we have17 ≤ l ≤ n− 15.

3. For all FCIs we have7 ≤ l < 17.

As we did in Lemma 2.2.2 (equation 2.2), we can bound the probability that we get an FCI of lengthl
starting at a particular position by

Pr
(
Fl = 1

)
≤ 1

2(n − 1)

(
n− 2

l − 2

)−1

. (2.8)

In the first case the probability that the FCI is a superhurdleisO(n−11 ·2−n) if the FCI is not fragmented
andO(n−15) if it is (using the same technique as for the proof of Lemma 2.2.3). In the second case the
probability is at most

n
n−15∑

l=17

Fl = n
n−17∑

k=15

1

2(n − 1)

(
n− 2

k

)−1

which, by the same reasoning used for equation 2.3 to deriveO(n−2), is O(n−15). Thus the first two
cases both give us an upper bound ofO(n−15).

Fact 3 tells us that any pair of FCIs can overlap only on their endpoints. Thus, if we first consider the
probability of finding a smallest FCI, we know that no other FCI will have an endpoint inside it. So the

19

probability of having a second FCI, conditioned on having a smaller first one, is dependent only on the
size of the first. The same reasoning extends to the probability of having a third conditioned on having
two smaller FCIs. Since each of the three FCIs spans less thanseventeen elements, the probability of
each FCI appearing is at mostn

∑17
l=7 Fk = O(n−5), and the probability of there being at least three of

them isO(n−15).

We now turn to the lower bound. Consider the probability of the existence, among random permuta-
tions, of a permutation with exactly three superhurdles spanning seven elements each. A lower bound on
this probability is a lower bound on the probability of existence of a fortress in a random permutation.

Lemma 2.2.7(Lower bound). The probability that a random signed permutation onn elements includes
a fortress isΩ(n−15).

Proof. Denote byF3,7(n) the number of permutations onn elements with exactly3 superhurdles span-
ning 7 elements each. To create such a permutation, choose a permutation of lengthn − 18 (with zero
adjacencies and without hurdles), select three elements, and extend each of these three elements to a
superhurdle, renaming the elements of the permutation as needed. That is, replace element+i by the
framed interval of length 7f = +(i)+(i + 2)+(i + 4)+(i + 3)+(i + 5)+(i + 1)+(i + 6) and rename
all the elements with magnitudej to have magnitudej + 6 (for those with|j| > |i|). After extending
the three selected elements, we get a permutation onn elements where there are exactly3 superhurdles
each spanning7 elements.

From Lemma 2.1.1 and the results about the rarity of hurdles from the previous section, we have

F3,7(n) >
(n− 18)!2n−18

2

(

1−O(n−2)
)(n− 18

3

)

where (n−18)!2n−18

2 (1 − O(n−2)) is a lower bound for the number of permutations of lengthn − 18

(with zero adjacencies and without hurdles) and
(n−18

3

)
is the number of ways to choose the elements

for extension. Therefore we have

F3,7(n)

n!2n
>

(n− 18)!2n−18

2

(

1−O(n−2)
)(n− 18

3

)
1

n!2n

∈ Ω(n−15) (2.9)

20

Chapter 3

Unequal Gene Content

The biggest challenge towards applying current methods to real sequences lies in modelling sequences as
permutations. Most sequences, in fact, do not have single copies of each gene. Two sequences may not
have the same set of genes either. Thus, the use of permutations in a model for genome rearrangements
can be limited. While it has been sufficient in some cases [42,43, 29, 28] to simply ignore genes that
occur more than once by considering only the genes that are common to two sequences, much informa-
tion can be lost in the process [82]. Indeed there exists sequences that have close to half of their genome
duplicated. For one such case, methods we present here have led to accurate phylogeny reconstruction
on real-world data [30, 15]. While related problems — those that ask for a parsimonious ancestor given
a single genome — have admitted nice solutions [33, 34, 3], most of the problems discussed in this
section have yet to be satisfactorily solved.

In this chapter we refer to a genome as agene sequence(or sequence), as it may not be a permutation.
In our case asequenceis a string over the alphabetZ (i.e. a sequence is any element ofZ

∗). We
first present known formulations of evolutionary models andcorresponding problems that deal with
comparing gene sequences, then the (recent) history of the problems, and finally present our results.

21

3.1 Insertions and Deletions

Consider the sequencesA = (7 −1 −3 8 4−6 5) andB = (1 2 3 4 5). Notice that the elements 6, 7, and 8
only occur inA while the element 2 only occurs inB. To account for the unequal content betweenA and
B we must permit insertions and deletions of elements in our model of evolution. Denote a deletion of
elements in the subsequence fromi to j asdel(i, j) and the insertion of the stringα before the element
at positioni asins(α, i). One scenario of inversions, insertions, and deletions forthe above example
uses 4 inversions, 2 deletions, and 1 insertion:

(7−1−3 8 4−6 5) · ρ(5, 6) =
(7−1−3 8 6−4 5) · ρ(6, 6) · ρ(2, 2) =
(7 1−3 8 6 4 5) · del(4, 5) · del(1, 1) =
(1−3 4 5) · ρ(2, 2) =
(1 3 4 5) · ins(“2”, 2) =

(1 2 3 4 5) = B

Yet, another scenario takes only 2 inversions, 2 deletions,and 1 insertion:

(7−1−3 8 4−6 5) · ρ(A,B) · ρ(3, 4) =
(1−7−8 3 4−6 5) · del(2, 3) · del(6, 6) =
(1 3 4 5) · ins(“2”, 2) =

(1 2 3 4 5) = B

Notice that we have deleted contiguous elements of some intermediate permutation in each of the edit
scenarios, and that insertions never introduce elements that already exist in the permutation. For that
matter, we could simply delete all ofA in one move and insert all ofB in the second move. To avoid
scenarios like this we impose a parsimony criterion: we can either have insertions of a particular number
or deletions of a particular number, but not both.

El-Mabrouk [32] showed that a minimum edit scenario of inversions with deletions of contiguous
segments can be computed in polynomial time. However, it remains unknown as to whether minimum
edit scenarios of inversions with inversions, deletions, and insertions is inP . We combine the result of
El-Mabrouk with new insight in Section 3.3.

22

3.2 Duplicate Elements

Some genomes may have duplicated genes; we represent these genomes by sequences that contain more
than one occurrence of a number. We call the set of all elements x from a sequence thegene family(or
family) x, and the size of the family in sequenceS is occ(x, S). A family with occurrence greater than
1 is amulti-elementfamily. For example, the sequenceS = (3 7 −1 6 −3 4 −6 5 3) has multi-element
family 3 and multi-element family 6 whereocc(6, S) = 2.

3.2.1 Problem Definitions

The first work dealing with multi-element families and inversion minimization was initiated by Sankoff
[66], who posed the exemplar problem:

Problem 3.2.1((ERD) Exemplar Reversal Distance). Given sequencesA and B, each with at least
one element from some alphabetΣ, find a (not necessary contiguous) subsequenceA′ andB′ of each
sequence with exactly one occurrence of each element ofΣ, so thatd(A′, B′) is minimized.

The elements ofA′ andB′ are called theexemplars. The ERD problem was proven NP-Hard [20]
and currently no good algorithms exist to solve it. The following two related problems are of particular
interest in this section:

Problem 3.2.2((OtMDA) One-to-Many Duplicate Assignment problem). Given a sequencesA ∈ Σ∗

and an integern, rename all but a single element from each multi-element family to be unique, so as
to minimize the number of inversions, insertions, and deletions necessary to turnA into the identity
permutation of lengthn.

Problem 3.2.3((MtMDA) Many-to-Many Duplicate Assignment problem). Given two sequencesA,B ∈
Σ∗, find a renaming of elements from multi-element families, yieldingA′ andB′, so that the following
conditions are satisfied:

1. for each multi-element familyx ofA or B, there exist exactlymin(occ(x,A), occ(x,B)) pairs of
elements — one fromA and one fromB — each pair having been renamed to the same unique
element,

2. all other occurrences ofx (in one of the sequences) have been renamed to be unique elements,
and

3. the length of the minimum scenario of inversions, insertions, and deletions fromA′ to B′ is mini-
mized.

OtMDA and MtMDA remain tricky to reason about due to the combination of operations that are
considered in the objective function (inversions, insertion, deletion). Thus, there exist few results beyond
those presented in Sections 3.3 and 3.4 that directly apply to OtMDA and MtMDA. For instance, it
remained unclear as to whether they are in P or not. For this reason researchers have chosen to focus on
specific aspects of the problem. The following is a summary ofthe variations and simplifications found
in the literature:

(OtMRD) One-to-Many Reversal DistanceThe same as OtMDA except the objective function only
counts the number of inversions in the subsequence restricted to the remapped elements.

(MtMRD) Many-to-Many Reversal Distance The same as MtMDA except the objective function only
counts the number of inversions in the subsequences restricted to the remapped elements.

(RDD) Reversal Distance with DuplicatesThe same as MtMRD except the input is restricted to se-
quences with equal size gene families (for any familyx, occ(x, a) = occ(x,B)).

23

(OtMCM) One-to-Many Cycle Maximization The same as OtMRD except the objective function only
counts the number of cycles in the induced breakpoint graph.

(MtMCM) Many-to-Many Cycle Maximization The same as MtMRD except the objective function
only counts the number of cycles in the induced breakpoint graph.

(OtMBM) One-to-Many Breakpoint Minimization The same as OtMRD except the objective func-
tion only counts the number of breakpoints in the induced permutation.

(MtMBM) Many-to-Many Breakpoint Minimization The same as MtMRD except the objective func-
tion only counts the number of breakpoints in the induced permutation.

In the following section we attempt to put these problems along with our own work into context.

3.2.2 Background

Our approach [54] was the first to address the OtMDA problem bypresenting a constant-factor approx-
imation algorithm. We briefly present a refined (and improved, in terms of the error bound) version of
this work in Section 3.3. One of the main steps in finding our solution to the OtMDA problem requires
the computation of theminimum cover: a minimum cardinality set of non-overlapping substrings (from
the input sequenceA) that match (in forward or reverse direction) the maximum number of elements
from the lengthn identity permutation. For example,{(1 2),(3 4),(−6 −5)} and{(1 2 3),(−6 −5 −4)} are
both covers forA = (−6 −5 1 2−6 −5 −4 3 4 1 2 3) withn = 6, but only the later is a minimum cover.
Computing the minimum cover in this case is equivalent to OtMBM. It turns out that the greedy method
of repeatedly choosing a largest common substring from an unused portion ofA and the identity yields
a minimum cover (see Lemma 3.3.3). The relaxed analogue we call MtMBM, applicable to MtMDA, is
unfortunately APX-Hard to compute even with a guarantee that occ(x,A) = occ(x,B) for all x [41].
We show in Section 3.4 that the MtMDA problem has a satisfactory solution in practice.

Chenet al. [26] attempted to solve RDD as a step in solving a larger problem: given two nucleotide
sequences, find genes that are most likely to have been the same in the nearest ancestor (called ortholo-
gous genes). A step in their algorithm uses an analogue to theminimum cover, named more verbosely
“minimum common string partition”: find a minimum cardinality partition of two strings into the same
collection of substrings or report that none exists (equivalent to MtMBM). A thread of work exists that
addresses MtMBM under various restrictions [41, 27, 50, 49]. All of these results apply only to instances
where for allx, occ(x,A) = occ(x,B), so cannot be directly used within our approximation framework,
but could lead to progress in the future.

While, as we stated, the use of common partition-based methods is limited (APX-Hard) for the
MtMDA problem [41], these methods are also somewhat limitedfor OtMDA due to the existence of the
following family of permutations.

Theorem 3.2.4. There exists a family of permutations where the minimum common string partition
yields a distance twice that of the optimal for OtMDA.

Proof. TakeA to be a sequence of length2n that is created by concatenating the permutationA1=(−1 −2
. . .−n) and a permutationA2 where every adjacency is a breakpoint and there are only cycles of length
four 1. Because it is comprised only of length four cycles,A2 must have an odd number of elements (n
is odd) and will need exactly(n+ 1)/2 inversions to sort. Choice of either all the elements ofA1 or all
the elements ofA2 will yield the minimum size covern. Thus, if all the elements ofA1 are chosen to
match those in the identity,n inversions and 1 deletion are required whereas if all the elements ofA2

are chosen(n+1)/2 inversions and 1 deletion are required. So asn grows the ratio of optimal to worst
case cover choicen+3

2n+2 , goes to 2.

1For instance, take the permutation of length n = 2m+(m+1):
A2 =

(

-(2m+1) -1 (2m+2)2m2 -(2m+3)-(2m-1)-3 (2m+4)(2m-2). . .-(m-1) (n-1) (m+2) m -n -(m+1)
)

24

Since cover (minimum common partition) based methods simply attempt to rename the sequence
so as to minimize the number of breakpoints, better solutions to OtMDA can sometimes be found by
attempting to minimize cycles in the resulting breakpoint graph. We offered a first look into the power
of this approach in [83], which we present in Section 3.5. Thework by Chenet al. [26] also has
a cycle maximization heuristic applied after assigning a minimum common partition. The only other
known work attempts to directly solve MtMCM by formulating an integer linear program which has an
exponential (inn, the length of the sequence) number of formulas and variables [78].

Bryant [20] established that the exemplar reversal distance (ERD) problem is NP-hard via a reduction
(the simple version is found as an addendum to the original paper) from the unsigned reversal distance
problem (proven hard by Caprara[25]). The reduction takes the unsigned permutation — the input for
the unsigned reversal distance — and replaces each elemente with two elements (+e −e). This way the
exemplar problem picks a sign for the elements of the unsigned permutation so as to minimize the signed
inversion distance, which yields a minimum reversal scenario for the unsigned permutation. Notice that
the identical reduction to OtMRD (and hence, MtMRD) holds. Chenet al. [26] showed that RDD is
NP-Hard with a similar technique. Note, however, that this reduction cannot be applied to the cycle
maximization problems (OtMCM and MtMCM) due to the fact thatthe assignment that maximizes
cycles does not necessarily give the minimum reversal distance (as when hurdles are created)2. In
Section 3.6 we give a more complicated reduction that applies to the cycle maximization problems. The
proof is more general than existing proofs because it subsumes the aforementioned result of Bryant and
Chen.

2With A = (2 -2 1), both choices yield a single cycle but (2 1) is a hurdle whereas (-2 1) is not. There are also instances
when the assignment that minimizes the reversal distance will always yieldfewercycles than the maximum cycle assignment:
for A = (2 1 3 -3 5 4) there is one assignment that gives 2 cycles and 2 hurdles whereas the optimal assignment gives 1 cycle
and 0 hurdles.

25

3.3 Approximating the One to Many Duplicate Assignment (OtMDA)
Problem

(This is joint work with Mark Marron)

In this section, we extend work of El-Mabrouk [32] by providing a polynomial-time approximation
algorithm with constant error bound to compute edit distances under inversions, deletions, and unre-
stricted insertions (including duplications) from the anysequence to the identity permutation. We also
show that the algorithm we implemented works well in practice. An approximation with heuristics that
perform well in practice, is the best we can hope for due to theNP-Hardness result of Section 3.6.

As in the standard statement of the equal gene content problem, we assume that the desired (optimal)
edit scenario is that which uses the fewest operations, withall operations counted equally. We move from
a subject sequenceS to a perfectly sorted targetT .

Our approach is based on a canonical form for edit scenarios which we introduced in [54]: we
showed that shortest edit scenarios can be transformed intoequivalent sequences of equal length in
which all insertions are performed first, followed by all inversions, and then by all deletions. We state
the theorem here without proof.

Theorem 3.3.1([54]). Given a minimum edit scenarioS · o1 · o2 · . . . · om = T there is an equivalent
edit scenarioS · ins1 · . . . · insp · inv1 · . . . · invq · · · del1 · . . . ·delr = T where all insertions are followed
by all inversions which are followed by all deletions.

The utility of this theorem is two-fold. As we will see, it is instrumental in the application of
Lemma 3.3.4 to our approximation algorithm. It also allows us, in practice, to take advantage of El-
Mabrouk’s exact algorithm for inversions and deletions, which we then extend by finding the best pos-
sible prefix of insertions, producing an approximate solution with bounded error.

Section 3.3.1 outlines our method for handling unrestricted insertions. Section 3.3.1 gives the algo-
rithm matching that method. Section 3.3.2 presents the complete algorithm outline as well as an analysis
of its error bounds. Finally, Section 3.3.3 gives some empirical results for method presented here.

3.3.1 Unrestricted Insertions

The presence of duplicates in the sequence makes an analysismuch more difficult; in particular, it
prevents a direct application of the method of Hannenhalli and Pevzner and thus also of that of El-
Mabrouk. We could solve this problem by assigning distinct names to each copy, but this approach begs
the question of how to assign such names. Sankoff proposed the exemplar strategy [66], which attempts
to identify, for each gene family, the “original” gene (as distinct from its copies) and then discards all
copies, thereby reducing a multi-set problem to the simplerset version. However, identifying exemplars
is itself NP-hard [21]—and much potentially useful information is lost by discarding copies. We found a
simple selection method that discards none of the elements of the sequence, based on substring pairing,
while yielding a constant error bound.

Sequence Covers

Our job is to pick a group of substrings from the subject such that every element in the target appears in
one of those substrings. To formalize and use this property,we need a few definitions. Call a substring
e1e2 . . . em a block if we have∀j, ej+1 = ej + 1. Given a blocksi, define thenormalizedversion ofsi
to besi itself if the first element insi is positive, and the inversion ofsi otherwise; thus the normalized
version ofsi is a substring of the identity. Call a subsequenceTnd of the target stringT , thenon-deleted
portion ofT if Tnd (i.e. only the elements fromT that also exist inS). Note thatTnd is not a substring,
but a subsequence; that is, it may consist of several disjoint parts ofT . Thus it is unique. Given a setC

26

of normalized blocks inS such that all the elements are also incomparable under the substring relation,
define⊎C to be the string produced as follows; order the strings ofC lexicographically and concatenate
them in that order, removing any overlap. We will say that a set C of blocks fromS is acover for T if
Tnd is⊎C. Note that a cover must contain only blocks.

SetT = (1, 2, 3, 4, 5, 6, 7) andS = (3, 4, 5,−4,−3, 5, 6, 7). The set of normalized maximal blocks
is {(3, 4, 5), (3, 4), (5, 6, 7)}; Tnd is (3, 4, 5, 6, 7); a possible cover forT is {(3, 4, 5), (5, 6, 7)}; and
⊎Cp is (3, 4, 5, 6, 7).

Lemma 3.3.2. For a subjectS, d operations from the identityT , there exists a cover of size2d+ 1.

Proof. By induction ond. Ford = 0, S itself forms a cover, since it is a block; hence the cover has size
1, obeying the bound. For the inductive step, note that deletions are irrelevant, since the cover only deals
with the non-deleted portion; thus we need only verify that insertions and inversions obey the bound. An
insertion between two blocks simply creates another block,while one inside a block splits it and adds
a new block, for an increase of two blocks. Similarly, an inversion within a block cuts it into at most
three blocks, for a net increase of two blocks, while an inversion across two or more blocks at worst
cuts each of the two on the ends into two blocks, leaving the intervening sequence contiguous, also for
a net increase of two blocks. Since we have(2(d− 1) + 1) + 2 = 2d + 1, the bound is obeyed in all
cases.

Building the Minimum Cover

Let C(T, S) be the set of all (normalized versions of) maximal contiguous substrings (blocks) shared
betweenT andS. We will build our cover greedily from left to right with thissimple idea: if, at some
stage, we have a collection of strings in the current cover that, when run through the⊎ operator, produces
a string that is a prefix of lengthi of our targetT , we consider all remaining strings inC(T, S) that begin
at or to the left of positioni—that can extend the current cover—and select that which extends farthest
to the right of positioni. Although this is a simple (and efficient) greedy construction, it actually returns
a minimum cover, as we can easily show by contradiction.

Lemma 3.3.3. The cover derived by our greedy algorithm is optimal.

Proof. Assume there exists a cover, sayCmin, that is smaller than the one provided by our construction,
Cconst. Order the sequences inCmin by increasing value of the smallest index in the sequence. Let α be
the smallest element, say thekth element in this order such thatα is not the same as thekth sequence of
Cconst under the same order. We have three cases:

1. During the construction ofCconst, α was not selected forCconst because the previous selection of
a cover element inCconst did not cover all the way to the start index ofα. Thenα is not the first
differing element in the order, a contradiction.

2. During the construction ofCconst, α was not selected forCconst because there was a sequence
that had the same start index asα, but covered fewer elements thanα. But this contradicts the
selection criteria for our construction.

3. During the construction ofCconst, α was not selected forCconst because there was a sequence
that had the same start index asα, but covered more elements thanα. ThenCconst has at most as
many elements asCmin, a contradiction.

27

3.3.2 Our Algorithm

Now that we have a method to construct a minimal cover, we can assign unique labels to all duplicates,
which in turn enables the use of El-Mabrouk’s method for computing the edit scenario.

We first present a result relating the number of blocks in the cover to the maximum number of
insertions and deletions. To do this we will need to look at the target sequenceT with all the elements
that do not appear inS removed, we call this new sequenceTir to denote that all the inserted elements
have been removed.

Lemma 3.3.4. Let α be the minimal edit scenario fromS to T , using l insertions andm inversions.
Let α′ be the minimal edit scenario of just inversions and deletions fromS to Tir. The extension̂α
(extendingα′ with the needed insertions) has at mostl +m insertions.

Proof. Clearly, our method will do at least as well as looking at eachinserted string inT and taking that
as an insertion for̂α. Now, looking at the possible effect of each type of operation on splitting a previous
insertion, we have 3 cases. Takev as the inserted substring:

1. Inserting another substring cannot split an inserted substring—it just creates a longer string of
inserted elements. (Ifx is inserted,uv1v2w → uv1xv2w)

2. Deletion of a substring cannot split an inserted substring—it just shortens it, even perhaps to the
point of eliminating it and thus potentially merging two neighboring strings. (Ifv2 is deleted,
uv1v2v3w → uv1v3w)

3. An inversion may split an inserted substring into two separate strings, thus increasing the number
of inserted substrings by one. It cannot split a pair of inserted substrings because the inversion
only rearranges the inserted substrings; it does not createnew blocks. (Ifu2v1 is the substring
inverted,u1u2v1v2w → u1v1u2v2w)

Thus, if we havel insertions andm inversions inα, there can be at mostl + m ≤ |α| = d inserted
substrings inT .

Starting with the subjectS with cover elements(s1, s2, . . . , sk) numbered by the order in which
they appear in the targetT . We place in order (fori from 1 tok) eachsi in its final location inT with at
most two inversions; one to place it and one to orient its sign. Thus, we use at most2k inversions. By
Lemma 3.3.2 and Lemma 3.3.3 we havek ≤ 2d+ 1, so our inversion scenario will have at most4d+ 2
inversions. Theorem 3.3.1 tells us that Lemma 3.3.4 appliesto both insertions and deletions, thus there
at mostk insertions andk deletions. Thus, the edit scenario produced by the proposedmethod has at
most6d+ 2 operations, whered is the minimum distance.

While this error bound is large — it is a factor of 3 larger thanthe lower bound given in Theo-
rem 3.2.4 — it is the lowest known bound for OtMRD. Furthermore, the bounds can be easily computed
on a case-by-case basis in order to provide information on the accuracy of the results for each run. We
expect the error encountered in practice to be much lower andthat further refinements in the algorithm
and error analysis should bring the bound closer to that of the lower bound.

3.3.3 Experimental Results

To test our algorithm and get an estimate of its performance in practice, we ran simulations. We gener-
ated pairs of sequences, one the sequence(1, 2, 3, . . . , n), for n = 200, 400, 800, and the other derived
from the first through an edit scenario. Our edit scenarios, of various lengths, include 80% of randomly
generated inversions (the two boundaries of each inversions are uniformly distributed through the array),
10% of deletions (the left end of the deleted string is selected uniformly at random, the length of the
deleted string is given by a Gaussian distribution of mean20 and deviation7), and 10% insertions (the

28

20

40

60

80

100

120

20 30 40 50 60 70 80 90 100

C
al

cu
la

te
d

E
di

t L
en

gt
hs

Generated Edit Lengths

Average Edit Length

Min Edit Length

Max Edit Length

 0

 0.5

 1

 1.5

 2

 2.5

 20 30 40 50 60 70 80 90 100

C
al

cu
la

te
d/

G
en

er
at

ed
 E

di
t L

en
gt

hs

Generated Edits Lengths

Figure 3.1: Experimental results for200 genes. Left: generated edit length vs. reconstructed length;
right: the ratio of the two.

40

60

80

100

120

140

160

180

200

220

20 40 60 80 100 120 140 160 180 200

C
al

cu
la

te
d

E
di

t L
en

gt
hs

Generated Edit Lengths

Average Edit Length

Min Edit Length

Max Edit Length

 0

 0.5

 1

 1.5

 2

 2.5

 40 60 80 100 120 140 160 180 200

C
al

cu
la

te
d/

G
en

er
at

ed
 E

di
t L

en
gt

hs

Generated Edits Lengths

Figure 3.2: Experimental results for400 genes. Left: generated edit length vs. reconstructed length;
right: the ratio of the two.

locus of insertion is uniformly distributed at random and the length of the inserted string is as for dele-
tion), with half of the insertions consisting of new elements and the other half repeating a substring of
the current sequence (with the initial position of the substring selected uniformly at random). Thus, in
particular, the expected total number of duplicates in the subject sequence equals the generated number
of edit operations—up to400 in the case of800-gene sequences. We ran10 instances for each combina-
tion of parameters (in the figures below, we show the average,minimum, and maximum values over the
10 instances). The results are gratifying: the error is consistently very low, with the computed edit dis-
tance staying below3% of the length of the generated edit scenario in the linear part of the curve—that
is, below saturation. (Of course, when the generated edit scenario gets long, we move into a regime of
saturation where the minimum edit scenario becomes arbitrarily shorter than the generated one; our es-
timated length shows this phenomenon very clearly.) Figures 1, 2, and 3 show our results for sequences
of 200, 400, and800 genes, respectively.

29

 50

 100

 150

 200

 250

 300

 350

 400

 50 100 150 200 250 300 350 400

C
al

cu
la

te
d

E
di

t L
en

gt
hs

Generated Edit Lengths

Average Edit Length

Min Edit Length

Max Edit Length

 0

 0.5

 1

 1.5

 2

 2.5

 50 100 150 200 250 300 350 400

C
al

cu
la

te
d/

G
en

er
at

ed
 E

di
t L

en
gt

hs

Generated Edits Lengths

Figure 3.3: Experimental results for800 genes. Left: generated edit length vs. reconstructed length;
right: the ratio of the two.

3.4 Applying the Cover to the Many to Many Duplicate Assignment
(MtMDA) Problem

(This is joint work with Mark Marron, Jijun Tang, and WilliamArndt)

Here, we generalize the approach from the previous section to compute the distance between two
arbitrary sequences and show through extensive simulations that we reconstruct a scenario of operations
that reflects the true evolutionary distance. Since this is an experimental result, it is hard to verify
exactly what the minimum number of operations is; hence the following results do not apply to MtMDA
directly, but give an indication of how well our distances track the true distance. Our algorithm computes
distances between two sequences in the presence of insertions (including duplications), deletions, and
inversions; in our simulations, the distance computed veryclosely approximates the true evolutionary
distance up to a (high) saturation level. The approximationis in fact good enough that it can be used in
conjunction with a distance-based phylogenetic reconstruction method (we used the most common one,
neighbor-joining) to reconstruct trees of reasonable sizes (up to 100 sequences) and very large pairwise
distances with high accuracy.

It is worthwhile to note that although we consider only inversions (aside from duplicating insertions
and deletions), the properties of a minimum cover discussedin Section 3.4.1 imply that it would likely
perform well with other operations such as transpositions:the cover is a model-independent method.
However, due to the fact that transpositions distances are yet to be well understood we do not consider
them in this exposition.

The rest of the section is organized as follows. Section 3.4.1 establishes the background. Sec-
tion 3.4.2 discusses the difficulties faced when using two arbitrary sequences and how we solve them
to recover a solution in the spirit of our earlier results; itoutlines our method for producing a cover in
quadratic time. Section 3.4.3 presents the design of our twostudies while Section 3.4.4 shows how our
constructed cover performs when estimating pairwise tree distances and how these distances can be used
in tree reconstruction. Finally, Section 3.4.7 uses our distance method with a more sophisticated tree
building method, and shows that the combined methods rebuild trees more accurately than other know
methods.

30

3.4.1 Background

The Cover

Our solution attempts to assign each gene in the subject to a gene from the same family in the target;
that is, it creates a maximum matching between the genes in corresponding gene families of the two
sequences. However, some matchings are clearly preferableto others because they reduce the number
of insertions, deletions, and rearrangement operations required to transform one genome into the other.
We define aminimum coverto be a cover that maps the subject to the target with the fewest common
substrings. The effect of renaming according to a minimal cover is to yield a breakpoint graph [42] with
maximum number of cycles of length 2, minimizing the number of breakpoints between the renamed
sequences. Thus a minimum cover is a solution to MtMBM.

Difficulties With an Arbitrary Target

The difference between our work from Section 3.3 and that of this section is the presence of duplicate
genes in the target. When building the cover with the identity permutation as the target, all candidate
cover elements from the subject are immediately apparent because of the unique correlation between
their identity and their index in the target genome. In the case of an arbitrary target, however, this
correlation no longer exists. Moreover, a cover may no longer cover all genes from one or the other
genome: clearly, if genomeA has more duplicates of genex than genomeB, and genomeB has more
duplicates of geney than genomeA, then any matching between these two sequences must leave some
duplicates of genex unassigned inA and some duplicates of geney unassigned inB. For example, with
subject (1 2 3−5 −2) and the identity permutation (1 2 3 4 5) as target, we have a cover, using indices
in the target, for indices 1 through 3, one for index 5, and onefor index 2; but for the same subject and
for target (−7 1 2 3 5−3), we obtain partial covers for indices 2 through 4 or for indices 5 through 6.
We settle for fast heuristics to build our cover due to the results of Goldsteinet al. [41], who show that
computing a minimum cover is APX-Hard even with a guarantee thatocc(x,A) = occ(x,B) for all x.

3.4.2 Constructing a Small Cover

The algorithm used in Section 3.3 looks for the longest matching substring. As long as such a longest
match is unique, there is no difficulty beyond identifying such matches as quickly as possible. (A naı̈ve
cubic-time algorithm will do, although, as we shall see, thesame job can be done in quadratic time.)
When the longest match is not unique, however, finding a minimum cover may require an exploration of
the alternatives and thus exponential time. Instead, we usea greedy heuristic to break ties.

We have tried several tie-breaking heuristics (and compared them to breaking ties at random). One
heuristic is based on identifying a possible extension of the match (to one or the other side). If the
substring to one side of the match is the inverse of the substring to the same side of the match in the
other genome, for instance, if we had substrings (1 2−4 −2) in the target and (1 2 2 4) in the subject, we
may prefer to match these substrings to each other (even though there may be another (1 2) elsewhere
in both sequences) because they are only a single inversion from each other. Another heuristic is to
minimize the interaction between matches. The longer the match we make at each iteration, the fewer
potential matches may be needed overall, so we may want to choose the match with a range of indices
that crosses the smallest number of other match ranges. Section 3.4.5 contains some conclusions about
the effectiveness of these heuristics.

To find the longest match, we begin by finding all possible maximal matching substrings and then
repeatedly pick the next largest substring, doing necessary bookkeeping to reflect our successive choices.
LetM be the set of all maximal matching substrings between the subject and the target that have not yet
been picked. For instance, if we start with target genome (1 21 3 4 5 6 7 8) and subject genome (6 7
3 4 5 6 1 2 3 6 7 8), we initially haveM = {(67), (3456), (12), (3), (678)}. We say that two matches

31

ALGORITHM COVER:

C = ∅.
M = {s : s is a maximal substring of the subject and target}.
WHILE C cannot cover the Target DO:

Add longest l ∈ M to C.
M = M\{l}.
FOREACH o ∈ M that overlaps l DO:

u = o without the substring common to o and l.
M = M\{o} ∪ {u}.

RETURN C

Figure 3.4: Choosing a nearly minimal cover.

overlap if their indices in the target intersect. By picking the longest matchl, we cover a part of the
target that may overlap with some numbers of other matches, call themo1, o2, . . . , os ∈ M . In our
example, match (3 4 5 6) would be chosen first, covering the6 from matches (6 7) and (6 7 8) and the
3 from match (3). The overlapping portion of each matchoi, 1 ≤ i ≤ s is then removed, resulting in
shorter matches. Thus, three of those matches in our examplewill be shortened yielding (7), (7 8), and
(). The resulting algorithm is described in Figure 3.4.

We proceed to show that COVER can be implemented to run efficiently, first stating the theorem
and then providing the necessary background to prove it.

Theorem 3.4.1.AlgorithmCOVERcan be implemented to run in quadratic time.

We representM by a list arranged by match length. We keep an auxiliary data structure, theindex
reference, to maintain the setM through each iteration. This index reference is an array (0 indexed)
of lists, one for each index of the target; each such list, anindex list, contains the matches that have an
endpoint on that target index. For instance, in our example three such matches would be (3 4 5 6), (6 7),
and (6 7 8). These matches are associated with indices3 through6, 6 through7, and6 through8 of the
target. Thus index6 of the target would have three members to its index list, because the matches (3 4
5 6), (6 7), and (6 7 8) all have the 6 (from position 6 in the target) as an endpoint. Index 7, however,
would have a single match (6 7), because (6 7 8) does not have 7 as an endpoint. A simple way to find all
possible maximal matches in quadratic time is to slide the subject over the target, comparing all possible
combinations of indices between the two. Each match found isplaced inM and the index lists for its
endpoints. The key to this implementation is the efficient update of overlapping matches. With the index
lists we can find allo ∈ M that overlap a givenm ∈ M by examining each list that corresponds to an
index thatm spans. When the matchm that spans indicesi throughk is chosen, we can shorten eachoi
that overlaps from the left by relocating it from the index list for j, i ≥ j ≥ k, to the index list fori− 1.
Similarly, eachok that overlapsm from the right can be relocated to the index list fork + 1.

Lemma 3.4.2.The maximum number of matches that can have an endpoint at a given index of the target
is bounded by4n, wheren is the length of the longer genome.

Proof. Each index in subject or target can be of two types: a left or right endpoint of a match. All four
combinations of endpoint types can occur for a given pair of indices. If there were more than one match
per pairing of endpoint types then one of them could not be maximal, therefore there can be at most four
distinct maximal matches associated with every pair of indices. Since there aren indices in the subject,
there can be at most4n matches associated with a single index of the target.

32

It follows immediately that the number of maximal matches between two sequences, the larger of
which has sizen, isO(n2).

Lemma 3.4.3. Initialization ofM and of the index reference takes quadratic time.

Proof. We know that the number of maximal matches isO(n2) and that the length of a match is bounded
by the size of the sequences. We can add a match to a list organized by length in constant time through
direct indexing. Likewise, addition to the end of a given index list can be done in constant time. Since
there areO(n2) matches and placement into the index reference isO(1), we can build these lists in
quadratic time.

Lemma 3.4.4. A match can be relocated between index lists at most twice before being removed from
consideration.

Proof. It is sufficient to show that a matche will not be encroached upon from the same side twice.
Assume thate is shortened from one direction by matchm and later from the same direction by match
m′ without being covered. Becausem was picked by the algorithm first,m′ must not stretch past
the opposite end ofm. Therefore, eitherm′ covers less thane or e must be completely covered —a
contradiction in either case.

We are finally ready to prove Theorem 3.4.1.

Proof. (of Theorem 3.4.1) Initialization takes quadratic time (Lemma 3.4.3). Each match in each in-
dex list is visited a constant number of times (Lemma 3.4.4).When visited, each match is shortened,
removed from consideration or relocated to the index list atthe edge of the most recently chosen match,
and then relocated in the length list. Since each of these operations runs in constant time, the running
time is bounded by a constant times the total number of matches visited. Since each index list is visited
at most once and the length of that list is at most linear (Lemmata 3.4.2 and 3.4.4), the running time is
O(n2).

Theorem 3.4.5.The distance function can be computed inO(n2) time.

Proof. The cover can be generated and applied inO(n2) time. Then the algorithm presented in [54] or
[32] can be applied. Both methods run inO(n2) time.

3.4.3 Experimental Design

We used two types of tests to assess the accuracy and utility of our tree distance algorithm. The first
set of tests were designed to determine if our distance function accurately modeled the true pairwise
tree (true evolutionary) distances. The second set of testswere used to evaluate the effectiveness of our
distance function within the most simple distance-based phylogenetic reconstruction algorithm.

Pairwise Error

For this experiment, we generated evolutionary trees with known edge lengths and compared the pair-
wise distances between the leaves with those computed by ouralgorithm. Variance in tree shape does
not matter here; in fact, since we want a large range of pairwise tree distances, a perfectly balanced tree
is best.

In the following tests we used the simplest version of the method described earlier. The algorithm
picks the largest match to make and in the case of ties picks one of the tied matches at random. Clearly
other information is present in the sequences that could provide a better choice of match and thus lead
to a more accurate distance score. However, all of the heuristic methods that we used failed to have
a noticeable impact on the accuracy of the distance value returned. Furthermore, in experiments with

33

a large number of random restarts, we found that most of the values clustered around the true value
with a small number of outliers; we also found that averagingover a smaller number of random restarts
and discarding any substantially outlying points provideda distance estimate that was nearly indistin-
guishable from the distance estimate computed with the use of our best heuristics (see Section 3.4.5).
While the use of biological information to select the best match could prove effective in generating more
biologically plausible evolutionary paths, the current method seems to perform quite well in terms of
distance computations.

Not enough is known about inversions, deletions, insertions, and duplications to enable one to set
good parameters (such as lengths of inversion, for instance) a priori, so we chose values so as to ensure
that a single operation would not completely alter the genome. Most of our tests were conducted with a
root genome of 800 genes on a tree of depth 4; such a tree has 16 leaves and thus 120 pairs of sequences
with paths from 2 to a maximum of 8 edges between sequences.

Tree Reconstruction

We tested the performance of our distance functions using neighbor-joining, the standard distance-based
tree reconstruction method. Due to the dearth of real-worldtrees reconstructed using biological tech-
niques, we had to generate model trees that would exercise our algorithm over a wide range of plausible
models of gene-order evolution. (We conducted one study using real data with very large numbers of
insertions and deletions; partial results to date show promise [30].) We generated one thousand trees
using a variation of the birth-death model that produces a larger variation in tree topologies, especially
imbalanced ones that are known to be insufficiently represented in a pure birth-death model [44]. The
only constraint that was placed on the operations was that the expected number of inserted elements was
equal to the expected number of deleted elements, in order tokeep all genome sizes within a reasonable
range. (Cases where certain sequences are much smaller thanothers, due, e.g., to symbiosis, certainly
exist, but the variation generated by our mechanism nearly encompasses that case already.) Three ran-
dom restarts of our distance algorithm were used for each pair of nodes to produce the pairwise distance
matrix.

Within the thousand trees the percentage of inversions varied from 50% to 90%. The remaining
percentages were split evenly between insertions (duplicating and non-duplicating) and deletions. Non-
duplicating insertion and duplication percentages were varied over three different tests, in which each
received a quarter, a half, and three quarters of the percentage. The expected Gaussian distributed length
of each operation filled a range of combinations from 5 to 30 operations per operation type. Finally, the
expected number of event per edge was 20 with a Gaussian distributed variance of 10 operations.

To generate a tree we began with the identity genome on 800 genes and performed 200 evolutionary
operations on it using the same parameters that are specifiedfor generating the tree. This genome was
then used as the root of the tree. For each node we checked if itshould become a leaf, based on the
maximum depth allowed and a random choice, if not we stopped.Otherwise we created each of the
two children by performing the randomly selected operations (as specified in the previous paragraph)
on the parent. Each type of operation (inversion, non-duplicating insertion, duplication, and deletion)
was selected at random according to a fixed distribution. Theinterval over which an operation acts is
produced with one endpoint selected at random and a length drawn from a Gaussian distribution. For
duplications, the interval to be duplicated is selected andthen inserted at an index chosen uniformly at
random in the genome.

34

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
al

cu
la

te
d

T
re

e
D

is
ta

nc
es

Generated Tree Distances

y=x

-40

-20

 0

 20

 40

 0 20 40 60 80 100

E
rr

or
 V

ar
ia

nc
e

Generated Tree Distances

Min Error

Max Error

y=0

Figure 3.5: Experimental results for 800 genes with expected edge length 10. Left: generated distance
vs. reconstructed distance; right: the variance of computed distances per generated distance.

 0

 50

 100

 150

 200

 0 50 100 150 200

C
al

cu
la

te
d

T
re

e
D

is
ta

nc
es

Generated Tree Distances

y=x

-40

-20

 0

 20

 40

 0 50 100 150 200
E

rr
or

 V
ar

ia
nc

e
Generated Tree Distances

Min Error

Max Error

y=0

Figure 3.6: Experimental results for 800 genes with expected edge length 20. Left: generated distance
vs. reconstructed distance; right: the variance of computed distances per generated distance.

3.4.4 Experimental Results

Pairwise Error

We present results for one of the many mixes of operations used in our simulations; other mixes gave very
similar results. This particular data set used a mix of 70% inversions, 16% deletions, 7% insertions, and
7% duplications. The inversions had a mean length of 20 and a standard deviation of 10. The deletions,
insertions, and duplications all had a mean length of 10 witha standard deviation of 5. We used four
trees of 16 leaves as described earlier, with 10, 20, 40, and 60 expected operations per tree edge; these
choices can result in very large pairwise distances—up to anexpected 480 operations (on just 800 genes)
for the most distant pairs. For these four trees, our algorithm was run with 10 random restarts and simple
randomization for the selection of the matchings.

Figures 3.5 through 3.8 show the results (as a scatter plot ofthe 120 data points for each experiment)
for these four datasets. In each figure, the left-hand plot shows the estimated tree distance on the ordinate
against the true evolutionary distance (from the simulation) on the abscissa. A perfect result would
simply trace the 1:1 diagonal, which is lightly marked on each plot to aid in evaluating the results. The
right-hand plot displays the deviation from the 1:1 ideal asa function of the true evolutionary distance,
plotting largest and smallest differences between computed values and the true value, for each true value.

These plots show that our distance estimator tracks the trueevolutionary distance very closely up
to a saturation threshold, where it starts lagging seriously behind the true value. Such saturation is of
course expected; what is surprising is how high that saturation threshold is. On sequences of roughly
800 genes, saturation appears to occur only around 250 evolutionary events and our estimator tracks very
accurately to at least 200 events. Moreover, the smaller plots indicate that the variance is very small up

35

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

C
al

cu
la

te
d

T
re

e
D

is
ta

nc
e

Generated Tree Distance

y=x

-100

-50

 0

 50

 100

 0 50 100 150 200 250 300

E
rr

or
 V

ar
ia

nc
e

Generated Tree Distances

Min Error

Max Error

y=0

Figure 3.7: Experimental results for 800 genes with expected edge length 40. Left: generated distance
vs. reconstructed distance; right: the variance of computed distances per generated distance.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400

C
al

cu
la

te
d

T
re

e
D

is
ta

nc
es

Generated Tree Distances

y=x

-100

-50

 0

 50

 100

 0 50 100 150 200 250 300 350 400

E
rr

or
 V

ar
ia

nc
e

Generated Tree Distances

Min Error

Max Error

y=0

Figure 3.8: Experimental results for 800 genes with expected edge length 60. Left: generated distance
vs. reconstructed distance; right: the variance of computed distances per generated distance.

36

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350

C
al

cu
la

te
d

T
re

e
D

is
ta

nc
es

Generated Tree Distances

y=x

-100

-50

 0

 50

 100

 0 50 100 150 200 250 300 350 400

E
rr

or
 V

ar
ia

nc
e

Generated Tree Distances

Min Error

Max Error

y=0

Figure 3.9: Experimental results for 1,200 genes with expected edge length 20. Left: generated distance
vs. reconstructed distance; right: the variance of computed distances per generated distance.

to 200 events and remains reasonable up to 250 events.
These results are not limited to small trees. We ran another series of tests involving trees of 50

leaves; while the main purpose of these tests was to assess the quality of tree reconstruction using our
distance computations, we checked the computed distances against the true distances for these trees as
well. Figure 3.9 shows the same two scatter plots (this time on roughly 1,250 data points) for one such
tree. For these larger trees, we used a root genome of 1,200 genes in order to prevent early saturation;
the example reported in the figure used an expected edge length of 20 evolutionary events. With the
larger number of genes, saturation now does not occur until we reach at least 350 evolutionary events.
The error plot shows that the error remains sharply bounded throughout the range of values tested.

Tree Reconstruction

Since our distance computation tracks tree distances so accurately and since distance-based methods are
guaranteed to do well when given distances that are close to the true evolutionary distances, we also ran a
series of tests designed to ascertain the quality of tree reconstruction obtained with the most commonly
used distance-based reconstruction method, neighbor-joining (NJ). The NJ method runs in low cubic
time and thus is applicable to large datasets, but, like all distance-based methods, it is known to produce
poor results when the range of tree distances gets large (see, e.g., [60].

Recall that we generated a very large number of diverse tree topologies, producing a population
of trees that more closely matches the observed balance statistics [44] than would be the case with a
pure birth-death process. We evaluated results using the standardRobinson-Foulds (RF) distance[64],
which is simply (in the case of binary trees, as in our series of experiments) the number of edges (or
bipartitions) present in one tree, but not in the other. In several cases, we present theRF error rate,
which is the ratio of the RF distance to the number of taxa in the tree. In terms of the latter measure,
most systematists will consider rates above 10% to be unacceptable and rates below 5% to be very good.

The tree reconstruction performed very well on the generated trees, as shown in Figure 3.10. Ap-
proximately 65% of the reconstructed trees had a Robinson-Foulds error rate of less than 5% and only
15% of the trees had an error above 10%. This reconstruction was done without any use of error correc-
tion, variances, or knowledge of the underlying model that generated the trees; it also used the simplest
form of neighbor-joining. Thus, it would be easy to improve these results by refining the reconstruction
method.

As an additional check, we also compared how well our method performs with respect to simply
removing duplicate content and applying El-Mabrouk’s exact method [32]. This comparison gives us an
indication of how important it is to handle duplication in estimating true tree distances. We computed
a distance matrix for each tree where a single entry of a matrix was obtained by pairwise removal of all
duplicate content and subsequent computation using El-Mabrouk’s exact method. The NJ method was

37

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100

T

es
t C

as
es

RF Error Rate (in %)5 10

Figure 3.10: The histogram of RF error rates for reconstructions based on our distance computation.

-5

 0

 5

 10

 15

 0 20 40 60 80 100 120

D
iff

er
en

ce
 in

 R
F

 D
is

ta
nc

e

Expected # of Duplicates Per Edge

Figure 3.11: The difference in RF distance between the method without duplicates and our method as a
function of the number of duplicates on an edge.

applied to each matrix to obtain a tree. Over all thousand trees the reconstruction without duplicates had
a lower RF error rate than ours on only 14% of the trees; furthermore, in three quarters of those cases,
the overall RF error rate for both methods was lower than 10%—that is, these were relatively easy cases.
Thus, our method does better on the harder cases; the averagedifference in RF error rate on the trees
where our method did worse on was 1.2, while the average difference in RF error rate on the trees our
method did better on was 3.5. This is strong evidence that ourmethod makes significant improvements
on the state of the art. Furthermore, because of this low error rate in the 14% of cases where our method
was not the best, there is good reason to believe that a slightly better tie breaker (see Section 3.4.5) will
yield even more cases where the method presented here wins.

To examine how well our technique handled copies, we compared (for every test run) the RF dis-
tances of our reconstruction with those of the reconstruction without duplicates as a function of the total
number of duplications. Figure 3.11, a scatter plot of the differences in RF distance, indicates that, as
the number of duplicates increases, our method does correspondingly better at reconstructing the tree.

38

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

N
um

be
r

of
 C

as
es

Error

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

N
um

be
r

of
 C

as
es

Error

(a) random tie-breaker (b) overlaps tie-breaker

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

N
um

be
r

of
 C

as
es

Error

(c) overlaps with context tie-breaker (reduced scale)

Figure 3.12: Number of cases with error for each tie-breaker.

3.4.5 Improved Heuristics

For distances used in tree reconstruction, the relative ordering of the values is more important than their
absolute magnitude; it is most important to see computed distances increase as the simulated distances
do. Our major goal with the introduction of more sophisticated heuristics is to reduce the variance of the
scores so that the distance ordering will be more consistentand potentially result in more accurate trees.

The results presented earlier in the section used a very simple heuristic; we selected the longest
match for a cover element and then chose a match at random in the cases of ties. We investigate two more
promising tie-breaking heuristics (introduced in Section3.4.2): picking a match that has the smallest
overlap with the other cover elements or picking a match by looking at the immediate context of the cover
elements in the source genome. By choosing the match that hasminimal overlap with all other matches,
we maximize the number of longest-match candidates for the next round. To understand the motivation
for the context driven heuristic suppose we are trying to finda cover element for a subsequence (of genes)
s in the target. Also suppose that in the target, the subsequence to the left ofs is sl and to the right of
s is sr. Then we would like to pick a match in the source genome that has the context subsequencess′l
ands′r that are as similar tosl andsr as possible.

To assess the improvements when using these heuristics we ran two sets of pairwise distance com-
parisons. One set used sequences of length 800 with 200 operations from the identity to the first taxa and
200 operations between the taxa. The second set used sequences of length 1200 and took 400 operations
between the identity genome and the first and between the firstand the second taxa. In both data sets the
probability of an operation being an inversion was 80%, of being a deletion 10%, of being a duplicating
insertion 5%, and of being a non-duplicating insertion 5%. The distance between each pair was then
computed using three heuristics, first the random selectionwas run, then the score was computed using
overlap minimization, and finally the score was computed using the overlap minimization with context.
Figure 3.12 indicates that there is little difference in theerror values for the various methods. More im-
portantly, the more sophisticated heuristics have very little impact on the variance. All methods resulted
in a sample variance of about 22.6 for the sequences constructed with 400 operations.

3.4.6 Saturation

Unsurprisingly, the high-error trees have arisen from saturation in the pairwise distance data. To this
point, we have referred to saturation as being the point where the variance grows too large to make the

39

 0

 10

 20

 30

 40

 50

 60

 100 150 200 250 300

%
 O

f S
am

pl
es

Saturation Point

 0

 10

 20

 30

 40

 50

 60

 100 150 200 250 300

%
 O

f S
am

pl
es

Saturation Point

(a) Worst RF Saturation Distribution (b) Best RF SaturationDistribution

Figure 3.13: Saturation occurs early for those cases where the RF error is bad.

−150

−100

−50

 0

 50

 100

 150

 200

 0 0.05 0.1 0.15 0.2 0.25

A
ct

ua
l D

is
ta

nc
e

−
 C

om
pu

te
d

D
is

ta
nc

e

Computed Distance/Sequence Length

Figure 3.14: Histogram of the error (actual distance− computed distance) as the ratio of the computed
distance to the genome size increases.

calculated distances useful. We now use a numerical definition: saturation occurs whenever the true
evolutionary distance exceeds the distance computed underour method (which, it should be recalled, is
not necessarily a minimum edit distance).

We compared reconstructed trees with an RF error greater than 10% to trees with RF errors of less
than 5%. In the high RF error category over 91% of the distancematrices show saturation, whereas in the
low RF error category 75.5% of the matrices are devoid of any saturation. The distribution of the number
of operations where saturation occurs for the high and low RFerror groups is shown in Figure 3.13.
Further investigation into the properties of the trees in the high and low RF categories revealed little
correlation between factors such as tree size, genome size (in genes), or distribution of operations. The
major limiting factor in the accurate reconstruction of trees using this distance score is thus definitely
the onset of saturation. Since the average genome size in ourexperiments was approximately 1000
elements, reconstruction is highly accurate when the computed edit distance does not exceed 10% of the
genome size and in general performs well until the number of operations exceeds 25% of the genome
size. Even in these cases the distance computation performsquite well up to the saturation point, as
illustrated in Figure 3.14. The vertical axis is the difference between the actual and computed distances
while the horizontal axis is the ratio of the computed distance to the genome size. Note that in a regime
of saturation the computed distance stays the same while theactual distance is rising, so only the positive
points should be considered when looking for saturation.

40

3.4.7 Sophisticated Tree Reconstruction

We still lack a good approach for inference of ancestral geneorders under theinsertion, duplication, loss,
and rearrangement(iDLR) model, both from the point of view of computational effort and from that of
accuracy. Indeed, Theorem 3.3.1 and the study of Earnest-DeYounget al.[30], indicate that internal gene
orders are seriously underconstrained and so may not be reliably inferred—we need a more detailed and
sensitive model of the evolutionary operations on a gene ordering.

Thus, we tested our method with a reconstruction algorithm that searches for a parsimonious tree
from all possible topologies, using linear programming [84]. Tang and Moret[84] proposed a linear
programming (LP) formulation that obviated the need to score over 99.99% of candidate topologies in
their experiments. It turns out that the LP score was close enough to the actual score that Tang and Moret
proposed using this score in lieu of scoring the tree, avoiding any median computation. The resulting
reconstruction lacks ancestral orderings, but gives a topology, an estimated score, and estimated edge
lengths (the values of the LP variables), much as a maximum-likelihood reconstruction does for sequence
data. Specifics about the full tree reconstruction algorithm can be found in our paper [79].

Experimental Design

Our objective is to verify that computing under the full iDLRmode, i.e., handling both rearrangements
and changes in gene content, allows for better reconstruction than handling only rearrangements on
genomes reduced to signed permutations. Relative accuracyis thus our main evaluation criterion. How-
ever, absolute accuracy is needed in order to put the comparison in perspective. Since, in phylogenetic
reconstruction, error rates larger than 10% are consideredunacceptable, there is obviously little use in
improving the error rate by a factor of two if the result is just bringing it from 60% down to 30%. We
also need to test a wide range of parameters in the iDLR model,as well as to test the sensitivity of the
methods to the rate of evolution. These considerations argue for testing on simulated data, where we
can conduct both absolute and relative evaluations of accuracy, before we move to applying the tools
to biological data, where only relative assessments of scores can be made. The range of dataset sizes
need not be large, however, as we know that applying DCM methods [85] scales up results from datasets
of fewer than 15 taxa to datasets of over one thousand taxa with little loss in accuracy and very little
distortion over the range of parameters. As we can run many more tests on small datasets and as our
primary interest is the effect of model parameters on accuracy, we generated datasets in the range of 10
to 13 taxa.

Simulated trees are often generated under the Yule-Hardingmodel—they are birth-death trees. Many
researchers observed that these trees are better balanced than most published ones. Other simulations
have used trees chosen uniformly at random from the set of alltree topologies, so-called “random” trees;
these, in contrast, are more imbalanced than most publishedtrees. Aldous[2] proposed theβ-split model
to generate trees with a tailored level of balance; depending on the choice ofβ, this model can produce
random trees (β = −1.5), birth-death trees (β = 0), and even perfectly balanced trees. We use all three
types of trees in our experiments; forβ-split trees, Aldous recommended usingβ = −1 to match the
balance of most published trees; instead, we chose the parameter to match the computational effort on
the datasets from which those trees were computed, which ledus to usingβ = −0.8. On random andβ-
split trees, expected edge lengths are set after the tree generation by sampling from a uniform distribution
on values in the set{1, 2, . . . , r}, wherer is a parameter that determines the overall rate of evolution. In
the case of birth-death trees, we used both the same process and the edge lengths naturally generated by
the birth-death process, deviated from ultrametricity andthen scaled to fit the desired diameter.

We generate the true tree by turning each edge length into a corresponding number of iDLR evolu-
tionary events on that edge. The events we consider under theiDLR model are insertions, duplications,
losses, and inversions of genes or contiguous segments madeof several genes—in particular, inserting,
duplicating, or deleting a block ofk consecutive genes has the same cost regardless of the value of k. We

41

forced the expected number of inserted and duplicated elements to equal the expected number of deleted
elements, in order to keep genome sizes within a general range. We varied the percentage of inversions
as a function of the total number of operations from 20% to 90%. The remaining percentages were split
evenly between insertions/duplications and losses, with the balance of insertions and duplications tested
at one quarter, one half, and three quarters. The expected Gaussian-distributed length of each operation
filled a range of combinations from 5 to 30 genes. These are conditions similar to, but broader in scope
than, those used in the experiments reported in Swensonet al.[81]

In all our simulations, we used initial (root) genomes of 1,000 genes. The resulting leaf genomes are
large enough to retain phylogenetic information while exhibiting large-scale changes in structure. These
sizes correspond to the smaller bacterial genomes and allowus to conclude that our results will extend
naturally to all unichromosomal bacterial genomes.

The collections of gene orders produced by these simulations are then fed to our various competing
algorithms. These are of two types: (i) algorithms running on the full gene orders, namely NJ and
our new LP-based algorithm; and (ii) algorithms running on equalized gene contents, which include NJ
again (running on the inversion distance matrix produced byGRAPPA), GRAPPA [59], and MGR [88].
Gene contents are equalized by removing genes from familieswith more than one gene, then keeping
only singleton genes common to all genomes. On some of these datasets, the equalized gene content is
minuscule—with high rates of evolution, the number of genesshared by all 12 taxa is occasionally in
the single digits, obviously leading to serious inaccuracies on the part of reconstruction algorithms. We
collect the data (including running times, the actual trees, internal inferred gene orders, inferred edge
lengths, etc.) and compute basic measures, particularly the Robinson-Foulds[64] distance from the true
tree—the most common error measure in phylogenetic reconstruction.

Results and Discussion

We ran collections of 100 datasets of 10 to 13 genomes, each of1,000 genes, under various models of
tree generation and various parameters of the iDLR model. Weused birth-death, random, andβ-split
(with β = −0.8) models, with evolutionary diameters (the length of the longest path, as measured in
terms of evolutionary operations, in the true tree) of 200, 400, 500, and 800 operations. (We ran tests
with diameters of 800, but noted that most resulting instances exhibited strong saturation—that is, that
many of the true edge lengths were significantly larger than the edit distances between the genomes at
the ends of the edge; since no reconstruction method can do well in the presence of strong saturation,
we did not pursue diameters larger than 800.) For each tree returned, we measured its RF error rate
(the percent of edges in error with respect to the true tree) and then averaged the ratios over the set of
test instances for each fixed parameter. We computed the ratio of the RF rate for our approach with that
for NJ on full genomic distances and with those for the three approaches with equalized gene contents,
binning the results into one “losing” bin (the other method did better), one bin of ties, and 5 bins of
winners, according to the amount of improvement. Not all 100instances are included in these averages,
because some instances had equalized gene contents of just 2or 3 genes and could not be run with
GRAPPA.

We present below a few snapshots of our results. Table 3.1 shows the results of using full genomic
distances forβ-split trees on datasets of diameters 200, 400, and 500, using 80% inversions. In this case,
no difference was found between the results returned by our LP-based method and those returned by NJ
using full genomic distances. The average RF error rate for MGR was 23% for diameter 200, 32% for
diameter 400, and 42% for diameter 500. As simple a method as NJ handily beats existing methods that
must rely on equalized gene contents, often by large factors(e.g., factors of 4 or more in 26% of the
cases with diameter 200 with respect to MGR). The reduction in error rate was sufficient in many cases
to turn unacceptable results (with error rates well in excess of 10%) into acceptable ones.

Experience with sequence data leads us to expect that an MP method, should do better than NJ when
the diameter and deviation from ultrametricity get large. Our LP-based approach is a hybrid: unlike an

42

Dataset NJ GRAPPA MGR
200 16-4-25-1-0 50 4 14-0-11-4-0 1 3 26-6-21-4-1 36 6
400 4-0-5-4-0 23 0 3-0-6-1-0 0 0 5-1-7-6-12 1 4
500 5-5-5-8-0 69 8 11-2-14-17-15 18 23 17-7-14-17-14 24 7

w t l w t l w t l

Table 3.1: The accuracy for NJ on full genomic distances and for three evolutionary diameters compared
to three methods on equalized gene contents. Column triplesshow wins, ties, and losses, in percent.
Quintiles in the winning columns denote error reductions byfactors larger than 4, 3, 2, 1.5, and 1.

MP method, it does not reconstruct ancestral labels, but like an MP method, it attempts to minimize the
total length of the tree; thus it should at least occasionally outperform NJ. We tested this hypothesis on
random trees and birth-death trees where, in both cases, we generated edge lengths by uniform sampling
from the set{1, 2, . . . , r}, for values ofr ranging from 20 to 100, still using 80% inversions. Tables 3.2
and 3.3 present the results, this time limited to the reference MGR and to the two methods using full
genomic data.

20 40 60 80 100
LP 0.9 8.0 7.8 6.0 26.0
NJ 0.5 8.5 8.7 9.5 25.5

MGR 11.3 31.8 34.0 35.0 49.0

Table 3.2: Error rates, in percent, on random trees for the two approaches using full genomic data and
for MGR on equalized gene contents.

20 40 60 80 100
LP 0.2 8.5 7.6 5.7 19.4
NJ 1.4 9.0 8.5 8.0 18.0

MGR 9.7 31.7 31.8 33.7 51.4

Table 3.3: Error rates, in percent, on birth-death trees forthe two approaches using full genomic data
and for MGR on equalized gene contents.

Both tables show gains for the LP-based method over simple NJas evolutionary rates increase, until
both methods start failing atr = 100. Note that the accuracy gains over MGR are consistently very
high.

Keeping the proportions of inversions to 80%, however, is neither very realistic, as gene duplications
and losses are presumably more frequent in nature than rearrangements, nor very challenging, as, given
a bounded set of possible gene choices, duplications and losses will saturate sooner than inversions. The
experiments of Swensonet al.[81] did not test low percentages of inversions, so we ran sets of tests with
20% inversions only, keeping all other relative percentages of events identical. Table 3.4 shows these
results. We were pleased, and somewhat surprised, to observe actual improvements in the quality of
trees for rates up tor = 40; the threshold effect tor = 60 corresponds to a type of saturation caused
by too many insertions and deletions. (Approaches with equalized gene contents are not reported, since
they failed completely, as expected.)

Finally, we reproduced the results of Earnest-DeYoung[31]on the dataset of 13 bacteria, with
genome sizes ranging from 1,000 to over 5,000 genes and gene families of up to 70 members, this
time without any special preprocessing, and using our LP-based approach rather than NJ. Once again
the resulting phylogeny is one SPR (subtree) move away from that of Lerat et al. The large disparity in

43

20 40 60 80
LP 3.8 3.0 21.0 37.8
NJ 3.1 4.9 18.9 33.7

Table 3.4: Error rates, in percent, on birth-death trees with only 20% inversions.

gene content between species in this dataset was handled automatically, for the first time for this dataset
(or, indeed, for any other set of cellular genomes).

3.4.8 Conclusion and Future Directions

We have outlined a method that accurately computes tree distances (true evolutionary distances) under
the full range of evolutionary operations between two arbitrary sequences. Our experimental results
indicate that the accuracy is excellent up to saturation, which is reached remarkably late—for instance,
with sequences of roughly 800 genes, our distance computation remains highly accurate up to 200–
250 evolutionary events. Indeed, these distances are accurate enough that the simple neighbor-joining
method applied to distance matrices computed with our algorithm reconstructs trees with high accuracy.
These findings open up the possibility of reconstructing phylogenies from whole-genome nuclear data,
as opposed to the organellar data that have been used so far. We’ve shown that the more sophisticated
LP method can utilize our distances better than the simple neighbor-joining procedure.

While our experiments show that our distance computation isaccurate, the accompanying scenario
of evolutionary events is only one of many possible sequences (it uses a “canonical form” [54]); hence
our level of confidence in the correctness of reconstructed ancestral sequences is low. In order to re-
construct good ancestral sequences, we will need additional biological information, such as boundary
constraints (centromere, origin of replication, etc.), length distributions, and sequence data around each
gene. Unfortunately, direct comparisons between the method of Chenet al. [26] and those of this section
are hard due to the fact that the Chen algorithm takes nucleotide sequences as input. The second half
of the algorithm works on two gene sequences where the numberof occurrences of a particular gene in
each genome is equal, but other than that their method is actually quite similar to ours. No study has
been done to discern whether the minute differences in our methods make any difference in distance
estimation or duplicate assignment.

44

3.5 Towards a Practical Solution to the One to Many DuplicateAssign-
ment (OtMDA) Problem

(Work in this section was joint work with Nick Pattengale)

Whereas many of the results earlier in this chapter showed that we can get close to the true pairwise
distance in the presence of duplicate and missing genes, in this section we show that some instances
of OtMCM can be solved optimally. If the particular optimal solution to OtMCM has no hurdles in it
— a fact that we can check in linear time [9] — then we know we also have a solution for OtMDA.
Fortunately, the results of Section 2 suggest that this would likely be the case, making a minimal solu-
tion for OtMCM a minimal solution for OtMDA. We conclude the section by giving a framework for
approximating OtMCM.

3.5.1 The Generalized Breakpoint Graph

We have seen in Section 1.2.1 that the basic structure describing a pair of sequences with no duplicates
and equal gene content is thebreakpoint graph(actually a multigraph). For this section, however, gene
families need not be singletons, so we generalize the construction to includeonlysingleton gene families
as follows. LetBGA,B denote the breakpoint graph for sequencesA andB. As with the normal
breakpoint graph, each singleton geneg in A becomes a pair of vertices,g− andg+ (the “negative”
and “positive” terminals); however, we leave out the gene families with multiple members, since only
the singletons have a readily usable structure. We need to accommodate gaps left in the sequence
where duplicate genes exist inA. Call the versions ofA andB without multi-gene familiesA′ andB′

respectively. We add an edge (adesireedge, in the charming terminology of [69])(x−, y+) for each
singletonx andy, wheneverx occurs immediately to the left ofy in B′. We add areality edge (also
known elsewhere as a black edge),(xp, yq) if x is the element to the left ofy in A′ and we have either
p = q if x andy have different parities (inA′, naturally) orp 6= q if x andy have the same parity. Thus
desire edges trace the (re-)ordering ofA that we need to achieve to matchB, while reality edges trace
the given ordering ofA. Figure 3.15 illustrates the construction.

A = (4 -3 2 3 1 6 9 3 8 -10 -7 9)

(a) the genomeA

Cycle A

Component 1

Cycle B

Component 2

= 2 1 84 60 −7 11

= 2 4 71 60 11

−10

108

Cycle C

0+ 1− 1+2− 2+4− 4+ 6− 6+ 7−7+8− 8+ 10+10− 11−

A′

B′

(b) the breakpoint graphBGA,B

Figure 3.15: A genomeA and its associated breakpoint graphBGA,B (with respect to the identity
permutationB) after genes from families with duplicates (3 and 9) are removed; desire edges are shown
in gray, reality edges in black.

45

addd β+(d) β−(d) d+ d− β+(d) β−(d)

addd
β+(d)β−(d)

d+ d− β+(d)β−(d)

(a) a subgraph ofBGA,B before
addingd; the dashed line is the
desire edge that will be split

(b) the two possibilities after
addingd

Figure 3.16: Adding an elementd to a breakpoint graph.

3.5.2 The Consequences of An Assignment

Our job of assigning duplicates may be compared to that of reshelving books in a library with unlabeled
shelves. Each book has a proper location on a shelf and multiple copies of a book must be shelved to-
gether. A librarian can proceed by first removing misshelvedbooks and then identifying the appropriate
location of each book based on the context of the books that remain in their correct spot.

In our problem each multi-gene family has been removed from the ordering, leaving a structure of
cycles defined by singleton genes. We call each gene in a multi-gene family ofB a candidate, since
it is one of the choices for a duplicate assignment to a corresponding gene inA. Like each book in
the library, each candidate has a location between two remaining elements inB′; each family, like each
group of book copies, contains candidates that all share thesame destination (when sorted) between
elements ofA. For each candidated, denote byβ+(d) the positive terminal of the next smaller (in
value) element inBGA,B and byβ−(d) the negative terminal of the next larger element. We call these
vertices thebookendsof d and the cycle on which they reside theshelf of d. For instance, in Figure 3.15,
the bookends for the family of gene3 (a family of 3 members) are2+ and4− and therefore the shelf for
the family of3s is cycleA. Although the definition of bookends applies equally well tosingletons, we
are only interested in bookends for candidates: bookends are part of the breakpoint graph, but candidates
are not, since multi-gene families do not appear in the breakpoint graph.

Once we have chosen a candidate, the candidate and its matching gene inA effectively form a
singleton gene family, so we can add the candidate to the breakpoint graph. The consequences of that
choice are summarized in the following easy lemma, which underlies many of our results.

Lemma 3.5.1.When a candidated is chosen, exactly two edges are affected: the reality edge that spans
the location whered is added and the edge between its bookends.

Proof. Refer to Figure 3.16. Addingd to BGA,B splits the reality edge that spans the location where
d is added, creating two new endpointsd+ andd−, as well as splitting the desire edge that linksβ+(d)
andβ−(d) to meet each ofd+ andd−.

We say that a candidated is addedon-cycleif, once added, it lies on its own shelf; otherwise it is
addedoff-cycle. The following is an immediate consequence of Lemma 3.5.1.

Lemma 3.5.2. When a candidate is added off-cycle, two cycles get joined.

3.5.3 The Cycle Maximization Problem

We have formulated duplicate assignment as two optimization problems (OtMDA or MtMDA): choose
an assignment of duplicates that maximizes the number of cycles in the resulting breakpoint graph (that

46

118 −7−10
10+ 10− 11−

9
8+8−9+9−

6
6+ 7+ 7− 7+ 7− 9− 9+ 11−6+

−10 9−7 116 8
8+8− 10−10+

Figure 3.17: Breakpoint graphs corresponding to choice of one of two candidates for gene9 on cycleC.

0+
4−

2+

1−

2−

1+

4+

6−
8+

11−

8−

7−

7+

6+

10+

10−

Cycle CCycle B

Cycle A

Figure 3.18: The breakpoint graph of Figure 3.15 inscribed in three circles (cycleD is not shown).

is, BGA,B to which the chosen candidates have been added). Note that the order in which the chosen
candidates are added does not affect the structure of the resulting breakpoint graph.

Consider cycleC in Figure 3.15. This cycle is associated with the subsequence(6, 9, 8,−10,−7, 9, 11),
which contains two occurrences of gene9; thus we must choose which of these two occurrences to call
the match of gene9 in B. Figure 3.17 shows the augmented breakpoint graphs resulting from each
choice of candidate. The graph on the left, where we chose thecandidate between6 and8, has one more
cycle than the graph on the right, where we chose the candidate between−7 and11, and is thus the
better choice.

As we’ve seen, the choice of a candidate is advantageously viewed on a breakpoint graph inscribed
in a series of circles, one for each cycle in the graph. We embed each cycle ofBGA,B in a circle
by choosing any start vertex and then following the cycle. Figure 3.18 shows three of the four cycles
of Figure 3.15 inscribed in three circles. Returning to the two possible duplicate assignments shown
in Figure 3.17, we can look at the inscribed versions of thesegraphs, as illustrated in Figure 3.19(a).
Choosing candidates adds edges across the circle, edges that may cross each other, depending on the
parity of the candidates and the locations of their bookends. The effects on the graph can be represented
in just onecircle-drawing, as shown in Figure 3.19(b). In this representation, we denote the two choices
by drawing two curved line segments, both originating on theperimeter between the bookends10− and
8+ and each ending between the two terminals of the corresponding candidate. Choosing the candidate
between6+ and 8− gives rise to desire edges that do not cross in the inscribed representation; we
represent such choices with solid lines. The other candidate, between7− and11−, does give rise to
crossing desire edges; we represent such choices with dashed lines.

These curved lines represent assignmentoperations; we will call an operation represented by a solid
line astraightoperation (because it does not introduce crossings) and onerepresented by a dashed line
a crossoperation. The collection of all operations that share an endpoint represents all members of a
gene family fromA, so we also call it afamilyand call its common endpoint (between the bookends and
represented by a solid disk on the periphery of the circle in the figures) thefamily home. We can now
state the three constraints for our optimization problem:

1: Each family home is a distinct point on the circle.

2: The family home is not the endpoint of any operation not in that family.

3: The other endpoint of each operation is unique to that operation.

The objective to be maximized is the number of cycles. Figure3.20 shows the operations for each of the

47

7+

8+

11−

7−

8−

7+

11−

6+

10−

10+

9−

6+

9+
8−

9+
9−

7− 10+

8+

10−

7+

11−

8−

7−

6+

10−

10+

8+

(a) the graphs of Figure 3.17 inscribed
in circles

(b) the two choices of
part (a)
superimposed

Figure 3.19: How the cycle splitting problem can be inscribed in a single circle.

0+
4−

2+

1−

2−

1+

4+

6−
8+

11−

8−

7−

7+

6+

10+

10−

3 9

Figure 3.20: The operations that represent the gene families for our running example.

gene families from our running example. Operations that cross cycles are off-cycle and therefore will
join cycles.

Figure 3.21 shows a single cycle and its operations for the simplified (“one-to-many”) case where
B has only singletons and for the general (“many-to-many”) case where bothA andB have multi-gene
families. (The case where two multi-gene families have the same bookends can be handled because the
relative location of the bookends does not change.) In the general case we have multiple homes per
family, with one additional constraint:

4: Each home in the same family must connect to all of the same endpoints.

The problem thus becomes picking as many operations as thereare homes per family such that the
cycle count is maximized. The only additional complicationis that applying an operation removes that
operation from consideration in all other homes for its family (as required by the fourth constraint).

Straight and cross operations display a form of duality thatsuggests we can focus on straight opera-
tions alone.

Theorem 3.5.3. Applying a cross operationc converts all operations that intersectc (call the set of
such operationsI) to their complement—crosses are replaced by straights andstraights by crosses.

(a) a one-to-many instance (b) a many-to-many instance

Figure 3.21: Examples of circle-drawings for the simplifiedcase (left) and the general one (right).

48

c c
3 4

5 6

1
2

7 8

56
4

7 8
2 1

3

(a) drawn on the
circle as usual

(b) zooming in
on each
operation

(c) after
applying cross
operationc

(d) result
redrawn on the
circle

Figure 3.22: Illustration for Theorem 3.5.3. Labels for thepoints along the circle are numbered.

���
���
���
���

���
���
���
��� ������

���
���
���
���1 2

3
4

c

���
���
���
��� ��

��
��
��

������
����

1 2

4
3

(a) before
application

(b) after
application

Figure 3.23: Applying cross operationc.

Furthermore, for any two operations inI, if they intersected before applyingc, then they no longer do
after applyingc, and vice versa.

Proof. We sketch the proof graphically, using Figure 3.22, a typical situation where three operations,
two of which are crosses, one a straight, overlap each other.The cross operation shown in parts (a) and
(b) twists, but does not break the cycle, as shown in part (c).If we redraw the cycle inscribed neatly in
a circle, we find we must reverse the indices on half of the cycle; Figure 3.22(c) shows the result after
reversing indices on the bottom half of the cycle. Intersecting operations no longer intersect and the
identities of the operations have been inverted.

Figure 3.23 shows the implications of Theorem 3.5.3 in a morecomplicated setting.

3.5.4 Buried Operations

An operation makes no contribution to the cycle count of a complete assignment if the two new desire
edges it creates lie on the same cycle. In Figure 3.24, the choices of candidates for the gene families are
indicated in the breakpoint graph on the left and shown as operations in the inscribed representation on
the right.

In Figure 3.25, we show again the three operations depicted in Figure 3.24(b), but this time only
the three operations and the resulting two cycles are shown.Note the operation corresponding to gene
family 2 (shown as a heavy curve): the curved edge is bounded on each side by the same cycle; we say
that such an operation isburied. Since the two desire edges created by this operation lie on the same
cycle, the operation does not increase the number of cycles (in fact it actually reduces the number of
cycles, which stood, in this particular example, at3 after operations−6 and−4).

Theorem 3.5.4.If a duplicate assignment creates a total ofb buried edges, then the number of cycles is
bounded bya − b + 1, wherea is the number of cycles present in the breakpoint graph induced by the
shared singleton genes plus the total number of duplicate assignments to be made.

49

5−3
5−3−3+ 1− 1+5+

1
2 −4−6

0+ 7−

5−

3−3+

1−

5+

1+

2

−4

7−

0+

−6

(a) the breakpoint graph (b) the inscribed version
of BGA,B

Figure 3.24: An example withA = (2 -3 4 -6 5 -4 -2 6 1). Chosen duplicates are shown in grey.

Figure 3.25: The cycle and the operations; operation “2” (the heavy curve) is buried.

Proof. The number of cycles cannot exceedn + 1, since each duplicate assignment can give rise to at
most one new cycle. Consider the effect on the breakpoint graph of choosing an operation: a single
desire edged is replaced with two desire edgesd′1 andd′2, and a single reality edger is replaced with
two reality edgesr′1 andr′2. By construction,d′1 andd′2 each inherit one of the original endpoints ofd;
similarly, r′1 andr′2 each inherit one of the original endpoints ofr. By assumption, the chosen edge is
buried, so thatd′1 andd′2 lie on the same cycle; therefore so do all of the original endpoints ofd andr.
Thus all of the newly created edges must lie on a cycle that already existed. Since this is true of any
buried operation, every one of the buried operations decreases by one the maximum number of attainable
cycles.

3.5.5 Chains and Stars

There exist two patters of straights that, while need not contain buried operations, nevertheless impose
sharp bounds on the number of cycles. Ak-chain (for k ≥ 3) is an assignment in whichk operations
form a chain, that is, each chosen operation overlaps two of the otherk, its predecessor and successor
around the circle. Figure 3.26(a,b) illustratesk-chains. Ak-star (for k ≥ 1) is an assignment in which
k operations form a clique (each overlaps every other). Figure 3.26(c,d) illustratesk-stars.

Remark 3.5.5. For any integerk ≥ 1 (but recall thatk-chains are only defined fork ≥ 3), we have:

1. ak-chain has no buried operations;

(a) a 4-chain (b) a 5-chain (c) a 3-star (d) a 4-star

Figure 3.26: Some examples of stars and chains.

50

������

���
���
���
���

���
���
���
��� ������

����

����

���
���
���
���

������

���� ���
���
���
���

��
��
��
��

������

1 2 3 5 6 74

1

3

6

���
���
���
���

������

���
���
���
���

������

������

������

72 4

5

(a) operations indicated by heavy
lines (and arrows) are those chosen
to produce the reduced form of part
(b)

(b) the resulting reduced instance;
heavy edges will produce an
optimal solution to the reduced
instance

Figure 3.27: Creating a reduced instance and solving it.

2. in ak-chain withk odd, the cycle count is2;

3. in ak-chain withk even, the cycle count is3;

4. in ak-star withk even, every operation is buried and the cycle count is1;

5. in ak-star withk odd, no operation is buried and the cycle count is2.

We conjecture that these two patterns, along with buried operations, describe all operations that may
reduce the number of straights that do not create a new cycle.

3.5.6 Reduced Forms

A serial assignment procedure could reach a state in which nooperation remains that could split a
cycle. We call such a state areduced formof the instance. In a reduced form, an instance is composed
of multiple cycles linked by the operations from the remaining families. This structure lends itself
naturally to a graph representation; an analysis of this graph reveals conditions under which optimality
can be verified.

Theorem 3.5.6. After applying a maximal nonoverlapping set of straight operations M , remaining
operations can only (by themselves) join two cycles.

Proof. The application of a set ofk nonoverlapping straights always yieldsk new cycles, each separated
from the others by two adjacent operations or, in the case of an outermost cycle, by one operation that
separates it from all others. SinceM is maximal, every remaining operation from every family overlaps
an element ofM . Application of anym ∈ M , therefore, must span two of the new cycles, joining them
into one.

Figure 3.27(b) shows the reduced instance induced by applying each of the (straight) operations
chosen in Figure 3.27(a). We are left with a reduced form thatcan be viewed as a graph where the
vertices are the cycles created so far; but because that graph is embedded in the plane, the edges incident
on a vertex are strictly ordered, in distinction to a normal graph.

We can now take advantage of graph properties such as planarity, cycles, and connected compo-
nents. Because of the ordered nature of the edges incident upon a given vertex, planarity is somewhat
specialized in our case: nonplanar edges can occur in simpler situations than in general graphs, as shown
in Figure 3.28(c). Cycles again play a vital role in these newgraphs. If we restrict our attention to planar
graphs, we can look at the elementary cycles (those that delimit an inside face of the planar embedding)
and obtain directly the value of an optimal solution. As shown in Figure 3.28, each connected compo-
nent produces a cycle around its outer hull (one of the cyclesfor the outer face of the planar graph).

51

��
��
��
��

��������
��
��
��

������

��
��
��
��

������
��
��
��
��

��
��
��
��

������

��
��
��
��

������

���
���
���
���

(a) the effect of
applying
an operation between
two circles

(b) a reduced form:
lines trace the cycles
created by the operations

(c) adding a “nonplanar”
operation to the reduced
form from (b) joins the
cycles

Figure 3.28: The effect of choosing operations on a reduced form.

1

3

6

��
��
��
��

���
���
���
���

��
��
��
��

������

������

������

72 4

5

����

���
���
���
���

������
������

��
��
��
��

����

1 2 3 5 6 74

(a) the solution embedded
through a reduced form

(b) the circle-drawing of the
solution

Figure 3.29: An optimal solution to the reduced instance in Figure 3.27

Each elementary cycle yields another cycle to its inside. Figure 3.28(c) shows how nonplanar edges can
join these two cycles.

Theorem 3.5.7.The number of cycles in a solutionS to a planar reduced instance withm elementary
cycles andcc connected components isR(S) = m+ cc (m is the cycle rank ofS).

Proof. This certainly holds for a reduced instance with no operations. AssumeR(S) = m + cc for
a particular instance and solution, then look at the effect of adding another edge. If that edge links
two previously disconnected components, then the cycles around the hulls of these components will get
merged, removing a cycle and a connected component. If that edge links two connected components,
then an elementary cycle will be created. Since the edge added is planar, we know that the same cycle
runs past both endpoints of the operations and thus the operation will split it.

It remains to relate results on reduced forms back to the original inscribed breakpoint graph for-
mulation; we illustrate the process in Figure 3.29, where the left part shows the solution obtained on a
reduced form and the right part shows the corresponding solution inscribed in the circle.

3.5.7 An Approximation Framework

We evaluate a solutionS against an optimal solutionO for a particular instance. Callhpc(S) the number
of breakpoint graph cycles created for a solutionS so that the approximation ratio for the algorithm that
creates solutionS is hpc(S)

hpc(O) . Call the maximum set of non-overlapping operations (for the circle-drawing
of the instance) in the solutionS∗ ⊆ S and the same in the optimalO∗ ⊆ O. We continue by comparing
the score given for the reduced form induced byS∗ andO∗.

Properties of Solutions

In this section we show that a solution with a maximum number of connected components (in a reduced
form) will be no worse than half the optimal. Theorem 3.5.7 ishelpful if a solutionS happens to be

52

planar (in our peculiar way, where the edges incident to a particular vertex have a fixed ordering). We
can turn the formula of Theorem 3.5.7 into an inequality where we ignore the effect (on the score)
introduced by non-planar edges:

Theorem 3.5.8.cc ≤ hpc(S) ≤ m+ cc wherecc is the number of connected components in a solution
S andm is the cycle rank ofS.

Proof. The lower bound comes from the fact that, as noted earlier, each component of the solution
represents at least one cycle. Now we prove the upper bound:

Take the maximum cardinality planar subgraphP of S and the score of that subgraphhpc(P) =
mP + ccP . Trivially, we know thatcc = ccP . Call the set of non-planar edgesN = S \ P . Each edge
in N will add one to the cycle rank som = mP + |N |. Each edge ofN must span two elementary
cycles inP . Take a maximum subset of those edgesN∗ ⊆ N such that no two edges inN∗ span the
same two cycles. Each edge inN∗ will join the two elementary cycles into one so we havehpc(S) ≤
cc+mP−|N∗|+|N\N∗|. SincemP−|N∗|+|N\N∗| ≤ mP+|N | = mwe havehpc(S) ≤ cc+m.

The inequality in the above formula arises from the fact thatonly a subset of the edges inS \ P
can positively contribute tohpc(P). This formula provides us a way to compare solutions without
worrying if a solution is planar or not; at first glance it saysthat if we maximize the number of connected
components inS we are within somem of the optimal. Thatm is at mostn−|O∗| wheren is the number
of families so any solution that maximizes the number of connected components would be no worse than
m = O(n) from the optimal. This does not appear to help since the distance between two permutations
isO(n).

However, it is well known that a graph with cycle rankm, v vertices, ande edges hascc = v−e+m
connected components. Thus we can find a version of Theorem 3.5.8 that suites us.

Corollary 3.5.9. v − e+m ≤ hpc(S) ≤ v − e+ 2m

This is interesting because it relatesm and2m. Indeed, if we were to find a solution with maximum
v−e+m we would be within half of the optimal solution. Apparently,the non-planar factor can detract
at mostm from a solution. We proceed to show that whencc is maximized to obtain a solutionS,
m ≤ cc and thus the optimal solution is at most doublehpc(S). . .

Theorem 3.5.10.For a solutionS wherevS−eS+mS (in the reduced form induced byS∗) is maximum
and an optimal solutionO (with vO,eO,mO) it must be that2hpc(S) ≥ hpc(O), providedvO − eO ≥ 0
or vS − eS ≥ 0,mO ≥ mS .

Proof. By Corollary 3.5.9, we know thathpc(S) is at leastvS − eS + mS , so we have2(vS − eS +
mS) ≤ 2hpc(S). Also by Corollary 3.5.9, we havehpc(O) ≤ vO − eO + 2mO, which (because when
vS−eS+mS is maximum so is2(vS −eS+mS)) is no greater than2(vS−eS+mS) provided we have
vO−eO ≥ 0 or vS−eS ≥ 0,mO ≥ mS. We concludehpc(O) ≤ vO−eO+2mO ≤ 2(vS−eS+mS) ≤
2hpc(S).

3.5.8 Conclusion

We have described a graph-theoretical framework in which torepresent and reason about duplicate
assignments and their effect on the number of cycles presentin the resulting breakpoint graph. We
have given some foundational results about this framework,including several that point us directly to
to algorithmic strategies for optimizing this assignment.We believe that this framework will lead to a
characterization of the duplicate assignment problem as well as to the development of practical algo-
rithmic solutions. We showed that this framework gives an avenue that could lead to an approximation
algorithm for certain classes of instances of OtMCM and MtMCM. We will see in the next section that
the work here also leads to NP-Hardness results.

53

3.6 NP-Hardness Proof for OtMCM, MtMCM, RDD, OtMRD, and MtMR D

We have seen that a choice of a duplicate has the effect of splitting and joining the cycles of the break-
point graph; in order to minimize the distance, we choose duplicates so as to maximize the number of
cycles. We show that One-to-Many Cycle Maximization (OtMCM) is NP-Hard by a reduction from a
restricted version of 3-Dimensional Matching (called Triangle Matching). We conclude the section by
showing how this powerful reduction extends to MtMCM, RDD, OtMRD, and MtMRD.

3.6.1 Triangle Matching

We pose a restricted version of the 3-Dimensional Matching (3DM) problem (called “Triangle Match-
ing” or TriM) as a graph problem on colored vertices. Note that the input to TriM is restricted in our
presentation to only chordal (triangulated) graphs; this restriction is imposed only for ease explanation
since the two reductions that follow carry through even whenthe input is a general graph on colored
vertices.

Input: A chordal (triangulated) graphG = (V,E) such thatV = X ∪ Y ∪ Z (X,Y , andZ are the
colored sets) andX ∩ Y = X ∩ Z = Y ∩ Z = ∅.
Output: A set of triangles{(x, y, z) | (x, y), (y, z), (x, z) ∈ E for x ∈ X, y ∈ Y, z ∈ Z} such that
every vertex exists in exactly one triangle.

The difference between TriM and 3DM is subtle; TriM is the version of 3DM suitable for drawing
on a page. Figure 3.30 shows an instance of 3DM where an unintended triple is produced from three
other triples when drawn on a page. Since TriM is a graph problem this case is built into its structure so
there is no such thing as an “unintended triple”.

y’

z

x’ z’

x

y

Figure 3.30: An instance of 3DM with triples{(y, z, x), (z, x′ , y′), (x, y′, z′)} that can’t be represented
by a graph. The dotted triple(z, x, y′) is an unintended byproduct of the other three.

Theorem 3.6.1.TriM is NP-Hard.

Proof. The standard reduction from 1in3SAT to 3DM (see [39]) can be directly applied to TriM so as to
show it NP-Hard.

3.6.2 Preliminaries

Section 3.5.3 describes the terminology and concepts that we use to reason about the cycle maximization
problems. A consequence of Lemma 3.5.1 is that a cycle can be split into two if the orientation (sign) of
the chosen candidate is correct. Without loss of generality– as we later see – we can consider only those
instances that are a single cycle. Thus, the choice of a candidate is advantageously viewed on a graph
inscribed on a circle; a problem instance of OtMCM can be given by a circle-drawing Figure 3.21(a).

Our reduction will rely heavily on the fact that we can createa permutation that yields a desired
configuration of separate cycles. As depicted in Figure 3.31, we can include, in a constructed instance
to OtMCM, single operation families (no choice is allowed) that start us off in a desired configuration.
So each single operation family would be its own cycle-vertex. Note that operations that exist between
cycle-vertices now link the cycle-vertices creating a situation where the two breakpoint graph cycles are

54

(a) the gray operations induce a
particular instance

(b) the induced instance with three
cycle-vertices

Figure 3.31: Creating a three cycle instance of OtMCM.

X Y

Z 6

2

1 3

4

5

X Y

Z 6

2

1 3

4

5

(a) length 3 cycles from TriM are
(1,3,5), (1,4,5), (2,3,5), (2,3,6)

(b) a solution tok-OtMCM
(dark edges are chosen candidates)

Figure 3.32: An instance of TriM converted tok-OtMCM.

joined into one. Figure 3.33 and Figure 3.28 give the reader afeel for the effect of linking cycle-vertices
by edges.

3.6.3 TriM to OtMCM

We reduce TriM to OtMCM through the decision version of OtMCMcalledk-OtMCM. k-OtMCM asks
the question: “can we find a solution for OtMCM that yieldsk cycles”. k-OtMCM reduces to OtMCM
because the number of cycles in a solution to OtMCM, of course, can be compared tok to obtain an
answer tok-OtMCM. We assume that the number of vertices in a TriM instance is divisible by three
because we can immediately return “no” if it is not.

Setup

We say that a cycle-vertexA links toanother cycle-vertexB if there exists a candidate from a family on
A which connects toB. We convert an instance of TriM to an instance ofk-OtMCM. For eachv ∈ V
we create a separate cycle-vertexc(v) ∈ C using the method described in Section 3.6.2.

Cycles are linked based on the edges inE. Eachc ∈ C has a single family associated with it where
candidates from it will connect. For each edge(a, b) ∈ E we create a candidate linkingc(a) to c(b)
where (a ∈ X andb ∈ Y) or (a ∈ Y andb ∈ Z) or (a ∈ Z andb ∈ X). This construction results in
a setup where all cycle-vertices representing elements ofX link only to elements ofY , elements ofY
link only to elements ofZ, and elements ofZ link only to elements ofX. The possible configurations
of solutions that satisfyk-OtMCM, as we will see, is thus very limited. Figure 3.32 shows an instance
of TriM that has been converted tok-OtMCM and one choice of candidates thatk-OtMCM might take.

A key notion is summarized in the following remark (illustrated in Figure 3.33). . .

Remark 3.6.2. Two cycle-vertices bridged by a candidate cannot create a new cycle. Three cycle-
vertices linked in a triangle, however, combine to form a newcycle.

55

��
��
��
��

����

����

����

(a) Three cycles to be
joined by straight
operations.

(b) One cycle (strong
black) exists when two
are joined.

(c) A new cycle (dotted) is
created once all three are
joined.

Figure 3.33: The effect of choosing candidates across cycles.

Limitations on Structure

As stated, the structure of feasible solutions that satisfyk-OtMCM is greatly limited by our construction.
We explore these limitations here by viewing our instance ofk-OtMCM as a graph where the cycle-
vertices inC are the vertices and the edges are dictated by the candidatesthe obvious way. This is done
so that we can use the termspath, cycle, andconnected componentin the expected manner on this meta
graph (the word cycle no longer refers to the cycles in the HP graph unless explicitly noted).

The most important corollary of our construction deals withits inherent “directionality”. When
inspecting a solution to ourk-OtMCM instance we can start at a cycle-vertex inC and follow the
candidate from its associated family; from the cycle-vertex that we next reach we can follow its candidate
and so forth. Without loss of generality we call this movement clock-wise (and movement in the opposite
direction counter clock-wise); this matches the way we havedrawn the example in Figure 3.32.

We restate Theorem 3.5.7. . .

Theorem 3.6.3.The number of breakpoint graph cycles in a planar solutionS withm elementary cycles
andcc connected components ishpc(S) = m+ cc (m is the cycle rank ofS).

The following lemmata refer to properties ofk-OtMCM instances that have been reduced from
TriM. . . .

Lemma 3.6.4. Any clock-wise path on a connected component in a solution must terminate at a cycle.

Proof. If this is not true then there exists a cycle-vertex that terminates a clock-wise path. This is a
contradiction because every cycle-vertex has at least one candidate coming from it and there are a finite
number of cycle-vertices (|V | is finite).

Lemma 3.6.5. Every connected component in a solution must have exactly one cycle.

Proof. A consequence of Lemma 3.6.4 is that every connected component must have at least one cycle.
Assume that there is more than one cycle in a connected component: starting from a cycle-vertex on
one cycle we must be able to follow a clock-wise path from it toanother cycle. This is a contradiction,
however, because the clock-wise degree of any node is 1.

Lemma 3.6.6. The length of all cycles in a solution must be a multiple of 3.

Proof. By our construction a cycle-vertex forX only links to a cycle-vertex forY , a cycle-vertex forY
only links to a cycle-vertex forZ, and a cycle-vertex forZ only links to a cycle-vertex forX. So every
cycle is a multiple of 3.

Lemma 3.6.7. All feasible solutions tok-OtMCM must be planar.

Proof. This is a direct consequence of Lemma 3.6.5.

56

Mapping the Solution

We know from Lemma 3.6.5 and Lemma 3.6.6 that the candidate assignment given byk-OtMCM will
be comprised of connected components with a single cycle that posses length that is a multiple of 3. We
setk = |V |

3 2. . .

Lemma 3.6.8. With k = |V |
3 2, k-OtMCM can be satisfied if the candidate assignment is comprised of

only length 3 cycles.

Proof. From Lemmata 3.6.5 and 3.6.6 we know that there exists no component of size less than 3. Since
every feasible solution tok-OtMCM is planar (Lemma 3.6.7), we know the number of breakpoint graph
cycles can be calculated from the number of connected components and cycle rank by Theorem 3.6.3.
By Lemma 3.6.5 that formula can be simplified, in our case, to be hpc(S) = 2cc. Since the number
of splits created is related only to the number of connected components and the number of connected
components will be maximized when they are all of minimum size, we know that the maximum number
of splits occurs when a solution is comprised of only length 3cycles. The Lemma follows immediately
from the fact that the greatest number of length 3 cycles possible is |V |

3 (yielding |V |
3 2 breakpoint graph

cycles).

Theorem 3.6.9.OtMCM is NP-Hard.

Proof. It is straightforward to see that by construction, and Lemma3.6.8,k-OtMCM will give a solution
with disjoint triangles of cycle-vertices if and only if there exists a partition of the vertices for TriM into
disjoint triangles. As previously noted,k-OtMCM is NP-Hard implies OtMCM is NP-Hard.

3.6.4 TriM to MtMCM, ERD, OtMRD, and MtMRD

It follows immediately from Theorem 3.6.9 that MtMCM is NP-Hard. The same reduction can be used
to show OtMRD — and hence, RDD and MtMRD — to be NP-Hard as long as no hurdles are created
in the breakpoint graph implied by a feasible solution to OtMCM. We show that any instance with a
feasible solution containingcc cycles and some hurdles can be converted into an instance with cc cycles
and no hurdle (hurdles can be detected in linear time).

Notice that our reduction used only straight operations. A straight associated to an element with a
particular sign will be a cross when the element has the opposite sign (see Section 3.5.3). For a particular
feasible solution to OtMCM that has bad components, we can simply change two straight operations on
the cycle (we know there is one by Lemma 3.6.5) of each bad component to a cross. Since this entails
flipping the sign of two elements in the permutation we know that each such component will now have
two elements of opposite sign to the others and hence, will begood (see the definition of bad component
in Section 2.1). The number of cycles will remain the same (imagine the analogue to Figure 3.33 that
possesses two cross operations).

57

58

Chapter 4

Reconstructing Ancestors

Suppose that a set of extant species have evolved so that the phylogenetic relationship between these
species can be represented by a binary tree. A toy example of one such phylogenetic tree is in Figure 4.1.
The problem of ancestral reconstruction calls for us to label the internal nodes of this tree with the states
of the genome just prior to each speciation event. In the traditional approach of Tesler and Pevzner
[88], one of many so-called median permutations is taken to be the ancestor permutation. To this end,
in Section 4.1 we introduce a fast heuristic to speed up and improve the median score of the most
commonly used median algorithm. In Section 4.2 we introducea new and powerful means to accurately
compute ancestral permutations.

4.1 Noninterfering Inversions

(This is joint work with Jijun Tang and William Arndt)

Phylogeneticists have sought to exploit the advantages of gene-order data (no need for reconcilia-
tion of gene trees, very little saturation, existence of rare events that uniquely characterize some very
old divergences, etc.), but have had to contend with the highcomputational complexity of working with
such data. Of particular interest in a phylogenetic contextis the problem of finding the median of three
genomes, that is, finding a fourth genome that minimizes the sum of the pairwise distances between
it and the three given genomes [67]. This problem, while being fairly easy for aligned sequence data,
is NP-hard for gene-order data [23, 63]. Since phylogeneticreconstruction based on reconstructing
ancestral states may need to compute such medians repeatedly, fast approximations or heuristics are
usually needed, although exact methods have done well for small genomes (from organelles, for in-
stance) [57, 70]. One such heuristic, implemented in the popular software MGR [88], attempts to find a
longest sequence of inversions from one of the three given genomes that, at each step in the sequence,
moves closer to the other two genomes. However, nothing is know about the theoretical behavior of this
heuristic and no systematic experimental investigation ofits usefulness has been conducted. Recently,

Figure 4.1: A phylogenetic tree. The ancestral (internal) node labels are bold.

59

Figure 4.2: The breakpoint graphG(π = (-6 -4 -2 1 -3 -5)).

Arndt and Tang [7] provided significant improvement on this heuristic by considering sets ofcommuting
inversions, that is, inversions that can be arbitrarily reordered among themselves without affecting the
end result.

In this section, we show that finding maximum cardinality sets of commuting inversions is equivalent
to finding maximum independent sets on circle graphs and so can be done in low polynomial time—we
give a simple algorithm for this purpose. We also shed light on the relationship between maximal sets of
noninterfering inversions and independent sets on circle graphs. We further classify sets of commuting
inversions intointerfering and noninterfering inversions, wherenoninterfering inversionsare commut-
ing inversions that also make maximal progress (e.g., towards a median). Finally, we characterize the
relationship of sets of noninterfering inversions to signatures and that of signatures to inversion medians.

For most of the section, we show how to analyze single permutations in terms of commuting and
noninterfering inversions; in Section 4.1.4, we show how toextend the analysis to multiple permutations.

4.1.1 Definitions

In this section we use extensively the fundamental definitions from Section 1.2.

Commuting and Noninterfering Inversions

Depicted in Figure 4.2 is the breakpoint graph that we will use for our running example in this section.
Cycle-splitting inversions on this graph are of particularinterest to us because, in the absence of hurdles,
they are the inversions that moveπ one inversion closer to the identity. A set of cycle-splitting inversions
on a permutationπ arecommutingif and only if the application of them in any order yield the same
permutationτ .

Definition 4.1.1. A set ofm inversions onπ (with respect toτ) is noninterferingif and only if

1. the set is commuting; and

2. applying these inversions in any order movesπ closer toτ bym inversions.

Example 4.1.2.For π = (−6−4−21−3−5) a maximum cardinality set of commuting inversions is
{ρ(1, 1), ρ(1, 4), ρ(1, 5), ρ(1, 6), ρ(2, 3), ρ(3, 3), ρ(4, 4)} while a maximum cardinality set of noninter-
fering inversions is{ρ(1, 1), ρ(1, 2), ρ(1, 4), ρ(4, 4)}.

Edit Partial Orders and Inversion Signatures

We informally introduce some notions here that are used heavily in the Section 4.2. Recall that anedit
scenariois a minimum-length sequence of inversions that turnπ into, say,τ . The edit partial order
(EPO), then, is the graph of all edit scenarios betweenπ andτ ; the permutations are vertices and edges
link those permutations one inversion away from each other.The intersection of all EPOs from a set of
permutationsP to permutationτ is thesignature graphand any vertex (permutation) in this graph is an
inversion signature. See Definition 4.2.1 for a more formal treatment.

60

So a set of noninterfering inversions of sizem constitutes a subgraph of the signature graph of size
∑m

i=0

(m
i

)
= 2m. This motivates our use of noninterfering inversions for fast computation of inversion

signatures; experiments in Section 4.2 confirm that this method is often faster that other known methods.

Circle Graphs and Permutation Graphs

When a set of chords is drawn so that each endpoint of the chordlies on a circle we have achord
modelof a circle graph. Thecircle graphrepresents the intersection of these chords where each vertex
corresponds to a chord and each edge corresponds to intersecting chords [36]. For a permutation we can
define apermutation graphas follows. Each vertex is an element of the permutation and an edge(u, v)
exists if and only ifv > u andv appears to the left ofu in the permutation [37]. It is simple to see that
a permutation graph is a circle graph.

4.1.2 Maximum Sets of Commuting Inversions

We now show how to find a maximum cardinality set of commuting inversions efficiently, omitting
proofs due to space limitations. We can interpret the indices of an inversion to be indices of an interval
on a line. Two intervalsoverlap if and only if they are disjoint or if one is contained inside the other,
and two intervals that share the same endpoint do not overlap. In this way each oriented inversion of
π could be mapped to an interval yielding a set of intervals, some of which overlap and some of which
may meet at an endpoint.

Lemma 4.1.3. A setC of inversions commute if and only if no two inversions fromC overlap.

Thus, we have a set of intervals that when projected onto a circle yield a chord model of a circle
graph [40]. Call this circle graphGC . See Fig. 4.4(a) for an example of such a graph. It is clear that
a maximum independent set ofGC corresponds exactly to a maximum independent set of commuting
inversions. With the use of theO(n) algorithms by Bader et al. [8] to build the HP-graph and theO(n2)
algorithm of Valiente [89] for maximum independent set on a circle graph, we get the following theorem.

Theorem 4.1.4.A maximum cardinality set of commuting inversions can be found inO(n2) steps.

4.1.3 Maximum Sets of Noninterfering Inversions

In this section we show how to relate the problem of finding a set of noninterfering inversions to finding
an independent set on the union of two circle graphs.

Since a set of noninterfering inversions is also a set of commuting inversions, the constraints ofGC

(from Section 4.1.2) will have to be satisfied. Additional constraints must be introduced to ensure that
the set of commuting inversions that are picked also sort thepermutation, call the graph representing
these constraintsGS . We will see that these intricate interactions can also be represented by a circle
graph; first this is shown for a component that can be represented by a single cycle in the breakpoint
graph and then is generalized to any permutation.

Single Cycle Components

One important property of commuting inversions is that the application of one inversion can not disturb
the orientation of an inversion it commutes with.

Lemma 4.1.5. Given mutually commutative oriented inversionsρ(i, j) andσ(k, l), the application of
(without loss of generality)ρ will either

1. makeσ span two different cycles or

61

2. leaveσ oriented.

Proof. Call r ands the reality edges being acted upon byσ. At least one ofr or s will remain intact
after the application ofρ, say it isr. At least one of the vertices incident tos must remain intact, call
it v. There is a pathP from v to au incident tor that does not includer. Note that the adjacencies of
v andu are not affected byρ and that, becauseσ is oriented, ifv is on some side ofs thenu is on the
same side ofr. But ρ can only remove a subpath of the cycle when creating another cycle. Becauseρ
andσ commute, whether the removed subpath is also a subpath ofP or not,u andv will remain on the
same sides of their respective reality edges, thus leaving the inversionσ oriented.

Each oriented inversion will split the cycle into two by swapping the affected vertices of the desire
edges being acted upon. Thus, when we embed the cycle on a circle we can represent the action of
an inversion as a cord with its endpoints on those desire edges. For two inversions that intersect and
act upon a disjoint set of desire edges we know that applying one of them will put the reality edges
acted upon by the other on different cycles; so in this case intersecting chords represent inversions that
interfere.

Finding the interactions between inversions that share a reality edge takes more care however. More
specifically, consider the set of inversions that all share areality edge as an endpoint and share the
same desire edge. For example the set of inversions that share reality edge(2−, 1−) is {ρ(2, 3), ρ(3, 3),
ρ(4, 4), ρ(4, 5), ρ(4, 6)}, which can be partitioned into inversions that share edge(2−, 1+) {ρ(2, 3),
ρ(3, 3)} and those that share(1−,L+) {ρ(4, 4), ρ(4, 5), ρ(4, 6)}.

The following lemma describes the structure of the interference between those that share a desire
edge. First, let us order such a setI in two ways. Call the orderingα : I 7→ N that which numbers
inversions from shortest to longest. As stated, the action of an inversion onG(·) is to swap endpoints
of the two desire edges being acted upon. Because they share an acted upon reality and desire edge we
can look at the shared vertexv that will be affected by all inversions inI. The orderingβ : I 7→ N is
that which numbers inversions by the order in which we visit its non-v endpoint, starting at the common
reality edge and proceeding throughv.

Lemma 4.1.6. Take inversionsi, j ∈ I. i interferes withj if and only ifα(i) > α(j) and
β(i) < β(j).
(In other words, an inversion interferes with all shorter inversions that appear after it on the cycle.)

Proof. Recall thatv is the shared vertex that will be affected by all inversions in I. For an inversion
i ∈ I and anyj ∈ {k | k ∈ I \ {i} andα(i) > α(k)} with endpointsv andu respectively, we know that
i interferes withj if and only if u ends up on a different cycle thanv after applyingi. If we follow the
cycle in the same order used to buildβ, the reality edges we visit before encounteringu are those that
will be remain on the cycle withv when it is attached by the new reality edge. So those inversions that
act upon such reality edges will remain oriented, and they are exactly thosej that haveβ(j) < β(i).
The others will respectβ(i) < β(j).

Example 4.1.7.Fig. 4.3(a) shows the graph from Fig. 4.2 embedded on a circle. α imposes the ordering
on all inversions that share desire edge(6+,R−) so thatα(ρ(1, 1)) < α(ρ(1, 2)) < α(ρ(1, 4)) <
α(ρ(1, 5)) < α(ρ(1, 6)). We also haveβ(ρ(1, 6)) < β(ρ(1, 1)) < β(ρ(1, 5)) < β(ρ(1, 2)) <
β(ρ(1, 4)). So forρ(1, 5) we haveα(ρ(1, 5)) > α(ρ(1, 4)) > α(ρ(1, 2)), as well asβ(ρ(1, 5)) <
β(ρ(1, 2)) < β(ρ(1, 4)), which tells us thatρ(1, 5) interferes withρ(1, 2) andρ(1, 4). Further,α(ρ(1, 5)) <
α(ρ(1, 6)) andβ(ρ(1, 5)) > β(ρ(1, 6)) shows thatρ(1, 5) interferes withρ(1, 6). Fig. 4.3(b) shows the
result of applying inversionρ(1, 5) on the graph.

Corollary 4.1.8. The interference relationship between all inversions thatact on the same desire edge
can be represented by a permutation graph.

62

L+

1−

1+

2−

2+

3−3+
4−

4+

5−

5+

6−

6+ R−

ρ(1, 1)

ρ(1, 2)

ρ(1, 4)

ρ(1, 5)

ρ(1, 6)

L+

1−

1+

2−

2+

3−3+
4−

4+

5−

5+

6−

6+ R−

ρ(1, 1)

ρ(1, 2)

ρ(1, 4)

ρ(1, 6)

(a) Chords rep-
resent inversions that will effect
the desire edge(6+,R−).

(b) After applying inversion
ρ(1, 5).

Figure 4.3:G(π = (-6 -4 -2 1 -3 -5)) embedded on a circle. We see the affect thatinversionρ(1, 5) has
on those inversions acting upon the same desire edge;ρ(1, 5) interferes withρ(1, 2), ρ(1, 4), andρ(1, 6)
but notρ(1, 1).

Theorem 4.1.9.GS can be represented by a circle graph.

Proof. If two inversions both act an a reality edge then apply Corollary 4.1.8. Otherwise, embed the
cycle on a circle and notice that the effect of an inversion isto split the circle (see Fig. 4.3). Therefore,
a chord model representing the interference between two inversions that don’t share a reality edge is
obtained by drawing a chord for each inversion between the reality edges it acts upon.

Fig. 4.4 shows the two circle graphs that represent the constraints of the HP-graph from Fig. 4.2.
In this case,GC is a subgraph ofGS soGC ∪ GS is a circle graph. A maximum cardinality set of
noninterfering inversion would be represented by the set ofchords{AB,AC,AE,DE} (matching that
from Example 4.1.2).

D

C

E

F

G

A B
L+

1−
1+

2−

2+

3−
3+

4−

4+

5−

5+

6−6+

R−
B

GA

D

E

C

F

L+

1−

1+

2−

2+

3−3+
4−

4+

5−

5+

6−

6+ R−

(a) The chord model forGC . (b) The chord model forGS .

Figure 4.4: The chord models for circle graphs representingthe constraints onG(π = (-6 -4 -2 1 -3 -5)).

The union of two circle graphs, however, does not necessarily yield a circle graph. We handle this
by decomposing the problem into computationally easy-to-handle and hard-to-handle subproblems by
using the first of two phases from the polynomial time circle graph recognition algorithm of Bouchet
[16, 73]. This first phase repeatedly decomposes the graph bythe join decomposition. This is done by
finding a partition on the verticesV1 andV2 (|V1| ≥ 2 and|V2| ≥ 2) so that the set of all edges between
V1 andV2 form a complete bipartite graph. Call the sets of vertices that compose this complete bipartite
graphV1c ⊆ V1 andV2c ⊆ V2. This subgraph is then replaced by the two graphs induced by taking
only vertices inV1 andV2, and adding a marker vertex to each graph connected to onlyV1c andV2c

respectively.

63

Once no such decomposition exists (i.e. a subgraph is prime)a chord model is found for each sub-
graph in the second phase. If every prime subgraph yields a chord model, then we can apply the quadratic
algorithm of Valiente[89] to find the maximum independent set of the circle graph. If only some sub-
graphs yield a chord model, we can handle those independently with the same algorithm. The computa-
tionally hard-to-handle subgraphs are those that do not yield a chord model. It is on these subgraphs that
we are forced to run a general algorithm for maximum independent set. Call this algorithmMIS(·).
Fig. 4.5 shows how a set of vertices is partitioned into connected componentsV1 = V1a ∪ V1b ∪ V1c

andV2 = V2a ∪ V2b ∪ V2c whereV1a, V2a, V1b, andV2b are possibly empty sets. In our setting, the

V1a V1b

V1c

V2a

V2b

V2c

Figure 4.5: What the chord model of a join decomposition would look like if such a chord model exists.

setsV1a, V1b, andV1c (resp.V2a, V2b, andV2c) may not actually yield chord models, but the representa-
tion of Fig. 4.5 is instructive in seeing how the independentsets of such a decomposition interact with
each other. Now when composing solutions of independent sets on hard-to-handle subgraphs we must
consider two possibilities: either 1) vertices fromV1c andV2c are used forMIS(V1) andMIS(V2)
respectively, or 2) vertices from none or only one of the two are used. For the later case all vertices from
both independent sets will be in the independent set forGS ∩ GC . In the former case we can use the
vertices fromV1c or from V2c but not both, so we recursively testMIS(V1a ∪ V1b) + MIS(V2) and
MIS(V2a ∪ V2b) +MIS(V1) and use the larger of the two as the score for the subproblem.

Multiple Cycle Instances

In Section 4.1.3 we show how to represent the constraints of acomponent that is comprised of a single
HP-cycle. In this section we show how to transform a multiplecycle component into a single cycle while
appropriately ignoring inversions that are created by the process.

In [42], Hannenhalli and Pevzner introduce the notion of a(g, b)-split where a cycle of length six or
larger is split into two (by adding two vertices) in such a waythat preserves at least one minimum edit
scenario in the process. Such a change in the graph can be represented in the corresponding permutation
by a remapping of some vertex labels, this process is called a(g, b)-padding. Here we introduce the
inverse operation to the split, the(d, r)-join, which takes two cycles and joins them in such a way that
preserves all edit scenarios. Similarly, the analogue to the padding is the(d, r)-shrink. A (d, r)-join
removes the verticesx− andx+ (from two different cycles) for some permutation elementx along with
reality edges(x−, r1) and(x+, r2), and desire edges(x−, d1) and(x+, d2). After removal, the edges
r = (r1, r2) andd = (d1, d2) are created to form a valid HP-grapȟG(π). It is easy to verify that a
(d, r)-join operation is equivalent to a(d, r)-shrink which acts by removing the elementx and renaming
all other elements with magnitudei > x to have magnitudei− 1 with the same sign. SoG(π̌) = Ǧ(π).

Lemma 4.1.10. Apply to permutationπ a (d, r)-shrink by removing an elementx (corresponding to
verticesx− andx+ from two different cycles) to obtaiňπ. The EPO forπ will be a subgraph of the
inversion EPO fořπ andd(π) = d(π̌).

Proof. The length of the permutation decreases by one but so does thenumber of cycles, therefore
d(π) = d(π̌). We now show that the(d, r)-join of cyclesC1 andC2 turningG(π) to Ǧ(π) will preserve

64

the relative direction between edges. Fix a direction on thecycle with reality edge(x−, r1) by visiting
r1 beforex− followed byd1. Conversely, fix a direction on the cycle with edge(x+, r2) by visiting d2
beforex+ followed byr2. Thus, after the application of the(d, r)-join the remaining reality edger can
be visited fromr1 to r2 in a tour continuing tod2 andd1 from desire edged. Since the direction for the
new edges is consistent with the direction of the removed edges, the direction ofr to reality edges inC1

andC2 is also consistent. So any inversion that acts on edges(x−, r1) and(x+, r2) for a edit scenario
on π will now act onr for a edit scenario oňπ. Since(x−, r1) and(x+, r2) are on different cycles of
G(π), there can be no oriented inversions done that act on the two at the same time.

An important corollary to Lemma 4.1.10 is that all oriented inversions onπ will be preserved. Thus,
we can shrink a multiple cycle component to an “equivalent” cycle and then run the algorithm ignoring
oriented inversions introduced by the shrinking process.

4.1.4 Handling Multiple Permutations

When improving the MGR heuristic for medians or implementing a greedy heuristic for maximum
signature computation, one needs to consider sets of inversions that occur in multiple permutations.
This is done by simply ignoring intervals that don’t occur asoriented inversions in all permutations,
while merging the constraints on the remainder of the permutations. That is, to find the maximum
independent set of commuting/noninterfering inversions on many permutations, take the intersection of
the sets of oriented inversions over all permutations and run the above algorithm on the union of the
remaining constraints.

4.1.5 Two Notes on Hurdles

There are two places that hurdles complicate our analysis. The first concerns the existence ofunsafe
oriented inversions, those that make an oriented componentunoriented. Of course, inversion that are
unsafe on their own are easily identified (one way is to just apply the inversion and check the component),
thus we simply remove all unsafe inversions from consideration before running our algorithm. It is
possible, however, that a set of noninterfering inversionscan collude to create a hurdle.

Given a permutation that already contains hurdles, we couldbe left with another tough situation.
Suppose every component is a hurdle and that there areO(n) of them (there exist unoriented components
of size three). There are an exponential number of ways to merge these hurdles. It is clear that each
combination of merges yields a new set of oriented inversions in the end, it is not clear as to whether
an exponential search of these combinations in necessary. Suffice it to say that hurdles are very rare in
practice, as confirmed by a theorem of Caprara [24, 80].

4.1.6 Experimental Results

We improved the MGR heuristic using maximum independent setof commuting/noninterfering in-
versions. Given three genomesG1, G2 andG3, we define the median score of a genomeG to be
d(G,G1) + d(G,G2) + d(G,G3), whered(G,Gi) is the distance between genomeG andGi. To find
the genome that minimizes the median score, the new median solver chooses the maximum independent
set of inversions which bringsG1 closer to bothG2 andG3. The algorithm will then iteratively carry on
maximum independent set of inversions in the three genomes until the maximum sets are empty. At the
end of this procedure, the three given genomes are transformed to potentially three new genomes, and
we report the one with the lowest median score as the resultedmedian.

To assess the speed and accuracy of this new solver, we testedit using the the same datasets of Arndt
and Tang [7]. The datasets were generated by assigning the identity permutation on the internal node,
and then the three leaves were created by applying rearrangement events along each edge respectively.

65

There are two factors governing the number of events on each edge: the number of total evolutionary
events and the tree shape. The total number of events was in the range of80 to 140, and three tree shapes
were used: trees with almost equal length edges, i.e., the ratio of three edges are(1 : 1 : 1); trees with
one edge a bit longer than the other two, i.e., of ratio(2 : 1 : 1); trees with one edge much longer than
the other two, i.e., of ratio(3 : 1 : 1). We compared the new method to Caprara’s median solver (exact
but slow), MGR and Arndt’s solver. For each combination of parameters, ten trees were generated and
the average results were reported.

Tables 4.1 and 4.2 show the median score found by each method,and Tables 4.3 and 4.4 show the
time used by each method. We found from these tables that the new method not only runs faster than
MGR, but also returns more accurate medians. When the datasets are difficult (r ≥ 120), the new
method is about20 ∼ 30 times faster than MGR. Compared to Arndt’s method, the new solver is about
3 ∼ 100 times faster with a1 ∼ 2% sacrifice of accuracy.

We believe with some small amount of extra computation, the accuracy of our new solver can be
further improved. The three new genomes obtained when the search stops actually form a new instance
of median problem. We applied Caprara’s solver to these new (smaller) median problems for all the
testings and found that the scores were improved for most cases whenr ≤ 100–the median scores are
almost the same as applying Caprara’s solver to the originalmedian problems. However, forr ≥ 120,
the new median instances were still very difficult and none was able to finish. These results suggest that
a better method should be developed to handle the new median instances.

(1:1:1) (2:1:1) (3:1:1)
r=80 r=100 r=80 r=100 r=80 r=100

Score lower bound 86.2 104.2 89.4 105.8 85.7 101.3
Caprara’s median score 87.9 107.6 91.4 109.8 88.0 105.2
Arndt’s median score 88.2 109.5 91.8 111.4 89.1 106.7
MGR median score 90.3 113.7 94.3 116.8 89.8 110.0

New method’s median score 89.1 111.8 92.6 114.1 90.0 108.1

Table 4.1: Comparison of median scores forr ≤ 100.

(1:1:1) (2:1:1) (3:1:1)
r=120 r=140 r=120 r=140 r=120 r=140

Score lower bound 116.1 123.5 116.1 122.7 110.3 117.6
Caprara’s median score N/A N/A N/A N/A N/A N/A
Arndt’s median score 125.8 135.3 124.5 134.7 117.9 127.0
MGR median score 132.9 143.6 131.4 142.8 123.6 135.1

New method’s median score 127.9 139.5 126.9 138.5 120.6 130.1

Table 4.2: Comparison of median scores forr ≥ 120. N/A indicates a method cannot finish.

4.1.7 Conclusions

There were two algorithms introduced, one that computes a maximum set of commuting inversions and
one that computes a maximum set of noninterfering inversions. The former has a worst case running
time ofO(n2) while the latter runs, under certain detectable conditions, in O(n2) time when the circle
graph recognition algorithm of Spinrad [72] is used. When those conditions aren’t met, we show that the
problem can be decomposed so that only certain subproblems require exponential work (in the size of

66

(1:1:1) (2:1:1) (3:1:1)
r=80 r=100 r=80 r=100 r=80 r=100

Caprara’s time 3.6 12876 57.2 31387 4.3 6908
Arndt’s time 324 551 123 409 1.6 9.3
MGR time 11.2 51.9 11.6 78.2 10.3 35

New method’s time 3.3 5.3 4.1 8.4 4.6 9.1

Table 4.3: Comparison of running time forr ≤ 100 (in seconds).

(1:1:1) (2:1:1) (3:1:1)
r=120 r=140 r=120 r=140 r=120 r=140

Caprara’s time > 172880 > 172880 > 172880 > 172880 > 172880 > 172880

Arndt’s time 1485 1187 673 453 30 226
MGR time 271.6 560.1 237.8 626.9 135.3 385.4

New method’s time 13.8 19.7 11.1 21.3 9.2 12.4

Table 4.4: Comparison of running time forr ≥ 120 (in seconds).

the subproblem). Let us comment that due to the intersectionstep described in Section 4.1.4, the more
sequences we are comparing, the sparser the intersection islikely to be. We expect this to contribute to
lower running times in practice.

The work of Arndt et al. [7] has shown that the MGR-style search for medians can be improved by
the use of a more deliberate choice of inversions during a search. We expect the algorithms presented
to continue those improvements to provide fast and accuratemethod for large genomes. The MGR-
style objective function has also been formalized as a search for a maximum signature. While we have
shown some relationships of sets of noninterfering inversions to signatures, and signatures to medians,
we show in the next section a direct application of our noninterfering inversion algorithm to signature
computation.

67

4.2 Inversion Signatures

The study of evolution is a study of patterns of change, but also of conservation, the latter being typically
easier to detect and characterize. Moreover, elements conserved across many species were probably
present in their last common ancestor and preserved throughselection pressures, so that these conserved
elements probably play a major role in the fitness of the organisms. Biologists have long studied patterns
of conservation in DNA sequences: first pairwise sequence similarity in large databases (as in the widely
used FASTA [62] and BLAST [5]), then multiple sequence alignments and phylogenetic reconstruction,
and finally the reconstruction of ancestral sequences, an avenue of enquiry that has seen much activity of
late (see, e.g., [52]). Recently, researchers have also started to look for characteristic patterns of change
across a collection of species—an example being thediscriminating subsequencesof Angelovet al. [6].
All of these efforts aim at recovering what one could termgenomic signatures—subsequences that best
characterize the evolutionary history of the given group oforganisms.

As more genomes are fully sequenced, interest in reconstructing complete ancestral genomes has
grown; Pevzner’s group, for instance, has published extensively on the topic in the context of vertebrate
genomes (see, e.g., [18, 17]), as has a group headed by Haussler and Miller [53]. However, while re-
arrangements such as inversions, transpositions, translocations, and others are complex and powerful
operations, our models for them remain poorly parameterized, often reduced to the simplest case of
uniform distributions. Under such models, reconstructionof ancestral genomes for organisms that ex-
hibit significant divergence (in contrast to mammals or evenvertebrates) remains poor, mostly due to the
enormous number of equally “good” evolutionary scenarios [30, 35]. It is therefore natural to turn once
again to genomic signatures, this time formulated in terms of a rearrangement (rather than a sequence
evolution) model.

In this section we introduce a measure of similarity defined between two genomeswith respect to a
third. The key idea is the introduction of the third genome, which allows us to take into consideration the
evolutionary paths from the two genomes under study to the third, thus basing our measure of similarity
on the evolutionary history of the two genomes rather than just on their current configuration. Naturally,
these evolutionary paths are not unique under current models and thus a number of ancestral states can
be reached on the way from the two genomes under study to the third genome. We call these states
rearrangement signaturesand further distinguish those that are farthest from the third genome (the most
recent, as viewed from the perspective of our two genomes under study) asmaximum rearrangement
signatures. Although the concepts introduced here apply to any rearrangement operation, we study
these signatures under the operation of inversion, the mostcommonly used rearrangement operation in
work to date [58]. We show that maximum signatures carry muchinformation about ancestral genomes
and that they can often be computed within a reasonable amount of time in spite of the very large search
space. We use simulations under a wide variety of conditionsto show that the maximum signatures
pinpoint the true ancestral genome, either recovering it outright or producing one very close to it, and to
show that these signatures can be used to reconstruct reliable phylogenies, all using a polynomial-time
heuristic that runs much faster than a full exhaustive search.

4.2.1 Notation and Definitions

Remember thatπ0, π1, . . . , πd forms anedit scenariofrom π0 to πd if for all πi, 0 ≤ i < d, we have
d(πi, πi+1) = 1; each inversion applied along this path is then deemed anedit inversion. Take each
πi to be a vertex and link two vertices with an edge whenever the corresponding permutations occur
consecutively on an edit scenario. This graph represents a partial order with relation “is part of an edit
scenario from”. We call this theedit partial order, or EPO. We denote the EPO betweenπ0 andπd as
EPOπ0(πd) orEPOπd

(π0). So if we haveπ3 = (2−1 −3) andπ0 = (1 2 3), then an edit scenario between
them might visit permutationsπ2 = (−2 −1 −3) andπ1 = (−2 −1 3) before reachingπ0. Figure 4.6 shows
the EPOs for (2−1 −3) and (−2 3 1).

68

-2 -1 -3

-2 -1 3 1 2 -3

1 2 3

-2 3 1

-2 -3 1

2 -1 -3

1 -2 -32 -1 3

1 -2 3

Figure 4.6: The union of the edit partial orders forP = {(-2 3 1), (2 -1 -3)} andτ = (1 2 3). The signature
graph forP is highlighted in bold.

We are interested in the intersection of EPOs, which will yield the desired inversion signatures. For
a set ofk + 1 permutations, one of which is the reference permutation called thelocus, an inversion
signatureis the permutation corresponding to a vertex in the intersection of thek EPOs from each of the
otherk permutations to the locus.

Definition 4.2.1. The set of allinversion signaturesfor permutationsπ1, . . . , πk with locusπL is

SπL
(π1, . . . , πk) = V

(

EPOπL
(π1)∩EPOπL

(π2)∩ · · · ∩EPOπL
(πk)

)

, whereV (G) denotes the set

of vertices of graphG.

Whenever the context is unambiguous, we shall simply writeSπL
for SπL

(π1, . . . , πk). Similarly,
thesignature graphonπ1, . . . , πk with respect toπL is the graphEPOπL

(π1) ∩ EPOπL
(π2) ∩ · · · ∩

EPOπL
(πk). An inversion signatureπs ∈ SπL

is thus a permutation that embodies some of the com-
monality between thek other permutations with respect toπL, in the sense that they all possess an edit
scenarios toπL that passes throughπs. A maximum signatureis a signature inSπL

that is as far away
from πL (and thus as close to thek other permutations) as possible.

Definition 4.2.2. The set of allmaximum signaturesisS∗
πL

= {πs ∈ SπL
| for all π′

s ∈ SπL
, d(πL, πs) ≥

d(πL, π
′
s)}.

A maximum inversion signature is thus a permutation that represents the “maximum commonality”
between thek permutations: it is as close to thesek permutations as possible while still being part of all
edit scenarios toπL. From a biological perspective, this edit scenarios fromπL to the signature can be
thought of as the evolution that happened before speciation, or the pattern of change that thek sequences
have in common.

As with the special case for Steiner points called themedian[68], we find it helpful to name the case
with k + 1 = 3. For this case we have two permutationsπA andπB and an ancestor locusπL and we
call S∗

πL
(πA, πB) thepairwise maximum signature.

In Figure 4.6 we haveπA = (2 −1 −3), πB = (−2 3 1), andπL = (1 2 3) (theidentitypermutation of
length 3). The signature graph is outlined in bold. The signatures in this case are (−2 −1 −3), (−2 −1 3),
(1 2 −3), and the trivial signatureπL = (1 2 3). The only maximum signature is also the only maximal
signature (−2 −1 −3).

4.2.2 Methods

We begin with an investigation of rearrangement-based genomic signatures as defined above, then give
procedures for signature-based phylogenetic and ancestral reconstruction.

Computing Signatures

Definition 4.2.1 can be restated inductively in terms of editscenarios that move from the locusπL
towards the other permutationsπ1, . . . , πk. We say that some permutationπ has acommon edit inversion
r with respect toπ1, . . . , πk if we observed(πL, πi)− d(πL, rπi) = 1 for 1 ≤ i ≤ k.

69

Definition 4.2.3. The locusπL is an inversion signature for permutationsπ1, . . . , πk. If permutationπ
is an inversion signature andr is a common edit inversion with respect toπ1, . . . , πk, thenrπ is also an
inversion signature.

Thus, starting at the locus (which is the smallest possible signature), one can enumerate all signa-
tures by repeatedly applying every possible common edit inversion to the current collection of signatures;
maximal signatures are those signatures for which no commonedit inversion exists and maximum sig-
natures are the largest of these maximal signatures (i.e., the farthest away from the locus). Common edit
inversions form the basis for the MGR algorithm of Bourque and Pevzner [17], who used a greedy al-
gorithm that picks a single path by always choosing the common edit inversion that provides the largest
number of common edit inversions at the next step.

The signature space is of course very large. In particular, if the two permutations of interest are just
one inversion apart, then the space of all signatures can be roughly the same size as the inversion EPO
between one of the permutations and the locus—and that is, inexpectation, exponentially large in the
pairwise distance. (However, the complexity of finding a maximal signature is unknown at this time.)
We use the greedy heuristic of MGR to construct maximal signatures and show that it often returns
the maximum signature. It is not optimal, however: considerthe permutationsπA = (−4 1−5 2−6 3),
πB = (−4 1 6 2−5 3), andπL = (1 2 3 4 5 6). In the signature graph of Figure 4.2.1, vertices that can
be produced by the greedy heuristic are highlighted, none ofwhich are a maximum signature.

Noninterfering Independent Sets

We introduced noninterfering sets of inversion in Section 4.1. The concept of noninterfering inversions
extends naturally to our framework with a defined ancestor.

Definition 4.2.4. A set of inversionsR is mutually noninterferingfor πA andπB with locusπL if it is
noninterfering forπL with respect toπA and also forπL with respect toπB .

Such mutually noninterfering sets form the basis for another greedy algorithm: we repeatedly find
and apply toπL sets of mutually noninterfering inversions until there arenone left. Mutually noninter-
fering sets can be found very quickly, so a greedy algorithm based on this approach runs very fast. We
use this particular greedy heuristic in our experiments.

Signature-Based Tree Reconstruction

Since signatures are just nodes along evolutionary paths, they can be used as internal nodes in a process
of phylogenetic reconstruction. We begin with a naı̈ve algorithm to illustrate the basic approach.

The idea is to overlay the EPOs from each of the leavesπ1, . . . , πk to the locusπL and construct a tree
representative of the resulting structure. Consider the set of these EPOs,O = {EPOπL

(πi)|1 ≤ i ≤ k};

-3 -2 -1 4 5 6

1 2 3 4 5 6

3 -2 -1 4 5 6

1 2 -3 4 5 6

-4 1 2 -3 5 6

-4 1 2 3 5 6-4 3 -2 -1 5 6

-4 -3 -2 -1 5 6

-4 1 2 -5 -3 6-4 1 2 -6 -5 -3

-5 -4 -3 -2 -1 6 -6 -5 -4 -3 -2 -1

3 4 5 6 -2 -1

1 2 -6 -5 -4 -3

-6 3 4 5 -2 -1

1 2 -5 -4 -3 6

-6 -5 3 4 -2 -1

1 2 -4 -3 5 6

Figure 4.7: The signature graph forπA=(-4 1 -5 2 -6 3),πB=(-4 1 6 2 -5 3), andπL=(1 2 3 4 5 6).

70

our algorithm constructs a tree from the current version ofO, iteratively choosing a node from pairwise
intersections of graphs inO and updatingO to reflect this choice. Specifically, at iterationi,

1. select fromO a vertexπs that maximizesd(πL, πs);

2. if the vertex selected in the previous step belongs to the intersections ofPA, PB ∈ O, then create
a node in the tree to be the parent of the subtrees representedby PA andPB ;

3. inO replaceEPOπL
(πA) andEPOπL

(πB) with their intersection.

This algorithm yields a tree without internal node labels, because EPOs are not closed under intersection,
so that a node in the tree may represent two graphs fromO that no longer have a least upper bound.

Our second algorithm overcomes this problem; in addition, it yields implicit edit scenarios from the
leaves to the root that join at the internal nodes. In this improved version, we maintain the invariant that
elements ofO are always EPOs. Thus only the third step of the iteration is affected, and replaced by the
following:

• in O replaceEPOπL
(πA) andEPOπL

(πB) with EPOπL
(πs).

Step 1 in each iteration is obviously the computationally intensive one; our implementation for this step
uses the MGR heuristic.

Distance-Based Bound on Signature Size

We develop an upper bound based on pairwise distances to helpus evaluate our greedy signature methods
in the experimental phase. Denote byA, resp.B, the inversion distance between the locus andπA, resp.
πB, and byD the inversion distance betweenπA andπB . (Inversions distances can be computed in
linear time [9].) Now consider some arbitrary signatureπS for this triple and denote its size, or distance
from the locus, byc; Figure 4.8 depicts the situation. As all distances are editdistances, we can write
A− a = B − b and, by the triangle inequality,a+ b ≥ D; combining the two, we get

a ≥ D +A−B

2
,

with the symmetric version forb. Without loss of generality, assumeA ≥ B; then we get

d(πL, πS) = c ≤ A−
(D +A−B

2

)

,

the desired upper bound.

b

c

a

πA πB

πL

πS

A B

D

Figure 4.8: The distances around a signatureπS .

71

4.2.3 Results and Discussion

We demonstrate the use of pairwise inversion signatures forancestral reconstruction and for phyloge-
netic reconstruction through extensive simulations. We first show that, under certain reasonable condi-
tions, maximum signatures coincide with ancestral genomesmost of the time, then proceed to show that,
under more stringent conditions, maximum signatures always coincide with ancestral genomes. Since
no polynomial-time algorithm for computing maximum signatures is known at present, we show that
our heuristics perform well, both in terms of accuracy and running time, even when applied to larger
genomes (to the size of small prokaryotic genome). Finally,we show that the signature method use for
phylogenetic reconstruction produces trees comparable inquality to neighbor-joining while providing
ancestral reconstructions along the way.

Maximum Signatures as Ancestral Genomes

Our experiments for ancestral reconstruction simply use triplets of genomes generated from an ancestral
genome by generating three evolutionary paths, using randomly chosen inversions. The locations of
these inversions is distributed uniformly at random, but their lengths are distributed according to one of
two possible distributions: uniform and normal. The lengths of the edges from the ancestor to the three
leaves are chosen in both a balanced manner and several skewed manners. All of our experiments used
1,000 repetitions unless stated otherwise and the results presented show averages over these 1,000 tests.

We present most of our results in the form of tables. Tables 1 through 6 group columns by the
percentage of the length of the longest simulated pathP in the triplet. For instance, column two of
Table 4.5 shows the percentage of true ancestors that are within 0.15 × |P | inversions away from a
maximum signature (in this case, no more than one inversion away because|P | is no greater than8 for
any row of column two). The rows in these cases are labeled by the edge length as a percentage of the
genome size.

The first set of tables apply to triplets where all edges have the same length (that is, the same number
of random inversions). Table 4.5, for normally distributedinversion lengths, shows that the simulated
ancestor is a maximum signature most of the time, even when the evolutionary rates are extremely
high. When the rates are already high 10% of the genome size, 97% of the true ancestral genomes are
maximum signatures. The table also shows that (the last two rows aside) the true ancestor is within 2
inversions from a maximum signature more than 90% of the time. Table 4.6 shows similar, but slightly
weaker results for uniformly distributed inversion lengths.

The next set of tables examines the influence of the size of thegenome. Table 4.7 shows that the
accuracy scales well. In addition, we tested genomes of size100; the results are shown in Table 4.8.

Table 4.5: Percentage of the time that the true ancestor is a maximum signature, under normally dis-
tributed inversion lengths on genomes of sizen = 30.

of ops as % of |P |
% of n 0 ≤ 15% ≤ 20% ≤ 50%

10 97 97 97 100
15 93 93 93 100
20 84 84 93 100
25 78 88 88 100
29 68 83 93 100

72

Table 4.6: Percentage of the time that the true ancestor is a maximum signature, under uniformly dis-
tributed inversion lengths on genomes of sizen = 30.

of ops as % of |P |
% of n 0 ≤ 15% ≤ 20% ≤ 50%

10 94 94 94 99
15 87 87 87 100
20 69 69 84 100
25 53 73 73 100
29 36 58 77 100

Table 4.7: Percentage of the time that the true ancestor is a maximum signature as a function of the
genome sizen for simulated edge lengths ofn× 0.1.

% of |P |
n 0 ≤ 15% ≤ 20% ≤ 50%

30 97 97 97 100
35 96 96 96 100
40 95 95 95 100
45 95 95 95 100
50 94 94 98 100
55 95 95 98 100
60 91 91 97 100
65 93 93 98 100
70 91 96 96 100
75 86 92 92 100

Table 4.8: Percentage of the time the true ancestor is a maximum signature, under normally distributed
inversion lengths on genomes of sizen = 100.

of ops as % of |P |
% of n 0 ≤ 5% ≤ 10% ≤ 15% ≤ 20% ≤ 50%

5 95 95 95 95 99 100
8 91 91 91 97 99 100
10 90 90 100 100 100 100

73

Table 4.9: Percentage of the time that the true ancestor is a maximum (method 1) or maximal (methods
2 and 3) signature, under normally distributed inversion lengths on genomes of sizen = 30. Method 1
finds a maximum signature by exhaustive search; method 2 usesthe greedy Bourque-like approach; and
method 3 uses the approach based on maximum sets of noninterfering inversions.

of ops as % of |P |
% of n Method 0 ≤ 15% ≤ 20% ≤ 50%

1 97 97 97 100
10 2 97 97 97 100

3 96 96 96 99
1 93 93 93 100

15 2 93 93 93 100
3 89 89 89 100
1 84 84 93 100

20 2 83 83 92 100
3 76 76 85 100
1 78 88 88 100

25 2 76 86 86 100
3 67 77 77 100
1 68 83 93 100

29 2 66 81 89 100
3 57 69 76 100

Computing Maximal Signatures

The exhaustive algorithm rapidly reaches its limits: for genomes of size 100 with edge lengths of 10,
computations already take on the order of hours instead of minutes. Table 4.8 shows favorable results
for exhaustive computation of maximum signatures on such genomes. We now proceed to compare
these results with those of our new maximal signature algorithms. Under most circumstances, the true
ancestor is found by such maximal signature computations.

Table 4.9 shows that the Bourque-like approach and the approach based on noninterfering inversions
fare well with respect to the exhaustive search, the latter dropping off first. Table 4.10 shows results for
the two greedy methods on genomes of size100. For reasonable rates of evolution (10% or less per
edge), we again see that the true ancestor is found most of thetime.

Finally, we tested on genomes of more realistic sizes, but ofa size usually considered forbidding for
ancestral inference—up to 1,000 genes. With 50 random events per edge the Bourque-like computations
take just under 30 minutes, while for 80 random events they take under 2 hours. The accuracy remains
very high: in 99% of the 380 trials with 50 random events per edge, the signature returned is within
5 inversions of the true ancestor, while in 66% of these trials, the signature returned is in fact the true
ancestor. The approach based on noninterfering inversionsis by far the fastest, taking under a half a
minute for each of these trials, even with 80 random events per edge. Using 50 random inversions per
edge, we found that 97% of the 1000 trials gave an ancestor within 5 inversions of the true ancestor,
while 57% gave the true ancestor. With 80 events per edge, 91%gave an ancestor within 8 inversions of
the true ancestor, while 15% gave the true ancestor.

The largest genomes we tested had size 2000 (corresponding to small bacterial genomes, for in-
stance) and 100 operations per edge, and 5000 (corresponding to the genomes of free-living bacteria
such as E. coli) with 250 operations per edge. All trials gavea signature within 10 inversions of the
true ancestor, while 90% gave one within 4 inversions, all running in under 2 minutes per trial for size
2000 and 4 minutes per trial for size 5000. These speeds are enormously higher than methods such as

74

Table 4.10: Percentage of the time that the true ancestor is amaximal signature, under normally dis-
tributed inversion lengths on genomes of sizen = 100. Method 2 uses the greedy Bourque-like approach
while method 3 uses the approach based on maximum sets of noninterfering inversions.

of ops as % of |P |
% of n Method 0 ≤ 5% ≤ 10% ≤ 15% ≤ 20% ≤ 50%

5 2 95 95 95 95 99 100
3 94 94 94 94 98 100

8 2 90 90 90 97 99 100
3 86 86 86 92 94 100

10 2 85 85 94 97 100 100
3 77 77 85 87 98 100

15 2 68 68 92 98 100 100
3 54 54 73 90 98 100

20 2 43 63 89 98 100 100
3 28 41 74 90 98 100

Table 4.11: Percentage of the time that the true ancestor is amaximal signature, under normally dis-
tributed inversion lengths on genomes of sizen = 50. Edge lengthsb (to a child) andc (to an ancestor)
vary from 5 to2a while a = 5 (number of inversions to the other child). Each entry shows the exhaustive
method to the left of the Bourque-like method.

c
b 5 7 10 12
5 94 94 92 91 87 87 – 82
7 90 90 88 88 82 82 – 79
10 88 88 84 83 80 80 – 73
12 86 86 83 83 – 76 – 66

MGR or median-based reconstructions, yet the accuracy is also much higher. Thus, by focusing on the
characteristic (shared) patterns of inversions, we are able to win on two fronts at once, mostly because
we avoid the confusion and long explorations associated with multiple reconverging paths.

Skewed Trees

The true ancestor will not always be equidistant from the leaves and the locus. While large amounts
of skew can sometimes move an ancestor farther from a maximumsignature, the true ancestor usually
remains very close to a maximum signature.

We call the number of random inversions from the locus to the true ancestorc and the number of
random inversions from the true ancestor to each of the leaves a andb. We fix a to be 10% of the total
length and varyc andb from values equal toa up to 2.5 timesa. Table 4.11 shows that for genomes of
size50, the true ancestor is a maximum signature in most cases and that almost as often it is a maximal
signature found by the Bourque-like greedy method. Our maximum signature method appears slightly
more robust to skew on one of the child branches as opposed to skew on the branch to the locus.

Tree Reconstruction

We simulated evolution over 300 trees to test our signature-based tree reconstruction method. We found
that our method (using the Bourque-like signatures for efficiency) reconstructs the true topology most of
the time and that any error remains very small. The trees wereconstructed using the birth-death model

75

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25

of
 T

ria
ls

Taxa

Figure 4.9: The size of the generated trees.

and the mean of the normally distributed edge lengths was varied from 5 to 9 operations with a standard
deviation varying from 2 to 3. The mean of the normally distributed inversion lengths was varied from
8 to 30 with a standard deviations varying from 5 to 10. The generated trees have from 5 to 24 taxa and
are distributed as shown in Figure 4.9.

Two methods were used for choosing a locus. The first method used the true root of the tree given
by the simulation (an ideal method not available in practice, of course), while the second method used
a random leaf as the locus. With the true root as the locus, we found that 94% of the trees were re-
constructed perfectly, while 16 of the 17 remaining trees had a Robinson-Foulds error of 2, giving an
average RF error of 0.15. With a random leaf as the locus, we found that 85% of the trees were recon-
structed perfectly, while 28 of the 45 remaining trees had anRF error of 2 and 11 of the last 27 had an
RF error of 4, giving an average RF error of 0.5.

Using the true root as the locus demonstrates that the pairwise signature contain a great deal of
information about the phylogeny. Using a random leaf as the locus demonstrates that such information
remains recoverable even when the choice of locus is arbitrary (and usually far from ideal), justifying
our initial claim that comparing two genomes with respect toa third tremendously enriches what can be
had from a direct pairwise comparison. (As an example, treesthat were not properly reconstructed by
the neighbor-joining method, which uses strictly pairwisecomparisons, were commonly reconstructed
correctly by our signature-based method.) Our tests for phylogenetic reconstruction are obviously of
limited scope, meant to exemplify the usefulness of the method rather than provide a full evaluation; and
the method itself is subject to many obvious improvements (better ways to choose a locus, usingk-way
signatures rather than pairwise ones to support a top-down reconstruction method, etc.)

Tightness of the Upper Bound

Finally, we present experimental results suggesting that our upper bound is on average very tight and
then use the bound to show that the greedy signatures, used for ancestral reconstruction of genomes too
large for the exhaustive computation, are indeed close to a maximum signature. Since the computed
ancestor is bracketed within this bound, our results imply that the maximum signature is very close to
the true ancestor with high probability.

The upper bound was computed for each trial in Table 4.5. For each of the sets of 1000 trials,
the average difference between the upper bound and the maximum signature was 0.029, 0.073, 0.176,
0.27, and 0.327 for trials with 10, 15, 20, 25, and 29 percent respectively. For the length-dependent
data from Table 4.7, the average difference stays between 0.021 and 0.082. Table 4.12 indicates similar
performance for experiments run on skewed triplets. The tests from Table 4.10 give average differences
from 0.024 up to 1.375 for the Bourque-like method and differences from 0.048 up to 2.228 for the

76

Table 4.12: The average difference between the upper bound and the computed signatures with normally
distributed inversion lengths and genomes of sizen = 50. Edge lengthsb (to a child) andc (to an
ancestor) vary from 5 to2a while a = 5 (number of inversions to the other child). Each entry shows the
exhaustive method to the left of the Bourque-like method.

c
b 5 7 10 12
5 0.053 0.053 0.080 0.081 0.138 0.143 – 0.176
7 0.106 0.106 0.114 0.114 0.173 0.173 – 0.224
10 0.097 0.098 0.165 0.167 0.203 0.203 – 0.290
12 0.131 0.132 0.158 0.158 – 0.279 – 0.359

noninterfering inversions method. Only 1 of the tests from genomes of size 1000 did not match the
upper bound for the greedy method.

4.2.4 Conclusions

In any study of evolutionary changes, the challenge is to distinguish global patterns from a background
of many local changes—or, to put it another way, to find commonalities among many equally plausible
evolutionary paths that lead to the same modern organism. Wehave proposed an approach to this
problem that focuses on intermediate states along such paths in the setting of a speciation event and
seeks to return the last (most recent) states from which bothspecies of organisms could still have been
derived. This approach offers multiple benefits: the focus on intermediate states translates readily into
one on ancestral reconstruction; the study of paths going through a fork (the speciation event) stresses
the role of evolutionary history rather than just final states; and the search for the most recent states that
are part of the fork naturally separates common evolutionary changes (prior to the fork) from individual
variations (subsequent to the fork). Although finding such signatures appears hard, we gave an efficient
heuristic that does very well through an extensive range of simulations. Our signatures are based on
inversions, since inversions are the best studied of the various genomic rearrangements to date, but the
concept readily extends to any other rearrangement operation or family of such operations.

77

78

Chapter 5

Sorting By Inversions inO(n log n) Time

(This is joint work with Vaibhav Rajan and Yu Lin)

In 1992 Sankoff posed two fundamental questions about inversions: given two signed permutations,
what is the smallest number of inversions required to transform one permutation into the other and what
is a scenario of inversions implementing this transformation [65]. The first problem is thus to compute
an edit distance, where the edit operation is the inversion;the second is to return an edit scenario—a
problem usually known as “sorting,” since a simple re-indexing can turn one of the permutations into
the identity. Many years of work were needed to ascertain thecomplexity of each of these problems.
The breakthrough came in 1995, when Hannenhalli and Pevznerprovided a polynomial-time algorithm
to solve both problems. (In contrast, in 1997, Caprara [22] showed that both problems were NP-hard
if phrased in terms of unsigned permutations.) The running time for both problems has been steadily
reduced over the years. In 2001, Bader et. al. gave an optimallinear-time algorithm to compute the edit
distance [8]; and in 2004, Tannier and Sagot, building on thework of Kaplan and Verbin [46], gave an
O(n

√
n log n) algorithm to produce a sorting scenario. Remaining open wasthe question of whether

signed permutations can be sorted by inversions inO(n log n) time.
In this chapter, we give a qualified positive answer to this question by describing two new algorithms

for sorting signed permutations by inversions. The first is arandomized algorithm that runs in guaran-
teedO(n log n) time, but may fail; successive restarts reduce the probability of failure, but we cannot
guarantee that every permutation will be sorted with high probability with a finite number of restarts,
so that it is not a true Las Vegas algorithm. (Indeed, we give afamily of permutations that cannot be
sorted by this algorithm regardless of the number of restarts.) The other is a deterministic algorithm that
always sorts the permutation and runs inO(n log n + kn) time, wherek is the number of successive
“corrections” (detailed in Section 5.4) that must be applied—a value, incidentally, that appears not to be
related to the edit distance, although it is bounded by it. Wegive a family of permutations for whichk
isΘ(n) (the worst case value fork) and thus for which our sorting algorithm will run in quadratic time.
However, we present the results of very extensive experimentation showing that the expected value and
the standard deviation ofk are small constants (less than 1), independent ofn, so that the running time
of the algorithm is, with high probability,O(n log n). Thus we conclude (but do not prove) that almost
all permutations can be sorted in optimalO(n log n) time.

5.1 Preliminaries

In this chapter we assume that every permutation ofn elements is framed by elements0 andn + 1. In
this way we consider each permutation to be linear, noting that each linear permutation corresponds to
n+1 circular permutations (of lengthn+1), which are equivalent in terms of the scenarios of inversions

79

used to sort them. Thespanof an inversionρ(i, j) is the closed interval on the natural numbers[i, j] and
two spans[i, j] and[k, l] overlapif and only if eitheri < k andk < j or k < i andj < l.

We remind you that two adjacent elements,πi andπi+1 for 0 ≤ i ≤ n + 1, form anadjacency. An
adjacency is anon-breakpointif and only if we haveπi+1 − πi = 1, otherwise it is abreakpoint. An
oriented pair, (πi, πj), in a permutation is a pair of integers with opposite signs such thatπi + πj =
±1. The inversion induced by an oriented pair(πi, πj), called anoriented inversion, is ρ(i, j − 1) for
πi+πj = +1, andρ(i+1, j) for πi+πj = −1. An oriented inversion always creates a non-breakpoint;
we say that ithealsthe breakpoint (or breakpoints—there could be two) to whichthe elements of the
oriented pair belonged before the inversion.

We refer you to Definition 2.1.2 of aframed common interval(FCI), and the paragraph following
that for definitions ofgood andbad components. An inversion is said to beunsafeif it creates a bad
component, otherwise it issafe.

A permutation ispositive if it is not the identity permutation and every element is positive. A
positive permutation indicates the existence of at least one bad component. Any permutation containing
bad components can be transformed to another permutation that does not contain any bad component
in linear time [8]. Thus, in the algorithms we describe, we assume that the input permutation does not
contain any bad components.

5.2 Background: Data Structures for Permutations

To implement an algorithm for sorting by inversions, we needa data structure for handling permutations
that supports two basic operations: (i) choose an oriented inversion, and (ii) perform an inversion.

We now describe the data structure of Kaplan and Verbin [46] that stores a permutation in linear
space and allows us to perform an inversion in logarithmic time. The structure is a splay tree, in which
the nodes are ordered by the indices of the permutation, withone additional flag maintained at each
node.

To perform an inversionρ(i, j) between (and including) indicesi andj, indexi − 1 is splayed and
the right subtree of the root is split from the root yielding subtreesT<i andT≥i whereT<i (T≥i) contains
all elements with indices less than (greater than or equal to) i. Next, indexj is splayed inT≥i and again
the right subtree is split from its root yielding subtreesTrev andT>j whereT>j contains all elements
with indices greater thanj andTrev contains the elements of the permutation that have to be reversed.
Finally, there are three subtrees:T<i, Trev andT>j. Now, actually reversing the elements inTrev can
takeΘ(n) time sinceΘ(n) elements could be reversed in a single inversion. To achievelogarithmic
time complexity a lazy approach is taken: areversedflag is maintained in each node, which if turned on
indicates that the subtree rooted at the node is reversed. Now instead of immediately reversing a subtree,
we just set its reversed flag. During an inversion the reversed flag of the root ofTrev is flipped andT<i is
joined toTrev to getT≤j. This is achieved by makingTrev the right child of the root ofT<i, which still
contains the element at indexi−1, yielding the treeT≤j . T≤j is then joined toT>j by splayingj in T≤j ,
after whichT>j is made the right child of the root ofT≤j , yielding the final tree which represents the
permutation after the inversion. Since the only operation that takes more than constant time is the splay
and since splaying takes amortized logarithmic time [71], each inversion takes amortized logarithmic
time.

A tree could have several reversed flags, but the invariant maintained is that an in-order traversal
modified by the reversed flags yields the permutation. So to read the permutation one would traverse a
reversed subtree in reverse order while flipping signs of elements read. Nested reversed flags cancel in
the sense that a reversed flag on a node within a reversed subtree, implies that the inner subtree (rooted
at that node) is not reversed. Thus, a subtree rooted at a nodeis reversed if and only if there is an odd
number of reversed flags in the path from the root to the node (including the node).

When a scenario of inversions is performed, reversed flags can get nested to arbitrarily deep levels.

80

We can push the flag down a traversed path in the tree, by flipping the sign of the element in the node,
exchanging the left and right subtrees, and flipping the reversed flags in both children. The reversed flag
of a leaf is cleared by just flipping its sign. Pushing down a flag takes constant time per node so the
logarithmic time complexity of splaying is maintained. By pushing down the flags in the splay path we
ensure that the three subtrees created (T<i, Trev andT>j) reflect the changes made in all the previous
inversions.

This is exactly the data structure described in [46]; it can handle a scenario ofd inversions in
O(d log n) time. The data structure maintains only the state of the permutation at each step (in a lazy
way). However it does not maintain information about oriented pairs, nor could it do so efficiently, as a
single inversion could change the orientation ofΘ(n) pairs. Indeed, using this data structure to maintain
the information necessary to choose an oriented inversion at each step would increase the running time
by a factor ofn.

To overcome this problem both Kaplan and Verbin [46], and later Tannier and Sagot [87], used a two-
level version of the data structure in which a permutation isstored in linear blocks of sizeO(

√
n log n)

each. Corresponding to each block is a splay tree that maintains information about all oriented pairs
(πi, πj) such that eitherπi or πj is in the block. Performing an inversion while maintaining information
about all oriented pairs takesO(

√
n log n) time and choosing an inversion at each sorting step takes

O(log n) time, so that the total time complexity of their algorithms isO(n
√
n log n).

In order to run inO(n log n) time, these algorithms need to be able to choose an oriented inversion in
logarithmic time and thus information to identify such inversions must also be maintained in logarithmic
time through an inversion.

5.3 Our Algorithm

Instead of addressing the data structure (by designing a newdata structure that can somehow process
O(n) new pair orientations in logarithmic time), we address the root question of identifying an oriented
inversion. Our key contribution is that we need not maintaininformation aboutall oriented inversions
for every permutation at each sorting step—a couple suffice in most cases.

5.3.1 MAX inversions

Definition 5.3.1. Let (πi, πj) be an oriented pair in a permutation and letπj be the negative element in
the pair. The oriented inversion corresponding to(πi, πj) is a MAX inversion if πj has the maximum
value of all negative elements in the permutation. The pair(πi, πj) is called theMAX pair of the
permutation.

For example the MAX inversion in the permutation(4 5−3 1−6 2−7) is ρ(4, 6), corresponding to
the oriented pair(2,−3), and the MAX inversion in the permutation(2 3−1−4) isρ(1, 3), corresponding
to the oriented pair(0,−1). We maintain information about only the MAX inversions in the data structure
and correspondingly perform a MAX inversion in each sortingstep. The result is algorithm MAX.

Algorithm 1 MAX
1: while there exists a negative element in the permutationdo
2: Find index of maximum negative elementπj.
3: Find index ofπi = |πj | − 1.
4: Perform inversion corresponding to oriented pair(πi, πj).
5: end while

Because any permutation that contains a negative element contains a MAX inversion and because any
scenario of oriented safe inversions is optimal [42], we canconclude as follows.

81

Lemma 5.3.2. In the absence of unsafe MAX inversions at any sorting step, algorithm MAX produces
an optimal sorting scenario.

Algorithm MAX fails to sort only when it is “stuck” at an all-positive permutation that is not the
identity, which happens when a MAX inversion was unsafe. (Wedeal with unsafe inversions in the next
section.) The same arguments holdmutatis mutandisif we choose an oriented pair with the minimum
negative element, yielding another algorithm, algorithm MIN. Combining the two strategies and picking
one at random at each step gives us a randomized algorithm: algorithm RAND.

Algorithm 2 RAND
while there exists a negative element in the permutationdo

randomly select either MAX or MIN
if MAX then

Find index of maximum negative elementπj .
Find index ofπi = |πj | − 1.
Perform inversion corresponding to oriented pair(πi, πj).

else ifMIN then
Find index of minimum negative elementπk.
Find index ofπl = |πk|+ 1.
Perform inversion corresponding to oriented pair(πk, πl).

end if
end while

5.3.2 Maintaining information through an inversion

We now show how to maintain information about the maximum negative element of a permutation
through an inversion using the splay tree data structure. Wedescribe the process for MAX, but the
obvious analog works for MIN.

Let the maximum negative element of a subtree,MAXneg, be the element in the subtree that has the
maximum value among all negative elements in the subtree. The minimum positive element,MINpos,
of a subtree is defined similarly. These values are stored in each node of the splay tree. Note that the
MAXneg of the root node is the maximum negative element of the permutation, that is, the negative
element of the MAX pair of the permutation. TheMAXneg of a node is the maximum of the following
three: theMAXneg of the left subtree, theMAXneg of the right subtree, and the element in the node
if the element is negative. Also notice that whenever the reversed flag of a node is turned on,MAXneg

andMINpos are swapped. Therefore pushing down a reversed flag applies this swap to the children,
unless there is a cancellation of flags.

A splay operation performs a series of rotations based on thestructure of the tree and the index being
queried. Each rotation changes at most three edges of a connected subtree while maintaining the binary
search tree property.MAXneg can be recalculated for only the subtree that is affected, Recall that to
perform an inversionρ(i, j) the splay tree is split into three subtrees which are rejoined after the reversed
flag has been set for one of the trees. The value ofMAXneg can be kept for each of the subtrees in the
process by simply checking the children of the root after each operation.

By maintaining theMAXneg values in this fashion, one can maintain the invariant that theMAXneg

of the root node is the maximum negative element of the permutation through any scenario of inversions.
Since calculatingMAXneg takesO(1) time per node, these modifications do not alter the time com-
plexity of the data structure.

Lemma 5.3.3. For any (signed) permutation of sizen, there exists a data structure that handles an
inversion inO(log n) time while maintaining information about the maximum negative element of the
permutation.

82

5.3.3 Finding the MAX pair

We now describe how to obtain the elements of the MAX pair in a permutation using the modified data
structure described above.

First the maximum negative element of the permutation is located. If the element in a node is not
equal to theMAXneg of the node thenMAXneg of the node lies in either the left subtree or the right
subtree of the node. Therefore starting at the root one can godown the tree looking for the maximum
negative element. Reversed flags must be pushed down along the path to ensure thatMAXneg values
are updated and the correct path is followed.

To find the second element of the MAX pair, a lookup vector of pointers (ofn elements) maps each
element to the node that contains the element. These pointers do not change throughout the computation
and enable constant-time lookup of the node containing the second element of the MAX pair.

5.3.4 Finding the indices of the MAX inversion

In absence of reversed flags, the indices of the MAX inversioncan be obtained directly from the current
location of the nodes corresponding to the MAX pair. However, the presence of a reversed flag indicates
nodes that have outdated indices, forcing additional work to retrieve the correct indices.

The index of a node (with respect to the current state of the permutation) can be calculated using the
index of the parent node and the sizes of the left and right subtrees. Thus the current index of a node
can be calculated whenever the reversed flag is pushed down from it. The size of the subtree rooted at
a node is easily maintained. If the node is a right child, thenits index is one more than the sum of its
parent’s index and the size of the left subtree. If the node isa left child, then its index is one less than
the difference of its parent’s index and the size of the rightsubtree. The index of the root is just the size
of its left subtree. Thus starting at the root, as the reversed flags are pushed down along any path in the
tree, the current indices can be calculated.

As one traverses the tree from the root searching for the maximum negative element, the indices are
recalculated. After the node corresponding to the second element in the MAX pair is found using the
lookup vector, its updated index can be retrieved by traversing up to the root (using parent pointers) and
returning down the same path, pushing down the reversed flagsand recalculating indices at each node.

5.3.5 Putting it all together

The previous subsections detail all the steps for performing a MAX inversion. The time complexity
of each of these steps is easy to analyze. Pushing down the reversed flag takesO(1) time per node.
Thus, finding the maximum negative element and its updated index takesO(log n) time. Finding the
other element of the MAX pair takesO(1) time and obtaining its updated index takesO(log n) time.
Therefore the complexity of finding the two indices (steps2 and3 in algorithm MAX) isO(log n). For
each inversion, maintainingMAXneg, MINpos, MINneg, andMAXpos in the nodes takesO(1) time
during split and join operations, andO(1) time for each rotation in the two splays. Therefore performing
the inversion in step4 of algorithm MAX takesO(log n) time. So we have proved:

Theorem 5.3.4.For any signed permutation of sizen, a data structure exists that

• allows checking whether there exists an oriented inversionin O(1) time,

• allows performing a MAX (or MIN) inversion, while maintaining the permutation, inO(log n)
time,

• and is of sizeO(n).

Theorem 5.3.5. In the absence of unsafe inversions at any sorting step, algorithm MAX produces an
optimal sorting scenario inO(n log n) time.

83

5.4 Bypassing Bad Components

We saw that algorithms MAX and RAND can get stuck at a positivepermutation by choosing an unsafe
inversion. We offer two strategies for recovery.

5.4.1 Randomized restarts

For algorithm RAND we can simply restart the computation hoping that a better outcome is met in
the next run. Indeed, the experiments from Section 5.5 show that, for most permutations, this simple
approach suffices. However, this approach cannot always sort a permutation as there exists a family of
permutations that it cannot handle. For instance, take the permutation (3 1−4−2): both MAX and MIN
inversions are unsafe because they yield the same positive permutation (3 1 2 4); this small example can
be extended to any length by appending the requisite number of positive elements.

5.4.2 Recovering from an unsafe inversion: Tannier and Sagot’s approach

Tannier and Sagot [87] introduced a powerful approach for finding unsafe inversions and augmenting
the sorting scenario till it is optimal. They noticed that itis computationally difficult to detect an unsafe
inversion as it is applied; but it is of course trivial to find out that one has occurred when the process is
stuck at a positive permutation. Their approach is thuspostmortem: their algorithm traces the sorting
process back to the most recent unsafe inversion and insertstwo or more oriented inversions before the
unsafe one without invalidating the already computed inversions (this ensures that the sorting scenario
grows in every trace-back phase.) After the trace-back, thesorting process continues from the state of the
permutation just before the unsafe inversion. The new inversions that are inserted are chosen such that
the bad component created by the previous unsafe inversion is no longer created and so, the (previously)
unsafe inversion and all the inversions that followed it canbe applied again.

They use theoverlap graph[45] to keep track of the remaining breakpoints (and whetheror not
they are oriented). Using the overlap graph they can find the most recent unsafe inversion, find and
insert more inversions before the unsafe one, and continue sorting without invalidating the inversions
that have been applied after the most recent unsafe inversion [87]. However, the process may have to be
repeated, as, even after augmenting the sorting scenario, their algorithm may again get stuck at a positive
permutation.

5.4.3 Recovering from an unsafe inversion: Our approach

We use a similar idea, but do not maintain the full overlap graph, as it is too expensive to maintain.
Denote byp1 the first positive permutation at which the algorithm gets stuck and bypi the ith such
positive permutation. Recovering from a positive permutation pi involves three steps: finding the most
recent unsafe inversionµi, finding and inserting two new oriented inversions beforeµi, and appending
inversions without invalidating those oriented inversions that had been applied afterµi. We describe
each of these steps in turn.

Finding the most recent unsafe inversion:

In the trace-back phase, starting atpi we undo the inversions that have been done so far in order to
find the most recent unsafe inversionµi. Thus, each inversion undone joins two cycles and an unsafe
inversion is an inversion that, when undone, creates a good component from bad component(s). Denote
by π · S andπ · ρ the result of applying the inversions from the scenario of inversionsS and the single
inversionρ to the permutationπ, respectively.Undoing the inversionρ in π · ρ refers to performingρ
onπ · ρ which yieldsπ, and undoing the inversionsS = ρ1, ρ2, . . . , ρn in π · S refers to performing the

84

inversions ofS in the reverse order which yieldsπ · S · S−1 = π. The scenario of inversions on input
permutationπ0 that results in the positive permutationpi is denoted bySi, sopi = π0 · Si. LetB(π) be
the set of bad components in permutationπ.

Remark 5.4.1. When undoing inversions fromSi, the most recent unsafe inversionµi is the first inver-
sion met that turns an element ofB(pi) from bad to good.

Findingµi is not trivial because framed intervals can be nested. For example the positive permutation
(2 3 6 7 4 5 8 9 10 1) has two components: the one framed by the implicit frame elements 0 and 11, and
the nested component framed by the elements 3 and 8. Undoing the inversionρ(2, 7) will leave both
bad components intact despite the fact that it occurs withinthe frame elements of the larger component.
Thus, in the trace-back phase,ρ(2, 7) cannot be an unsafe inversion. However, undoing the inversions
µ(5, 7) andµ(4, 5) will make the inner component good and so these two inversions, had they been
the most recent inversion performed, would have also been unsafe. The following remark characterizes
undoing an unsafe inversion in terms of the components inB(pi).

Remark 5.4.2. An inversion is the most recent unsafe inversionµi if and only if it is the most recent
inversion to change the indices of a proper nonempty subset of the elements from some component in
B(pi).

The trace-back algorithm is thus as follows: start undoing the inversion scenarioSi, checking after
each inversion whether there exist components inB(pi) with both changed and unchanged indices and
stop when an unsafe inversion is found. We describe how to do this by keeping an ancillary splay tree
where nodes represent adjacencies in the permutation rather than permutation elements.

The heart of the problem deals with how non-breakpoints interact with the undoing of unsafe in-
versions. We present a labeling of the ancillary tree so thatthe safety check can be carried out by a
constant-time comparison on the two adjacencies broken by an inversion. Each adjacency has a la-
bel indicating the innermost overlying component along with a second label that is non-null only for
non-breakpoints. For a given component, each group of consecutive non-breakpoints (ignoring nested
components) gets a unique second label. Thus an inversion displaces only a fraction of the elements
of a component if and only if both broken adjacencies are labeled as non-breakpoints with the same
component and non-breakpoint labels.

In the example, the permutation (2 3 6 7 4 5 8 9 10 1) has component label X for adjacencies (0,2),
(2,3), (8,9), (9,10), (10,1), and (1,11), and component label Y for the others. The non-breakpoint labels
are the same for (2,3), (8,9), and (9,10), but different between (6,7) and (4,5). Inversionρ(2, 7) acts
upon non-breakpoints with the same pair of labels while inversion µ(5, 7) acts upon non-breakpoints
with different component labels andµ(4, 5) acts upon non-breakpoints with different non-breakpoint
labels.

We can list the endpoints of the components of a permutation in linear time [8, 12]. A simple
traversal of the permutation, keeping one stack for each label, can perform the node labeling described
above. Thus the setup of the ancillary tree can be done inO(n) time. Let S1i be the scenario of
inversions applied beforeµi in Si andS2i be the scenario of inversions applied afterS1i (includingµi)
in Si. Each safe inversion inS2i that is undone will costO(log n) time so the total cost for finding a
most recent unsafe inversion isO(n+ |S2i| log n).

Inserting oriented inversions before the unsafe inversion:

Recall thatµi is the most recent unsafe inversion in the scenarioSi. Theorem 3 in Tannier, Bergeron, and
Sagot [86] shows that there always exists two oriented inversionsν1i andν2i that can be applied before
the inversionµi in Si. According to [86], inversionsν1i andν2i must have the following properties:

• the span ofν1i overlaps the span ofµi, and

85

• either the span ofν2i overlaps the span ofν1i and does not overlap the span ofµi, or the span of
ν2i overlaps the span ofµi and does not overlap the span ofν1i.

In the following we show how to find aν1i andν2i with these properties in time proportional to the size
of the bad component that we created.

Lemma 5.4.3. Given an unsafe oriented inversionµi and the bad componentb of sizem created byµi,
one can always find, inO(m) time, inversionsν1i andν2i such thatS1i ·ν1i ·ν2i ·µi is a valid scenario
of oriented inversions.

Proof. We proceed by finding orientedν1i andν2i with the properties listed above. A bad component
could have been created in one of three ways whenµi was applied. Without loss of generality we ignore
the symmetric counterpart to the first case below (both cannot happen at once). We also ignore the
inverted versions of each case where the hurdle created has only negative elements. This leaves us with
three cases to consider.

• (±π0 . . .+l+x1 . . .+xs
±πx . . .−r−xk−1 . . .−xs+1
︸ ︷︷ ︸

±πx+1 . . . ±πn)

where the braced inversion creates the bad component
b = +l+x1 . . . +xs+xs+1 . . .+xk−1

+r.

• (±π0 . . .+l+x1 . . .+xl
−xr−1 . . .−xl+1
︸ ︷︷ ︸

+xr . . .xk−1
+r . . . ±πn)

where the braced inversion creates the bad component
b = +l+x1 . . . +xl+xl+1 . . . +xr−1+xr . . .+xk−1

+r.

• The third case is the same as the first, except that one or more bad components are created which
span the internal component
+l±x1 . . .±xs±xs+1 . . . ±xk−1

+r.

For the first case, writeL = +l+x1 . . .+xs andR = −r−xk−1 . . .−xs+1 and examine the substrings
L andR. Since the component(l, . . . , r) is a bad component, there must exist an elementt in L such
that eithert + 1 or t − 1 is negative and not inL. Assumew is the first such element we encounter by
scanning from+l to +xs. We locate the rightmost−(w − 1) or −(w + 1) in R by scanning from−xs+1

to −r. Now, there are two possibilities.

1. The rightmost element is−(w−1). We havew > l+1 and thus(w,−(w−1)) is an oriented pair;
consequently, there exists an oriented inversion,ν1i, which is different fromµi. Now consider
the position of those elements with absolute values between(and including)l andw − 1. Let y
be the element with the smallest value that does not appear tothe left ofw in L (such an element
must exist becausel is to the left ofw butw − 1 is in R). Thusy − 1 must appear to the left of
w in L. Not thaty cannot be inR, as this would contradict the fact thatw is the leftmost element
in L with −(w + 1) or −(w − 1) in R. Thusy must be inL and to the right ofw. After applying
ν1i, we will have the oriented pair(y − 1,−y), and consequently, another oriented inversionν2i.
Notice that the span ofν1i overlaps the span ofµi and the span ofν2i overlaps the span ofν1i
but not that ofµi.

2. The rightmost element is−(w+1). Note that(w,−(w+1)) is an oriented pair, so that there exists
an oriented inversionν11. This inversion must be different fromµi as otherwiseL would a bad
component in itself. Now we examine the substring to the right of w in L. Let z be the element
with the largest absolute value in that substring. Considerthe following two cases:

(a) The absolute value ofz is less thanw: we consider the elements with absolute values in the
interval [l, z]. Let y be the element with the largest absolute value in[l, z] that appears to
the left ofw (such an element must exist becausel is to the left ofw but z is to the right

86

of w in L). y + 1 cannot be inR, as this would contradict the fact thatw is the leftmost
element inL with −(w+1) or −(w−1) in R. Thusy+1 must be inL and to the right ofw.
After applyingν1i, we will have the oriented pair(y,−(y + 1)), and consequently, another
oriented inversionν2i. Notice that the span ofν1i overlaps the span ofµi and the span of
ν2i overlaps the span ofν1i but not that ofµi.

(b) The absolute value ofz is larger thanw + 1: We consider the elements with absolute values
in [z, r]. Let y be the element with the largest absolute value in[z, r] that appears to the left
of −(w + 1) in R (such an element must exist becauser is to the left of−(w + 1) in R but
z is in L). y − 1 cannot be to the left ofw in L, as this would contradict the fact thatw is
the leftmost element inL with −(w+ 1) or −(w− 1) in R. Thusy − 1 must be either to the
right ofw in L or to the right of−(w+1) in R. If y− 1 is to the right ofw in L, the oriented
pair (−(y − 1), y) defines the oriented inversionν2i. Notice that the spans ofν1i andν2i
overlap the span ofµi but ν1i andν2i do not overlap. Ify − 1 is to the right of−(w + 1) in
R, after applyingν1i, we will have the oriented pair(y,−(y−1)), and consequently, another
oriented inversionν2i. In this case the span ofν1i overlaps the span ofµi and the span of
ν2i overlaps the span ofν1i but not that ofµi.

For the second case (where the span of the unsafe inversion isa proper subset of the span of the bad com-
ponent), writeL = +l+x1 . . .+xl, M = −xr−1 . . .−xl+1 andR = −r−xk−1 . . .−xs+1. In substringsL
andR, there must exist one elementt such that−(t+ 1) or −(t− 1) is in M and the inversion induced
by this pair is notµi. Thus, the oriented pair(t,−(t− 1)) or (t,−(t+ 1)) defines the oriented inversion
ν1i. Sinceν1i is different fromµi, there will be some negative elements after applyingν1i; assume that
the maximum negative element among them is−y. Thus,y − 1 must be positive and the oriented pair
(−y,+(y− 1)) defines the other oriented inversionν2i. It is easy to verify that these inversions have the
required properties.

For the third case, if the innermost component is also bad then we can find the two new inversions
using the first case. If it is good, then we find the inversions using the logic of the second case.

The linear-time complexity can be achieved by using a lookupvector that maps each element to
its index in the permutation. (This is created in the beginning and maintained throughout the sorting
process.) Thus, for the first case, with a single scan ofL, we can findw and−(w − 1) and with another
scan of elements betweenl andw − 1 in the lookup vector, the pair((y − 1),−y). The other cases can
be analyzed similarly. Note that in no case do we need to scan any element that is not a part ofb. Thus
the inversionsν1i andν2i can be found inO(m) time.

Appending inversions to the sorting scenario:

To reiterate, after we get the permutationqi = π · S1i we apply the scenarioν1i · ν2i · µi on qi. Now
we would like to ensure that some scenario of inversionsS′

i we append afterµi does not invalidate the
scenarioS2i (i.e. S1i ·ν1i ·ν2i ·µi ·S′

i ·S2i is a valid scenario of oriented inversions). CallG(π) the set
of good components for a permutationπ. A slight extension to the proof of Theorem 3 from [86] shows
the following:

Lemma 5.4.4. The set of good componentsG(qi · µi) is identical toG(qi · ν1i · ν2i · µi).

This tells us that inversions associated withS2i will be part of distinct components inqi ·ν1i ·ν2i ·µi

and that these components will be exactly as they are inqi · µi. So any scenario of inversionsS′
i will

only heal breakpoints on components other than those ofS2i.
We continue by showing how to compute anS′

i, ensuring that we only work on the components of
G(qi ·µi). We achieve this by renaming the permutationqi in the following way. By definition,qi ·µi has
at least one bad component created byµi along with a possibly nonempty setG(qi · µi) The inversions

87

that sort the components ofG(qi ·µi) correspond exactly to the scenarioS2i. Thus, our desired scenario
S′
i of inversions should only displace (if at all) such components without affecting their structure.

Say there is a componentc of lengthm with left frame elementl. Thecanonical formĉ of c is a
permutation of lengthm with ĉ[i] = c[i] − l + 1, 1 ≤ i ≤ m, wherep[i] denotes theith element of a
permutationp. Componentsc andd are said to bestructurally equivalentif and only if we havêc = d̂.

Lemma 5.4.5.Letqi be a permutation without a bad component andµi be an inversion such thatqi ·µi

has at least one bad component and a set of good componentsG(qi · µi). There exists aq′i where any
scenarioS′

i that sortsq′i to the identity, when applied toqi, will result in a permutation whose only
components are those inG(qi · µi).

Proof. Rename the permutationqi · µi such that all breakpoints from components inG(qi · µi) become
non-breakpoints and then undoµi to getq′i. Note that this renaming leaves one structurally equivalent
bad component in place of each bad component, so that the renaming is unique. An inversion scenario
that sortsq′i to the identity heals all breakpoints from the bad components inqi ·µi; moreover, it does not
act upon any adjacency or heal any breakpoint from components inG(qi ·µi) due to the nesting property
of FCIs.

For example, takeqi = (2 3 6 7 4−8 −5 −9 10−1) andµi = µ(6, 7). Now qi · µi is (2 3 6 7 4 5 8−9
10−1), so thatG(qi · µi) is comprised of the components framed by the pair (of frame elements) (0,11)
and the pair (8,10).qi · µi is renamed toq′i · µi = (1 2 5 6 3 4 7 8 9 10), yieldingq′i = (1 2 5 6 3−7 −4 8
9 10). The sorting scenarioS′

i = (ρ(3, 6), ρ(3, 4), ρ(4, 7)) for q′i can be applied toqi to get (2 3 4 5 6 7
8 −9 10−1).

Lemma 5.4.6. Given a permutationp with a set of bad componentsB(p), permutationp′ that has one
structurally equivalent bad component in place of eachb ∈ B(p) and only non-breakpoints everywhere
else, can be constructed in linear time.

Proof. If an adjacency is not part of a bad component then label it with a null value; otherwise label
it by the bad component of which it is part of. Also label adjacencies with the left and right endpoints
of each component, which can be done in linear time [8, 12]. Weuse a stackR, the top of which we
denote bytop(R). Perform the following steps until the end of the permutation is reached, i.e., until we
havei = n.

1. p[0] = 0, i = 1.

2. Label each elementp′[i] with the valuep′[i− 1] + 1, incrementingi until the adjacency (p[i− 1]
p[i]) corresponds to a bad component.

3. If the adjacency (p[i − 1] p[i]) is a left endpoint, then push ontoR the valuep[i − 1] − p′[i − 1].
Go to step 4.

4. Do this, incrementingi, until an adjacency with a different component label is reached: Label
each elementp′[i] = p[i]− top(R) and if it is a right endpoint, then pop thetop(R). Go to step 2.

Overall running time analysis:

We call this algorithm, with the recovery phase included, MAX-RECOVER or RAND-RECOVER,
depending on whether algorithm MAX or algorithm RAND is usedin the forward-sorting phase. If
algorithm MAX or RAND gets stuck at a positive permutationpi, we proceed by undoing inversions
until a permutationqi is found such thatqi · µi has fewer bad components thanqi. Finding such aqi

88

Table 5.1:The failure rates for MAX, RAND and RAND+RESTART
Length 100 200 500 1,000 2,000 5,000 10,000 20,000
MAX 39.5% 38.9% 39.0% 39.1% 39.3% 39.3% 39.3% 39.2%

RAND 39.0% 39.2% 39.5% 39.5% 39.6% 39.5% 39.6% 39.5%
RAND-RESTART 17.2 % 17.1 % 16.8 % 16.4 % 16.3 % 16.2 % 16.0 % 16.0 %

Table 5.2:Number of recovery steps (k) for MAX-RECOVER: Average and Standard Deviation
Length 100 200 500 1,000 2,000 5,000 10,000 20,000
AVE(k) 0.513 0.518 0.522 0.524 0.524 0.525 0.524 0.525

SD(k) 0.765 0.770 0.772 0.774 0.773 0.775 0.774 0.777

andµi alone takesO(n + |S2i| log n) time. The inversions undone in this step are not discarded as
they can be applied after inserting at least two more inversions. Notice that each inversion undone in
the trace-back must be done or undone on a splay tree at most three times and thatS2i andS2j for any
two pi andpj, i 6= j, will be disjoint. Thus theO(n log n) term describes the amount of time spent for
undoing inversions over the entire course of the algorithm and just a linear amount of work beyond that
must be done in each recovery phase.

Theorem 5.4.7.The running time of MAX-RECOVER or RAND-RECOVER isO(n log n + kn) where
k is the total number of unsafe inversions performed in the algorithm.

In Section 5.5 we show strong empirical evidence that, on random permutations of lengthn, the
average value and standard deviation ofk remain constant (about12) even asn grows very large, leading
us to conjecture that these algorithms sort almost all permutations inO(n log n) time. In the worst case,
however, RAND-RECOVER and MAX-RECOVER can useΘ(n2) time, as in the following family of
permutations: build a permutation of lengthn by starting with the identity permutation of lengthn mod
5 as the first block, followed byn/5 copies of the blocki(i+ 3)(i+1)−(i+ 4)−(i+ 2)(i+ 5), each of
which shares its first element with the last element of the preceding block.

5.5 Experimental Results

We present experimental results for algorithms MAX, RAND, MAX-RECOVER and RAND-RECOVER.
All of the experiments are on random permutations of length100, 200, 500, 1000, 2000, 5000, 10, 000
and20, 000. For each length, we tested our algorithms on1, 000, 000 permutations.

Table 5.1 lists the failure rates for algorithm MAX and algorithm RAND. Algorithm MAX and
algorithm RAND produce a full sorting scenario with frequency 61%. We also include the failure rates
for RAND-RESTART: the simple heuristic that runs RAND on theinput permutation a second time if it
fails to sort at the first attempt. The failure rate for RAND-RESTART reduces to16% (≈ 0.39 × 0.39),
which suggests that the two runs are independent with respect to the failure rate.

Tables 5.2 and 5.3 summarize the details of the number of recovery steps,k, that we observe in
algorithms MAX-RECOVER and RAND-RECOVER. The average value and the standard deviation of
k remain constant asn grows. Figure 5.1 shows the distribution ofk for MAX-RECOVER on random
permutations of length10, 000. This figure is representative of the observed distributionfor the other
lengths as well. The similarity to the inverse exponential function suggests that the upper bound for the
average value ofk is a constant.

89

0 1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of recovery steps: k

P
ro

po
rt

io
n

of
 tr

ia
ls

Figure 5.1: The distribution ofk for MAX-RECOVER on random permutations of length10, 000.

Table 5.3:Number of recovery steps (k) for RAND-RECOVER: Average and Standard Deviation
Length 100 200 500 1,000 2,000 5,000 10,000 20,000
AVE(k) 0.485 0.489 0.492 0.493 0.495 0.495 0.495 0.499

SD(k) 0.690 0.694 0.697 0.697 0.698 0.698 0.698 0.699

5.6 Conclusions

We have given two new algorithms for sorting signed permutations by inversions, one a fast heuristic
that works on most permutations, the other a deterministic algorithm that sorts all permutations and takes
O(n log n) time on almost all of them. We have given the results of very extensive experimentation to
confirm these claims. We have thus taken a major step towards afinal resolution of the sorting problem:
we believe tools presented here will eventually lead to a proof that we can sort most permutations in
O(n log n) time. Future work may also include design of an algorithm to deal with the few remaining
permutations that require more time.

90

Chapter 6

Conclusion

We have described improvements in three main areas ofcomparative genomics: genomic distances in
the presence of duplicate genes, ancestral genome inference, and the classical problem of sorting signed
permutations by inversions. Behind all of the work in the first two areas is the simplifying assumption
that certain hard-to-compare pairs of genomes are rarely encountered. In Chapter 2 we confirmed the
validity of this assumption by showing that hurdles and fortresses occur in permutations with probability
Θ(n−2) andΘ(n−15) respectively. This finished the fundamental work that was started by Alberto
Caprara [24] ten years ago.

Foundational work for computing evolutionary distances between genomes with unequal and du-
plicated gene content was presented in Chapter 3. In a restricted setting where only one of the two
genomes being compared contains duplicated genes we gave anapproximation algorithm with constant
error bound. We expect that this bound may be improved by leveraging the dichotomy between the
number of cycles and the number of deletions1 but do not address this here. We also found nontrivial
but detectable conditions under which we can compute the minimum evolutionary distance between two
genomes. In the process we built a machinery that facilitates a reduction showing almost every known
problem2 related to distance minimization with duplicate genes (those define in Section 3.2.1) to be
NP-Hard.

The methodology of the aforementioned approximation algorithm was extended to be used in the
general setting — where inversions, deletions, and unrestricted (duplicating) insertions — were con-
sidered. We found through simulation studies that this extension tracked the true evolutionary distance
quite well, and that simulated trees that evolved through the supposed model could be reconstructed very
accurately. Further, on the one real dataset we tried — the dataset of 13 bacteria from Earnest-DeYoung
[31] with genome sizes ranging from 1,000 to over 5,000 genesand gene families of up to 70 members
— we reconstructed the true (accepted by the biologists) tree almost exactly.

In the process of computing these distances, we always create a mapping from the genes of some
family in one genome to those from the same family in another.This mapping is of particular inter-
est because it can give insight into the evolutionary relationship of two genes; the most parsimonious
assignment of duplicate genes could indicate which genes originated during some duplication event.
Sometimes such genes are calledpositional homologs. Information of this sort may be instrumental in
identifying orthologybetween genes [38, 4]. Future work must draw this connectionbetween positional
homologs and orthology, as well as reconcile the relationship between positional homology and gene
function.

1For example, take the permutationsA = (1 2 3 4) andB = (5 3 4 3 -1 -2). If the first 3 ofB is chosen then there are 2
deletions and 2 inversions necessary but choosing the second 3, while increasing the number of inversions by 2, reduces the
number of deletions necessary. We conjecture that under most circumstances any assignment would be within three halvesof
the optimal.

2The result does not apply to problems that concern genome halving/doubling [34].

91

In Chapter 4 we showed that there are certain conditions under which ancestral gene sequences can
be reliably reconstructed. But the questions surrounding ancestral reconstruction seem to be numerous,
the most striking of which are: if ancestral sequences can beinferred, what will biologists find most
interesting about these sequences; can knowing the ancestral sequence give insight into the regulatory
interdependence of a group of genes; and if some full sequences cannot be reconstructed, what other
approximations can we settle for? Computational methods have only started to scratch the surface in
this field.

Finally, we gave important steps towards a resolution of thesorting by inversions problem. In par-
ticular, we showed how to find an oriented inversion in constant time while maintaining a data structure
first applied in this context by Kaplan and Verbin. We also showed that we can recover from an unsafe
inversion in linear time without disturbing already computed inversions, all without the knowledge of
the overlap graph. Both pave the way for many avenues that we are currently exploring to finalize an
algorithm that provably runs inO(n log n) time for almost all permutations.

92

Bibliography

[1] Y. Ajana, J.-F. Lefebvre, E.R.M. Tillier, and N. El-Mabrouk. Exploring the set of all minimal
sequences of reversals - an application to test the replication-directed reversal hypothesis. InWABI
’02: Proceedings of the Second International Workshop on Algorithms in Bioinformatics, pages
300–315, London, UK, 2002. Springer-Verlag.

[2] D.J. Aldous. Stochastic models and descriptive statistics for phylogenetic trees, from yule to today.
Statistical Science, 16:23–34, 2001.

[3] M.A. Alekseyev and P.A. Pevzner. Whole genome duplications, multi-break rearrangements, and
genome halving problem. InSODA ’07: Proceedings of the eighteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 665–679, Philadelphia, PA, USA, 2007. Society for Industrial
and Applied Mathematics.

[4] A.M. Altenhoff and C. Dessimoz. Phylogenetic and functional assessment of orthologs inference
projects and methods.PLoS Comput Biol, 5(1):e1000262, 2009.

[5] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment search
tool. J. Mol. Biol., 215:403–410, 1990.

[6] S. Angelov, B. Harb, S. Kannan, S. Khanna, and J. Kim. Efficient enumeration of phylogenetically
informative substrings. InProc. 10th Ann. Int’l Conf. Comput. Mol. Biol. (RECOMB’06), pages
248–264, 2006.

[7] W. Arndt and J. Tang. Improving inversion median computation using commuting reversals and-
cycle information. InProc. 5th Workshop Comp. Genomics (RECOMB-CG’07), volume 4751 of
Lecture Notes in Computer Science, pages 30–44. Springer Verlag, Berlin, 2007.

[8] D.A. Bader, B.M.E. Moret, and M. Yan. A fast linear-time algorithm for inversion distance with
an experimental comparison.J. Comput. Biol., 8(5):483–491, 2001.

[9] D.A. Bader, B.M.E. Moret, and M. Yan. A linear-time algorithm for computing inversion distance
between signed permutations with an experimental study.J. Comput. Biol., 8(5):483–491, 2001.
A preliminary version appeared in WADS’01, pp. 365–376.

[10] V. Bafna and P.A. Pevzner. Genome rearrangements and sorting by reversals. InSFCS ’93: Pro-
ceedings of the Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science, pages
148–157, Washington, DC, USA, 1993. IEEE Computer Society.

[11] A. Bergeron, C. Chauve, T. Hartman, and K. Saint-Onge. On the properties of sequences of
reversals that sort a signed permutation.JOBIM, pages 99–108, June 2002.

[12] A. Bergeron, S. Heber, and J. Stoye. Common intervals and sorting by reversals: a marriage of
necessity. InProc. 2nd European Conf. Comput. Biol. ECCB’02, pages 54–63, 2002.

93

[13] A. Bergeron and J. Stoye. On the similarity of sets of permutations and its applications to genome
comparison. InProc. 9th Int’l Conf. Computing and Combinatorics (COCOON’03), volume 2697
of Lecture Notes in Computer Science, pages 68–79. Springer Verlag, Berlin, 2003.

[14] P. Berman and M. Karpinski. On some tighter inapproximability results. Technical Report 29,
University of Trier, Trier, Germany, 1998. http://www.eccc.uni-trier.de/.

[15] G. Blin, C. Chauve, and G. Fertin. Genes order and phylogenetic reconstruction: Application to
γ-proteobacteria. InProc. 2nd Workshop Comp. Genomics (RECOMB-CG’05), volume 3388 of
Lecture Notes in Computer Science, pages 11–20. Springer Verlag, Berlin, 2004.

[16] A. Bouchet. Reducing prime graphs and recognizing circle graphs.Combinatorica, 7(3):243–254,
1987.

[17] G. Bourque and P.A. Pevzner. Genome-scale evolution: reconstructing gene orders in the ancestral
species.Genome Research, 12:26–36, 2002.

[18] G. Bourque, G. Tesler, and P.A. Pevzner. The convergence of cytogenetics and rearrangement-
based models for ancestral genome reconstruction.Genome Research, 16:311–313, 2006.

[19] M.D.V. Braga, M. Sagot, C. Scornavacca, and E. Tannier.The Solution Space of Sorting by
Reversals. InBioinformatics Research and Applications: Proceedings from ISBRA 2007. Springer,
2007.

[20] D. Bryant. The complexity of calculating exemplar distances. In D. Sankoff and J. Nadeau, editors,
Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map
Alignment, and the Evolution of Gene Families, pages 207–212. Kluwer Academic Publishers,
Dordrecht, NL, 2000.

[21] D. Bryant, V. Berry, T. Jiang, P. Kearney, M. Li, T. Wareham, and H. Zhang. A practical algorithm
for recovering the best supported edges of an evolutionary tree. InProc. 11th Ann. ACM/SIAM
Symp. Discrete Algs. (SODA’00), pages 287–296. ACM Press, New York, 2000.

[22] A. Caprara. Sorting by reversals is difficult. InProc. 1st Ann. Int’l Conf. Comput. Mol. Biol.
(RECOMB’97), pages 75–83. ACM Press, New York, 1997.

[23] A. Caprara. Formulations and hardness of multiple sorting by reversals. InProc. 3rd Ann. Int’l
Conf. Comput. Mol. Biol. (RECOMB’99), pages 84–93. ACM Press, New York, 1999.

[24] A. Caprara. On the tightness of the alternating-cycle lower bound for sorting by reversals.J.
Combin. Optimization, 3:149–182, 1999.

[25] A. Caprara. Sorting permutations by reversals and eulerian cycle decompositions.SIAM J. Discrete
Math., 12(1):91–110, 1999.

[26] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, andT. Jiang. Computing the assignment
of orthologous genes via genome rearrangement. InProc. 3rd Asia Pacific Bioinformatics Conf.
(APBC’05), pages 363–378. Imperial College Press, London, 2005.

[27] M. Chrobak, P. Kolman, and J. Sgall. The greedy algorithm for the minimum common string
partition problem.ACM Transactions on Algorithms, 1(2):350–366, 2005.

[28] M.E. Cosner, R.K. Jansen, B.M.E. Moret, L.A. Raubeson,L. Wang, T. Warnow, and S.K. Wyman.
A new fast heuristic for computing the breakpoint phylogenyand experimental phylogenetic anal-
yses of real and synthetic data. InProc. 8th Int’l Conf. on Intelligent Systems for Mol. Biol.
(ISMB’00), pages 104–115, 2000.

94

[29] M.E. Cosner, R.K. Jansen, B.M.E. Moret, L.A. Raubeson,L.-S. Wang, T. Warnow, and S.K.
Wyman. A new fast heuristic for computing the breakpoint phylogeny and a phylogenetic analysis
of a group of highly rearranged chloroplast genomes. InProc. 8th Int’l Conf. on Intelligent Systems
for Mol. Biol. (ISMB’00), pages 104–115, 2000.

[30] J. Earnest-DeYoung, E. Lerat, and B.M.E. Moret. Reversing gene erosion: reconstructing ances-
tral bacterial genomes from gene-content and gene-order data. In Proc. 4th Int’l Workshop Algs.
in Bioinformatics (WABI’04), volume 3240 ofLecture Notes in Computer Science, pages 1–13.
Springer Verlag, Berlin, 2004.

[31] J.V. Earnest-DeYoung. Reversing gene erosion: Reconstructing ancestral bacterial gene orders.
Master’s thesis, University of New Mexico, 2004.

[32] N. El-Mabrouk. Genome rearrangement by reversals and insertions/deletions of contiguous seg-
ments. InProc. 11th Ann. Symp. Combin. Pattern Matching (CPM’00), volume 1848 ofLecture
Notes in Computer Science, pages 222–234. Springer Verlag, Berlin, 2000.

[33] N. El-Mabrouk. Reconstructing an ancestral genome using minimum segments duplications and
reversals.J. Comput. Syst. Sci., 65:442–464, 2002.

[34] N. El-Mabrouk, J.H. Nadeau, and D. Sankoff. Genome halving. In CPM, pages 235–250, 1998.

[35] N. Eriksen. Reversal and transposition medians.Theor. Comput. Sci., 374(1-3):111–126, 2007.

[36] S. Even and A. Itai. Queues, stacks, and graphs. InTheory of Machines and Computations.
Academic Press, 1971.

[37] S. Even, A. Pnueli, and A. Lempel. Permutation graphs and transitive graphs.JACM, 19(3):400–
410, 1972.

[38] W.M. Fitch. Distinguishing homologous from analogousproteins.Syst Zool, 19:99–113, 1970.

[39] M.R. Garey and D.S. Johnson.Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman & Co., New York, NY, USA, 1979.

[40] F. Gavril. Algorithms for a maximum clique and a maximumindependent set of a circle graph.
Networks, 3:261–273, 1973.

[41] A. Goldstein, P. Kolman, and J. Zheng. Minimum common string partition problem: Hardness and
approximations.Electr. J. Comb., 12, 2005.

[42] S. Hannenhalli and P.A. Pevzner. Transforming cabbageinto turnip (polynomial algorithm for
sorting signed permutations by reversals). InProc. 27th Ann. ACM Symp. Theory of Comput.
(STOC’95), pages 178–189. ACM Press, New York, 1995.

[43] S. Hannenhalli and P.A. Pevzner. Transforming mice into men (polynomial algorithm for genomic
distance problems). InProc. 36th Ann. IEEE Symp. Foundations of Comput. Sci. (FOCS’95), pages
581–592. IEEE Press, Piscataway, NJ, 1995.

[44] S.B. Heard. Patterns in phylogenetic tree balance withvariable and evolving speciation rates.Evol.,
50:2141–2148, 1996.

[45] H. Kaplan, R. Shamir, and R.E. Tarjan. Faster and simpler algorithm for sorting signed permuta-
tions by reversals.SIAM J. Computing, 29(3):880–892, 1999.

95

[46] H. Kaplan and E. Verbin. Efficient data structures and a new randomized approach for sorting
signed permutations by reversals. InProc. 14th Ann. Symp. Combin. Pattern Matching (CPM’03),
volume 2676 ofLecture Notes in Computer Science, pages 170–185. Springer Verlag, Berlin, 2003.

[47] J.D. Kececioglu and D Sankoff. Exact and approximationalgorithms for the inversion distance
between two chromosomes. InCPM, pages 87–105, 1993.

[48] J.D. Kececioglu and D Sankoff. Efficient bounds for oriented chromosome inversion distance. In
CPM, pages 307–325, 1994.

[49] P. Kolman and T. Walen. Approximating reversal distance for strings with bounded number of
duplicates.Discrete Applied Mathematics, 155(3):327–336, 2007.

[50] P. Kolman and T. Walen. Reversal distance for strings with duplicates: Linear time approximation
using hitting set.Electr. J. Comb., 14(1), 2007.

[51] B. Larget, D.L. Simon, J.B. Kadane, and D. Sweet. A bayesian analysis of metazoan mitochondrial
genome arrangements.Mol. Biol. Evol., 22(3):486–495, 2005.

[52] D.A. Liberles, editor.Ancestral Sequence Reconstruction. Oxford University Press, UK, 2007.

[53] J. Ma, L. Zhang, B. Suh, B. Raney, R. Burhans, W. Kent W, M.Blanchette, D. Haussler, and
W. Miller. Reconstructing contiguous regions of an ancestral genome.Genome Research, 16:1557–
1565, 2006.

[54] M. Marron, K.M. Swenson, and B.M.E. Moret. Genomic distances under deletions and insertions.
Theor. Computer Science, 325(3):347–360, 2004.

[55] I. Miklós and J. Hein. Genome rearrangement in mitochondria and its computational biology.
In Proc. 2nd Workshop Comp. Genomics (RECOMB-CG’05), volume 3388 ofLecture Notes in
Computer Science, pages 85–96. Springer Verlag, Berlin, 2004.

[56] I. Miklós, B. Mélykúti, and K.M. Swenson. The metropolized partial importance sampling mcmc
mixes slowly on minimal reversal rearrangement paths.IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, 0(0):0–0, 2009.

[57] B.M.E. Moret, A.C. Siepel, J. Tang, and T. Liu. Inversion medians outperform breakpoint medians
in phylogeny reconstruction from gene-order data. InProc. 2nd Int’l Workshop Algs. in Bioinfor-
matics (WABI’02), volume 2452 ofLecture Notes in Computer Science, pages 521–536. Springer
Verlag, Berlin, 2002.

[58] B.M.E. Moret and T. Warnow. Advances in phylogeny reconstruction from gene order and content
data. In E.A. Zimmer and E.H. Roalson, editors,Molecular Evolution: Producing the Biochemical
Data, Part B, volume 395 ofMethods in Enzymology, pages 673–700. Elsevier, 2005.

[59] B.M.E. Moret, S.K. Wyman, D.A. Bader, T. Warnow, and M. Yan. A new implementation and
detailed study of breakpoint analysis. InProc. 6th Pacific Symp. on Biocomputing (PSB’01), pages
583–594. World Scientific Pub., 2001.

[60] L. Nakhleh, B.M.E. Moret, U. Roshan, K. St. John, and T. Warnow. The accuracy of fast phylo-
genetic methods for large datasets. InProc. 7th Pacific Symp. on Biocomputing (PSB’02), pages
211–222. World Scientific Pub., 2002.

[61] A. Ouangraoua and A. Bergeron. Parking functions, labeled trees and dcj sorting scenarios.CoRR,
abs/0903.2499, 2009.

96

[62] W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison.Proc. Nat’l
Acad. Sci., USA, 85:2444–2448, 1988.

[63] I. Pe’er and R. Shamir. The median problems for breakpoints are NP-complete.Elec. Colloq. on
Comput. Complexity, 71, 1998.

[64] D.R. Robinson and L.R. Foulds. Comparison of phylogenetic trees. Mathematical Biosciences,
53:131–147, 1981.

[65] D. Sankoff. Edit distance for genome comparison based on non-local operations. InProc. 3rd Ann.
Symp. Combin. Pattern Matching (CPM’92), volume 644 ofLecture Notes in Computer Science,
pages 121–135. Springer Verlag, Berlin, 1992.

[66] D. Sankoff. Genome rearrangement with gene families.Bioinformatics, 15(11):990–917, 1999.

[67] D. Sankoff and M. Blanchette. The median problem for breakpoints in comparative genomics.
In Proc. 3rd Int’l Conf. Computing and Combinatorics (COCOON’97), volume 1276 ofLecture
Notes in Computer Science, pages 251–264. Springer Verlag, Berlin, 1997.

[68] D. Sankoff, G. Sundaram, and J. Kececioglu. Steiner points in the space of genome rearrangements.
Int’l J. Foundations of Computer Science, 7:1–9, 1996.

[69] J.C. Setubal and J. Meidanis.Introduction to Computational Molecular Biology. PWS Publishers,
Boston, MA, 1997.

[70] A.C. Siepel and B.M.E. Moret. Finding an optimal inversion median: Experimental results. In
Proc. 1st Int’l Workshop Algs. in Bioinformatics (WABI’01), volume 2149 ofLecture Notes in
Computer Science, pages 189–203. Springer Verlag, Berlin, 2001.

[71] D.D. Sleator and R.E. Tarjan. Self-adjusting binary search trees.J. ACM, 32(3):652–686, 1985.

[72] J.P. Spinrad. Recognition of circle graphs.Journal of Algorithms, 16(2):264–282, 1994.

[73] J.P. Spinrad.Efficient Graph Representations. American Mathematical Society, 2003.

[74] A.H. Sturtevant and G.W. Beadle. The relation of inversions in the x-chromosome of drosophila
melanogaster to crossing over and disjunction.Genetics, 21:554–604, 1936.

[75] A.H. Sturtevant and Th. Dobzhansky. Geographical distribution and cytology of “sex ratio” in
drosophila pseudoobscura and related species.Genetics, 21:473–490, 1936.

[76] A.H. Sturtevant and Th. Dobzhansky. Inversions in the third chromosome of wild races of
drosophila pseudoobscura and their use in the study of the history of the species.Proc. Nat’l
Acad. Sci., USA, 22:448–450, 1936.

[77] A.H. Sturtevant and E. Novitski. The homologies of chromosome elements in the genus drosophila.
Genetics, 26:517–541, 1941.

[78] J. Suksawatchon, C. Lursinsap, and M. Bodén. Heuristic algorithm for computing reversal distance
with multigene families via binary integer programming. InCIBCB, pages 187–193, 2005.

[79] K.M. Swenson, W. Arndt, J. Tang, and B.M.E. Moret. Phylogenetic reconstruction from complete
gene orders of whole genomes. InProc. 6rd Asia Pacific Bioinformatics Conf. (APBC’08), pages
241–250, 2008.

97

[80] K.M. Swenson, Y. Lin, V. Rajan, and B.M.E. Moret. Hurdles hardly have to be heeded. InProc.
6th Workshop Comp. Genomics (RECOMB-CG’08), volume 5267 ofLecture Notes in Computer
Science, pages 239–249. Springer Verlag, Berlin, 2008.

[81] K.M. Swenson, M. Marron, J.V. Earnest-DeYoung, and B.M.E. Moret. Approximating the true
evolutionary distance between two genomes. InProc. 7th SIAM Workshop on Algorithm Engineer-
ing & Experiments (ALENEX’05). SIAM Press, Philadelphia, 2005.

[82] K.M. Swenson, M. Marron, J.V. Earnest-Deyoung, and B.M.E. Moret. Approximating the true
evolutionary distance between two genomes.J. Exp. Algorithmics, 12:1–17, 2008.

[83] K.M. Swenson, N.D. Pattengale, and B.M.E. Moret. A framework for orthology assignment from
gene rearrangement data. InComparative Genomics, RECOMB 2005 International Workshop,
RCG 2005, pages 153–166, 2005.

[84] J. Tang and B.M.E. Moret. Linear programming for phylogenetic reconstruction based on gene
rearrangements. InProc. 15th Ann. Symp. Combin. Pattern Matching (CPM’04), Lecture Notes in
Computer Science, 1995. to appear.

[85] J. Tang and B.M.E. Moret. Scaling up accurate phylogenetic reconstruction from gene-order data.
In Proc. 11th Int’l Conf. on Intelligent Systems for Mol. Biol.(ISMB’03), volume 19 ofBioinfor-
matics, pages i305–i312. Oxford U. Press, 2003.

[86] E. Tannier, A. Bergeron, and M.-F. Sagot. Advances on sorting by reversals.Disc. Appl. Math.,
155(6–7):881–888, 2007.

[87] E. Tannier and M. Sagot. Sorting by reversals in subquadratic time. InProc. 15th Ann. Symp.
Combin. Pattern Matching (CPM’04), volume 3109 ofLecture Notes in Computer Science, pages
1–13. Springer Verlag, Berlin, 2004.

[88] G. Tesler. Efficient algorithms for multichromosomal genome rearrangements.J. Comput. Syst.
Sci., 65(3):587–609, 2002.

[89] G. Valiente. A new simple algorithm for the maximum-weight independent set problem on circle
graphs. InProc. 14th Int’l. Symp. Alg. and Comp. (ISAAC’03), volume 2906 ofLecture Notes in
Computer Science, pages 129–137. Springer Verlag, Berlin, 2003.

[90] J.D. Watson and F.H.C. Crick. Molecular structure of nucleic acids: A structure for deoxyribose
nucleic acid.Nature, 171:737–738, 1953.

[91] G.A. Watterson, W.J. Ewens, T.E. Hall, and A. Morgan. The chromosome inversion problem.J.
Theoretical Biology, 99:1–7, 1982.

98

	Introduction and Background
	Introduction
	Background
	The Breakpoint Graph

	Ignoring Hurdles and Fortresses
	Hurdles and Fortresses as Framed Common Intervals
	The Rarity of Hurdles and Fortresses
	Hurdles
	Fortresses

	Unequal Gene Content
	Insertions and Deletions
	Duplicate Elements
	Problem Definitions
	Background

	Approximating the One to Many Duplicate Assignment (OtMDA) Problem
	Unrestricted Insertions
	Our Algorithm
	Experimental Results

	Applying the Cover to the Many to Many Duplicate Assignment (MtMDA) Problem
	Background
	Constructing a Small Cover
	Experimental Design
	Experimental Results
	Improved Heuristics
	Saturation
	Sophisticated Tree Reconstruction
	Conclusion and Future Directions

	Towards a Practical Solution to the One to Many Duplicate Assignment (OtMDA) Problem
	The Generalized Breakpoint Graph
	The Consequences of An Assignment
	The Cycle Maximization Problem
	Buried Operations
	Chains and Stars
	Reduced Forms
	An Approximation Framework
	Conclusion

	NP-Hardness Proof for OtMCM, MtMCM, RDD, OtMRD, and MtMRD
	Triangle Matching
	Preliminaries
	TriM to OtMCM
	TriM to MtMCM, ERD, OtMRD, and MtMRD

	Reconstructing Ancestors
	Noninterfering Inversions
	Definitions
	Maximum Sets of Commuting Inversions
	Maximum Sets of Noninterfering Inversions
	Handling Multiple Permutations
	Two Notes on Hurdles
	Experimental Results
	Conclusions

	Inversion Signatures
	Notation and Definitions
	Methods
	Results and Discussion
	Conclusions

	Sorting By Inversions in O(nlogn) Time
	Preliminaries
	Background: Data Structures for Permutations
	Our Algorithm
	MAX inversions
	Maintaining information through an inversion
	Finding the MAX pair
	Finding the indices of the MAX inversion
	Putting it all together

	Bypassing Bad Components
	Randomized restarts
	Recovering from an unsafe inversion: Tannier and Sagot's approach
	Recovering from an unsafe inversion: Our approach

	Experimental Results
	Conclusions

	Conclusion

