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Abstract

Advances in sequencing technology are yielding DNA seqei€iata at an alarming rate —a
rate reminiscent of Moore’s law. Biologists’ abilities toalyze this data, however, have not
kept pace. On the other hand, the discrete and mechanicaknatthe cell life-cycle has
been tantalizing to computer scientists. Thus in the 198@seers of the field now called
Computational Biology began to uncover a wealth of compstéence problems, some
confronting modern Biologists and some hidden in the anoftke biological literature.
In particular, many interesting twists were introduced lassical string matching, sorting,
and graph problems.

One such problem, first posed in 1941 but rediscovered inaHg £980s, is that of sorting

by inversions (also called reversals): given two permaies find the minimum number of
inversions required to transform one into the other, wharazersion inverts the order of
a subpermutation. Indeed, many genomes have evolved naosihyly through inversions.

Thus it becomes possible to trace evolutionary historiesngrring sequences of such
inversions that led to today’s genomes from a distant comearmestor. But unlike the
classic edit distance problem where string editing wadivelg simple, editing permutation

in this way has proved to be more complex.

In this dissertation, we extend the theory so as to make thdiselistances more broadly
applicable and faster to compute, and work towards more golteols that can accurately
infer evolutionary histories. In particular, we presentrikvthat for the first time consid-
ers genomic distances betweamy pair of genomes, with no limitation on the number of
occurrences of a gene. Next we show that there are conditiodsr which an ancestral
genome (or one close to the true ancestor) can be reliabdyseticted. Finally we present
new methodology that computes a minimum-length sequendevefsions to transform
one permutation into another in, on avera@én log n) steps, whereas the best worst-case
algorithm to compute such a sequence u3és,/n logn) steps.

keywords: inversions, reversals, sorting, pairwise distance, dapbins, median, genomes,
evolution, phylogeny, orthology, positional homology



Résune

Les avancées dans la technologie de séquencage sontrederfburnir une quantité de
données génétiques a un rythme alarmant - un rythmelamda loi de Moore. Cependant,
la capacité des biologistes a analyser toutes ces demesuit pas le méme rythme. la
nature mécanique et discréte du cycle cellulaire a togjattiré les informaticiens. Dans
les années 1980, les pionniers du domaine maintenantéappebgie Computationelle ont
commencé a découvrir une quantité de problemes irdtiques dont certains qui posaient
déja probleme aux biologistes, d'autres étant cada®s les annales de la littérature. En
particulier, il fut introduit de nouvelles variations suegdproblemes classiques de string
matching, tri et graphes.

Un de ces problemes, posé d’abord en 1941 mais redédalaves le début des années 80,
est celui de I'assortiment pamversion(aussi appel@eversa): étant donné deux permu-

tations, trouver le nombre minimum d’inversion nécessapour transformer I'une dans
l'autre, une inversion inversant I'ordre d’'une sous-pewtian. En effet, beaucoup de

génomes ont évolué surtout ou uniquement par inverdiodevient donc possible de re-

tracer I'histoire évolutive en inférant de telles séoges d’inversions qui ont amené aux
génomes actuels a partir d'un ancétre commun distanis Méa difference du probléme

classique de distance edit ou le string editing était ikedatent simple, I'édition de permu-

tation de cette facon s’est révélée étre plus compigieecela.

Dans cette dissertation, nous alimentons la théorie plaugit le champ d’application des
edit distances et accélérer leur temps de calcul. Nousesons aussi des outils plus
puissants permettant d’inférer les histoires évolgtide maniéere plus précise. En parti-
culier, nous présentons un travail qui pour la premieie fiwend en considérations les
distances génomiques entrémporte quelle paire de génomes, sans aucune limitation sur
le nombre d’'occurrences d’'un gene. Ensuite hous montratlilsyga des conditions sous
lesquelles un génome ancestral (ou un génome procheriiablé ancétre) peut étre re-
construit fiablement. Enfin nous présentons une nouvedithoaologie qui calcule une
séquence d’inversion minimum pour transformer une peditiaut en une autre en moyenne
en O(nlogn) étapes, alors que I'algorithme du worst-case se calcul®(@n/nlogn)
étapes.

mots cks: inversions, reversals, sorting, pairwise distance, dapbns, median, genomes,
evolution, phylogeny, orthology, positional homology
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Chapter 1

Introduction and Background

1.1 Introduction

Inside each organism, the machine of life is constantlyitigrn Messenger RNAs are copied directly
from the DNA strand and interact with each other in poteltiedmplicated ways before finally produc-
ing proteins. On top of this, proteins interact to create ysjal scaffold on which other proteins carry
out the necessities of sustaining the machine. In an attesnmderstand this cycle of life biologists
rely on clues gained through observation, but unfortugatelse processes are too small and too vital to
an organism'’s survival to be directly observed. On the oftaerd, many recent technological advance-
ments in chemistry and engineering have enabled new assagyslie these molecular workings. No
new technology has so dramatically fueled the increasetm atalection as DNA sequencing. But the
influx of new data has posed more new questions than answetsed, the process of life is encoded
into the DNA strand in a way so convoluted that most have otigngpted to describe its structure in a
statistical manner.

Yet there exists work — actually older than the discoverytaf tdouble helix[[90] — observing
specific events that modify the genetic code. In particianrtevant([74] noticed that a substrand of
the fruit fly DNA can be inverted; in some strains of fruit flyetsequence of genes on the chromosome
appears in reverse order. Further, he showed that thesesionswere linked to the phenotype of those
individuals that possessed it: male flies with a particuteeision had few or no male offspring [75].
So as early as 1936, evolutionary histories between spetiggit fly were being inferred based on
inversion histories [76].

By 1941 genomes were being modeled by permutations so asdy gtoperties of their evolution;
all permutations of up to 5 elements were being tabulatedang, with minimum inversion scenarios
being calculated between them [77]. It was not until 1982 tha fundamental problem was posed:
given two permutations, find a shortest scenario of invessim transform one into the other, where
an inversion inverts the order of a substring of the pernanal91]. So, for two such permutations
(5324 1)and (12 345), ashortest scenario would have thveesions:

(53 2 4 1)
(53 4 2 1)
(5 4 3 2 1)
(1 2 3 4 5 )

Ten years later the more biologically relevaignedversion of the problem was stated: given tsigned
permutations, find a shortest scenarigighedinversions to transform one into the other, where a signed
inversion inverts the order and the signs of the elementssimbatring of the permutation [65]. In this
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setting the pair of permutations from above would requireemario of five signed inversions:

(5 32 4 1)
(5 3 2 -1 -4)
(5 -3 2 -1 -4)
(1 2 3 5 -4)
(1 2 3 -5 -4)
(1 2 3 4 5)

Over the following three years a flurry of work on the subjedhtinated in an impressive theory describ-
ing the exact inversion distance between two genomes, hgs®d structure apparent in the so-called
breakpointgraph, and provided a polynomial time algorithm to comphits tlistance and to extract a
shortest scenario of inversions [42] (The unsigned versiadhe problem was later shown to be APX-
Hard [14]).

On its own, an accurate evolutionadistancehas proved useful in phylogenetic tree reconstruction
[58]. For this reason, much effort has been spent trying tprave the original, somewhat difficult,
algorithm that was presented in 1995. In 2001 this effortminited in a linear time algorithm to
compute the minimum inversion distance between two gendha<fficiently analyzes the structure
of the breakpoint graph [8]. However, it remains an open tijpresas to how fast a minimum inversion
scenariocan be calculated; the fastest algorithm takes (in the veast)O (n/n log n) time [87].

Unfortunately current methods have yet to make a large itnghae to methodological as well as
modeling and data limitations. Indeed, the number of wharognes sequenced ten years ago was
extremely low, the cost of producing one being prohibitivdore importantly, until the turn of the
century, no consideration had been payed to the fact thay mamomes cannot be represented by a
permutation.

On the other hand, recent research is considering more earspblutionary models that compare
genomes with unequal gene content; the ice was broken byoSangroup (and, in particular, El-
Mabrouk) [34] 66/, 32] near the turn of the century. Along withmulating many problems for the first
time, they showed that deletions of contiguous segmentdedmandled within the framework of the
breakpoint graph. For a deeper introduction into this aireduding examples) see Section 312.2.

Sequencing is also cheaper now. A full bacterial genome easefuenced for only three thousand
dollars. Consequently, a few thousand prokaryotic and ¢érgikaryotic sequences now exist. With
talk of the one-thousand-dollar genome on the horizon timelau of fully sequenced organisms is sure
to increase dramatically.

Of late, more difficult questions have been addressed by dharwnity. How many minimum
sorting scenarios between two permutations exist([111, d@ehich is the most likely? What are some
properties of these scenarios|[61]? Can we sample all mmigeenarios to extract useful information
like average inversion length or breakpoint reuse stesi$li/51| 55]? These are questions that still lack a
satisfactory answer [56]. Another such question is thanhegator reconstruction; given a phylogenetic
tree and known genomes at the leaves of the tree, what aredbelikely genomes for the internal
nodes? In 2002, Bourque and Pevzner [17] associated thidiguiavith a better understood problem
called themedianproblem: given three permutations, find a fourth that mimasithe pairwise distance
between it and the other three.

In this dissertation, we make progress in three of the afergioned areas. We improve on the work
of Bourque and Pevzner and offer a new perspective for atigtke ancestral reconstruction problem
in Chaptef#f. In Chaptér 3 we describe foundational work @nputing the inversion distance in the
presence of duplicate genes. In particular we offer the @&nlywn (constant factor) approximation
algorithm for finding the evolutionary distance between gagome and the identity permutation along
with an algorithm that, in practice, accurately predicts distance between any two genomes. We show
that this algorithm, combined with good tree reconstructiechniques can reconstruct phylogenies
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better than the other known methods (Section 8.4.7). KinallChaptef b we show that we can find a
sorting scenario between most pairs of permutatior@(inlog n) time. Supporting much of the work
presented here is the simplifying assumption that certairctsires in genomes are rarely encountered.
We justify the use of this assumption in Chapter 2.

All of the work presented has been accomplished by closatatation with Bernard Moret. Most of
the work presented has included collaboration with somseedulif past and current lab mates including
Guojing Cong, Joel Earnest-DeYoung, Yu Lin, Mark Marron¢ciNPattengale, Vaibhav Rajan, and Jijun
Tang. We will only present work which we feel we were instruntaé in seeing through, indicating
collaborations at the beginning of each section.
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1.2 Background

In our study, we represent a chromosome genes by a signed permutation on the elemgnt8, . .., n},
that is, a permutation with positive or negative signs assed to each element. The signs reflect the
fact that genes can be coded in reverse order on the stramoitl be read on the other of the two
strands that compose a DNA molecule). lwersionp(i, j) is a permutation that, when applied 4o
reverses the order and the sign of the segmenttbiat begins at théth gene and ends at th¢h one.
Thus

p(i,j)=(1,...,i—1,-3,-G—1),...,-(i+1),-i,j+1,....,n),

and we denote - p as the composition gf with 7. For example, withr = (2 4 1-3) andp(2, 3)=(1 -3
-24) we getr - p(2,3) =(2-1-4-3).

An n gene chromosome could be linear or circular, but note thatt mmdels of evolution (ours
being that of inversions) are unaffected by a change in septation from linear to circular or vice-
versa. Each linear permutation corresponds te 1 circular permutations (of length + 1), which
are equivalent in terms of the scenario of inversions usembtbthem: if we join the ends of a linear
permutation to form a circular permutation then an inversi@, j) can be thought of as inverting the
subpermutation from to j, or as inverting the rest of the permutation while fixing thegermutation
fromi to j in place. Thus, throughout this presentation we will coasjgermutations to be either linear
or circular as we see fit. Without loss of generality we coasithat every linear permutation has an
implicit far left element 0 and implicit far right element+ 1.

Say] represents the identity permutation (1 2 3 4.)..Then we can define the following genome
comparison problems:

Problem 1.2.1. Thesorting by inversions probleror signed permutations; and m» asks for a mini-

mum length scenario of inversiops, po, . . . , pg that transformsr; into 5. In other wordsry - p1 . . . -
Pd = T2.
We callpy, po, . . ., pg @anedit scenario

Problem 1.2.2. Theinversion distance probleffior signed permutations; andme asks ford(wy, m2),
the minimum number of inversions needed to transforrinto 7. The numberi(m, 72) is called the
inversion distance

Note that an edit scenario takesto m, if and only if that scenario takes; - 7, 1to I. This motivates
the following equivalent, but simpler formulations:

Problem 1.2.3(SBI problem) Thesorting by inversions probleror signed permutationr asks for a
minimum length scenario of inversiops, ps, . . ., pg that transformsry into the identity permutation.
In other wordsry - p1 - ... - pg = 1.

Problem 1.2.4(ID problem) Theinversion distance problefor signed permutation asks ford(r), the
minimum number of inversions needed to transfarmto 7. The numberi(m) is called theinversion
distance

For example, withr; = (3 2-1 4) andm, = (-1 3 -4 2) we have minimum edit scenarig2, 3) -
p(3,4) - p(1,2) - p(2,2), which is also a minimum edit scenario for - 7, * = (2 4 1-3).

1.2.1 The Breakpoint Graph

The breakthrough in the SBI problem came when KececiogluSamkoff [47] and Bafna and Pevzner
[10] independently derived bounds based on a graph thedratnework. Although the frameworks
were different and neither were the one that would eventusdl used in the final theory, both groups
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Figure 1.1: A permutation and its breakpoint graph. Desilges are shown in gray, reality edges in
black.

noticed a close correlation between the number of cycleseir graphs and the inversion distance.
Kececioglu and Sankoff [48] again gave improved algoritlama bounds for sorting signed permutation
while, only 2 years after the original Kececioglu paper, fiamhalli and Pevzner solidified the theory
in the landmark papet_[42], presenting an exact formula &cuwdating the distance based on certain
structures found in thbreakpoint graph The following exposition describes this correspondence.

Each permutation element will be represented by two vestioae for each “side” of the element.
Edges are included that represent adjacent elements ietiriations. Figure 1.1 shows the breakpoint
graph form = (32 1 4 6-7 -5). The fully sorted identity permutatioh has adjacencies between
consecutive integers. Thus, our desired configurationpisesented by the gray edges in the graph. The
black edges, on the other hand, represent the reality ofdjagencies in the current permutation.

To computed(w) we must look further into the structure of the breakpointpgraDenote the two
vertices representing a permutation elemenin the breakpoint graph by, and=;" (=* can denote
either). Embed the breakpoint graph on a line as followscepldl 2n vertices on the line so that:

1. = andr; are adjacent,
2. m; isleft of =; if and only if 7; is positive, and
3. wi is adjacent toﬁrl if and only if r; andw;, 1 are contiguous imr.

Also add a vertex)t as the leftmost vertex angh + 1)~ as the rightmost vertex. For two vertices
v = wi andvy = wi (i # j) that are adjacent on the line, add the efige v2)—a reality edge; also
add edgesr;", 7, ) for all i along with (0™, 717) and(m;}, (n 4+ 1)~ )—the desire edges.

The breakpomt graph is just as described.in [42], but itseshding clarifies the notion of orientation
of edges. Note that since the degree of every vertex is gxacthe graph decomposes naturally into
cycles. Say inversiop(i,j) acts upona reality edge if it is either th&” or j + 1%¢ reality edge from
the left. Say an inversioacts upora desire edge if the edge is incident to the rightmost vertdken
it" reality edge or leftmost vertex of the+ 1% reality edge. The vertices that connect the acted upon
reality and desire edges are those thatadiectedby the inversion. In our example, the inversion over
substring “6 -7 -5” (also known gg(5, 7)) acts upon reality edged™,6~) and(5~,87). It acts upon
desire edge&—,5") and (5, 4™) while it affects vertice$~ and5™.

Two reality edges on the same cycle amvergentf a traversal of their cycle visits each edge in
the same direction in the linear embedding; otherwise thleyd'arergent The action of an inversion
p(i,7) onm is to swap the connectivity of reality edge ST ) and reality edg({w] , J+1) Thus,
any inversion that acts on a pair of divergent reality edg;mfssthe cycle to which the edges belong,
so is called aycle-splittinginversion. Conversely, no inversion that acts on a pair offeent reality
edges can split their common cycle. (An inversion that aptsa pair of reality edges in two different
cycles simply merges the two cycles.) Notice that at mostayeke can be created by this action on the
graph. Thus we get the inequality

d(m) > (n+1) — ¢(n), (1.1)

wherec(7) is the number of cycles in the breakpoint graph.

13



This lower bound cannot always be realized. Consider thiixpfé= (3 2 1) of the permutation
from Figure 1.1 for example. An enumeration of all scenaoi® inversions shows thdt can be sorted
in no fewer than 3 inversions, whereas inequdlity 1.1 gi#d3) > 4 — 2. Hannenhalli and Pevzner
[42] found the structures that indicate the gap betweenaddverd and bound and the inversion distance,
and coined the terms “hurdles” and “fortresses” to refethtmt. We will visit a full exposition of the
inversion distance in Chaptel 2 and show strong evidence ay we can safely use inequallfy 1.1
as an equality, an assumption that is particularly usefutrwtiealing with duplicate elements (as in
ChaptefB).
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Chapter 2

Ignoring Hurdles and Fortresses

(This is joint work with Yu Lin and Vaibhav Rajan)

The result of Hannenhalli and Pevznerl[42] gives us
d(m) = (n+1) — c(m) + h(m) +{1,0}, (2.1)

wheren is the length ofr, ¢(7) andh(7) are the number of cycles and so-callagdlesin the break-
point graph ofr, and{1,0} is a correction factor that accounts for the possible oetwwe of a rarely
occurring phenomenon, thertress We will see in this section that the machinery behind equaZ.1
is considerably more complicated than inequdlityl 1.1. Hantfor problems that require us to build
permutations in order to minimize distance, like the dugibcassignment problem in Sectign 3, it is
advantageous to optimize only one factor (cycles) rathen tiiree (cycles, hurdles, and fortresses).
Fortunately, Caprara [24] showed that hurdles occur in 66ly2) proportion of the random permuta-
tions of lengthn, effectively justifying the use of inequalify 1.1 as an diyaln this section we prove
the same result using markedly simpler means, a technigueal$o extends to the first analysis of the
rarity of fortresses.

In this section we consider the permutation to be circulfatTs, the last element, is adjacent to
the first elementr;.

2.1 Hurdles and Fortresses as Framed Common Intervals

A pair of elements in a circular permutation;, ;1) is called abreakpointwhenever we have;; —
m # 1(forl <i<n-1)orm —m, # 1. Since there is one-to-one mapping betweeand the
corresponding breakpoint graph, we identify the second thi¢ first and so write that contains cycles,
hurdles, or fortresses if its breakpoint graph does. . etlenote the set of signed permutations aver
elements and? to denote the set of those permutations with- 1 breakpoints. Bergeroat al [11]
proved the following result abo(i? |.

Lemma 2.1.1([11]). Forall n > 1, 1|,| < |Z0| < |Z,].

Definition 2.1.2 (FCI). A framed common intervglFCl) of a permutation (made circular by consid-
ering the first and last elements as being adjacent) is a salgsbf the permutationgs; ss ... sgb or
-bs1ss ... sE-a such that

e foreachi, 1 <i <k, |a| <|s;| < |b], and
e for eachl, |a| < I < |b|, there exists g with |s;| = [, and

¢ it does not contain a proper substrings satisfying the gresitwo properties.

15



So the substringss . . . s; is a (possibly empty) signed permutation of the integersalagreater
thana and less than; a andb form theframe The framed interval is said to be common, in that it also
exists as an intervala(a + 1)(a + 2)...b) in the identity permutation. Recall the permutation from
Figure[1.1. The FCls in the permutation can be illustratefbiémvs.

[0} [3][2][1]]4] [6][-7]-5] |8]

In this example there are exactly two FCls, one framed by Maawad the other framed by 4 and 8.

The spanof an FCI is the number of elements betweeandb, plus two, orb — a + 1. FCI B is
nestednside FCIA if and only if the left and right frame elements dfoccur, respectively, before and
after the frame elements &. A components comprised of all elements inside a framed interval that
are not inside any nested subinterval, plus the frame eltsnArbad componenis a component whose
elements all have the same sign, otherwise the compongobis For example, the permutation from
Figure[1.1 has two components, the leftmost of which is bad.

Bad componentd separateshad component®? and C' if and only if every substring containing
an element ofB and an element of' also has an element of in it. We say thatA protectsB if A
separate®3 from all other bad components. Quperhurdlds a bad component that protects another bad
component. The component framed by 0 and 6 is a superhurthe ipermutation

(0] [2] [][3] [s][1] [s] [8][7] |9]

because it protects the nested component with frame elen@esund 5. Ahurdle is a bad component
that is not a superhurdle. In the above permutation the casms framed by 2 and 5, and 6 and 9 are
hurdles while in the permutation from Figurell.1, only thigntest component is a hurdle. frtress
is a permutation that has an odd number (larger than 1) ofidwyrdll of which are superhurdles. The
permutation of FigurE2]1 is one of the shortest possibledsses.

We will use the following useful facts about FCls; all buttf@follow immediately from the defini-
tions.

1. A bad component indicates the existence of a hurdle.
2. To every hurdle can be assigned a unique bad component.

3. Two FCls can only overlap at their endpoints and at mogt thet endpoints of an FCI can overlap
with other FCIs[[13].

4. An interval shorter than 4 elements cannot be bad.

2.2 The Rarity of Hurdles and Fortresses

In this section, we provide asymptotic characterizatiohghe probability that a hurdle or fortress is
found in a signed permutation selected uniformly at randBach proof has two parts, an upper bound
and a lower bound; for readability, we phrase each part anm&and develop it independently.

7 12 14 16 15 17 13 18

0] 6] [8] [10][9] [11][7]12] [14 17][13] [18]

Figure 2.1: A fortress and its breakpoint graph.
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2.2.1 Hurdles

We begin with hurdles; the characterization for these stres was already known, but the original
proof of Capraral[24] is long and complex. The proof is basedh® observation that more than
one component is unlikely to be found in a random permutaliecause the structure of an FCI is
so particular. Thus, most of the following proof evaluates probability of seeing more than one
component.

Theorem 2.2.1. The probability that a random signed permutationsoelements contains a hurdle is
O(n~2).

Lemma 2.2.2(Upper bound for shorter than— 1). The probability that a random signed permutation
onn elements contains a hurdle spanning no more than2 elements i€ (n=2).

Proof. Fact[4 tells us that we need only consider intervals of at lieas elements. CalF,,_» the
indicator random variable corresponding to the event th&@l spanning no more than— 2 and no
less than four elements exists. CAlli)<,» the indicator random variable corresponding to event that
such an FCI exists with a left endpointat We thus havd'<,,_» = 1 if and only if there exists an,

1 < i < n,with F(i)<,—2 = 1. Note thatF'(i)<,—» = 1 implies eitherr; = a or m; = —b for some
FCI. Thus we can write

, L 1 -2\
PT’(F(’L)Sn,Q = 1) < §m<l—2> (22)

sincem is the probability the right endpoint matches the left endipbr; is -a or b if =; is -b or

a respectively) of an interval of spdrand (7_‘22)_1 is the probability that the appropriate elements are
inside the frame. We can bound the probability from|(2.2) as

| 1 n—4 n—2 -1
Pr(F(Z)gnJ:l) < Q(T_l);< l )

IN

<X (0)) e

where the second term is no greater than

[n/2]-1 “1 [n/2]-1

n—2 1\ vn+l _9
> ( l ) <> (5)7" cow (2.4)
I=/n+1 I=y/n+1

and the first term can be simplified

NG

() - X
>

IN

2
0(3x 16 . /;m n %) = 0(n?). (2.5)
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To computePr(F<,_2) we use the union bound afr(|J;", F(i)<,—2). This removes the factor of
—L_ from (Z.3) yielding just the sum of (2.5) arfd (R.4) whictQ¢n~2). The probability of observing a
hurdle in some subsequence of a permutation can be no gtieatethe probability of observing an FCI
(by fact2). Thus we know the probability of observing a hartiiat spans no more than- 2 elements
isO(n=2). O

We now proceed to bound the probability of a hurdle that spansl or n elements. Call intervals
with such spana-intervals For a bad component spanninglements withu = 4, there is only a single
b = (i—1) that must be’s left neighbor (in the circular order), and for a hurdlespagn — 1 elements
with a = 14, there are only two configurations+({(i-2) +(i-1) +i” and its counterpart +(i-2) —(i-1) +i")
that will create a framed interval. Thus the probabilitytthe see am-interval with a particulan = ¢
is O(1/n) and the expected numberofintervals in a permutation i©(1).

We now use the fact that a bad component is comprised of etsmeéth all the same sign. Thus
the probability that am-interval uses all the elements in its span (i.e., thera exi:mested subintervals)
is O(27™). Call a bad component that does not use all of the elements span (i.e., there must exist
nested subintervals)feagmentednterval.

Lemma 2.2.3(Upper bound for longer tham — 2). The probability that a fragmented-interval is a
hurdle isO(n=2).

Proof. We divide the analysis into three cases where the fragnarmicg subinterval is of span
1. n-1,
2. 4 throughn — 2, and
3. less than 4.

The existence of a subinterval of span- 1 precludes the possibility of the frame elements from the
largern-interval being in the same component, so there cannot bedkehusing this frame. We have
already established thdtr(F<,_2) is O(n2). Thus we turn to the third case. If an interval is bad,
then the frame elements of any fragmenting subinterval imaxgt the same sign as the frame elements
of the larger one. If we view each such subinterval and easimeht not included in such an interval
as single characters, we know that there must be at te&@ssigned characters. Since the signs of the
characters are independent, the probability that all ciers have the same signlig2®(™ and is thus
negligible. O

Thus the probability of a bad-interval isO(n~2). Using fac{#4 we conclude that the probability of
existence of a hurdle in a random signed permutation etements i) (n~=2).

Lemma 2.2.4(Lower bound) The probability that a signed permutation anelements has a hurdle
with a span of four elements §¥(n~2).

Proof. Call h; the hurdle with span four that starts with elemdht+ 1. So the subsequence that
corresponds tdy, must be+(4k + 1)+(4k + 3)+(4k + 2)+(4k + 4) or —(4k + 4)—(4k + 2)—(4k +
3)—(4k + 1). We can count the number of permutations with for instance. The four elements &y
are contiguous id!(n — 3)!2" permutations of length. In ¢ = 2/(4!2%) of those cases, the contiguous
elements form a hurdle, so the total proportion of permaitatiwith i is

4l(n — 3)12" Q< 1 )

c el
nlan n3
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Similarly, the proportion of permutations that have bbghandh is
oA (n—6)2n 1
= nl2n €O<n6)
and, therefore, the proportion of permutations that halesast one oh or h; is

4l(n —3)12"

2Xec¢
nl2n

— Iy, (2.6)

We generalize (216) to count the proportion of permutatigitis at least one of the hurdlég,h1,. . . 2|5, /4]
this proportion is at least

I(n — 3)127
FJ % CM _ <Ln/4J>F2 2.7)
4 nl2n 2
which isQ(n~2) since the second term @(n—*). O

2.2.2 Fortresses

Now we turn to the much rarer fortresses. We start by usindgtttethat the smallest fortress that could
exist requires the existence of an FCI spanning 19 elemsessfiguré 2]11), a very unlikely event.

Theorem 2.2.5. The probability that a random signed permutationsoelements includes a fortress is
O(n~19).

Lemma 2.2.6(Upper bound) The probability that a random signed permutationroalements includes
a fortress isO(n~1%).

Proof. We bound the probability that at least three superhurdlesirom a random permutation by
bounding the probability that three non-overlapping bashgonents of length seven exist. We divide
the analysis into three cases depending on the nuiridferlements spanned by a bad component.

1. For one of the three FCls we hawve- 14 < < n — 11.
2. For one of the three FClswe hate< [ < n — 15.
3. Forall FCls we hav&é < [ < 17.

As we did in Lemm& 2.2]2 (equatién 2.2), we can bound the fmibityathat we get an FCI of length
starting at a particular position by

1

n—2\""!
Pr(F =1) §m<l_2> . 2.8)

In the first case the probability that the FCl is a superhusiig(n—1*-27") if the FCl is not fragmented
andO(n~1%) if it is (using the same technique as for the proof of Lenima3®.an the second case the

probability is at most
n—15 n—17 1 n—9 —1
F = —
Y fi=ny g ()
=17 k=15

which, by the same reasoning used for equdfioh 2.3 to dérve 2), is O(n~'%). Thus the first two
cases both give us an upper boundigf, —1%).

Fac{3 tells us that any pair of FCls can overlap only on thailpeints. Thus, if we first consider the
probability of finding a smallest FCI, we know that no otherl @l have an endpoint inside it. So the
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probability of having a second FCI, conditioned on havingraler first one, is dependent only on the
size of the first. The same reasoning extends to the protyabilhaving a third conditioned on having
two smaller FCIs. Since each of the three FCls spans lesssthamteen elements, the probability of
each FCI appearing is at mosE}; Fy, = O(n~?), and the probability of there being at least three of
them isO(n=1°). O

We now turn to the lower bound. Consider the probability ef éixistence, among random permuta-
tions, of a permutation with exactly three superhurdlessjpay seven elements each. A lower bound on
this probability is a lower bound on the probability of egriste of a fortress in a random permutation.

Lemma 2.2.7(Lower bound) The probability that a random signed permutationroaelements includes
a fortress isQ(n=1?).

Proof. Denote byF; 7(n) the number of permutations enelements with exactlg superhurdles span-
ning 7 elements each. To create such a permutation, choose a pdonuif lengthn — 18 (with zero
adjacencies and without hurdles), select three elementsegtend each of these three elements to a
superhurdle, renaming the elements of the permutation edede That is, replace elemeni by the
framed interval of length 7 = +(i)+(i + 2)+(i + 4)+(i + 3)+(i + 5)+(i + 1)+(¢ + 6) and rename
all the elements with magnitudeto have magnitudg + 6 (for those with|j| > |i|). After extending
the three selected elements, we get a permutation @ements where there are exaclguperhurdles
each spannin@ elements.

From Lemma Z2.1]1 and the results about the rarity of hurdt@s the previous section, we have

Furln) > 2R (1 o) (n - 18>

WhereW(l — O(n™?)) is a lower bound for the number of permutations of length 18

(with zero adjacencies and without hurdles) e(ﬁ@ls) is the number of ways to choose the elements
for extension. Therefore we have

Fs7(n) U 182)!2”_18 (1 B O(n’Q)) (” - 18> 1

nl2n 3 nl2n
e Q(n ) (2.9)
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Chapter 3

Unequal Gene Content

The biggest challenge towards applying current methodsaticsequences lies in modelling sequences as
permutations. Most sequences, in fact, do not have singliesof each gene. Two sequences may not
have the same set of genes either. Thus, the use of pernmgtatia model for genome rearrangements
can be limited. While it has been sufficient in some cases43229,28] to simply ignore genes that
occur more than once by considering only the genes that anenom to two sequences, much informa-
tion can be lost in the process [82]. Indeed there existsesems that have close to half of their genome
duplicated. For one such case, methods we present heredthi@dccurate phylogeny reconstruction
on real-world data [30, 15]. While related problems — thdss tisk for a parsimonious ancestor given
a single genome — have admitted nice solutions [33) 34, 3ktrabthe problems discussed in this
section have yet to be satisfactorily solved.

In this chapter we refer to a genome ageae sequend@r sequencke as it may not be a permutation.
In our case asequencas a string over the alphabét (i.e. a sequence is any elementZf). We
first present known formulations of evolutionary models aodresponding problems that deal with
comparing gene sequences, then the (recent) history oftidens, and finally present our results.
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3.1 Insertions and Deletions

Consider the sequencéls= (7 -1-384-65) andB = (1 2 34 5). Notice that the elements 6, 7, and 8
only occur inA while the element 2 only occurs i8. To account for the unequal content betweeand

B we must permit insertions and deletions of elements in outehof evolution. Denote a deletion of
elements in the subsequence froto j asdel(i, j) and the insertion of the string before the element
at positioni asins(«, ). One scenario of inversions, insertions, and deletionshierabove example
uses 4 inversions, 2 deletions, and 1 insertion:

(7-1-3 8 4-6 5) - p(5,6) =

(7-1-3 8 6-4 5) - p(6,6)-p(2,2) =

(71-38 6 4 5) - del(4,5) del(1,1) =

( 1-3 45) - p2,2) =

(13 45) - ins(“27,2) =
(12345) =B

Yet, another scenario takes only 2 inversions, 2 deletiand,1 insertion:

(7-1-3 8 4-6 5) - p(A,B)-p(3,4) =

(1-7-8 3 4-6 5) - del(2,3) - del(6,6) =

(1 34 5 - ins(“27,2) =
(12345 =B

Notice that we have deleted contiguous elements of somariatiiate permutation in each of the edit
scenarios, and that insertions never introduce elemeatsatready exist in the permutation. For that
matter, we could simply delete all of in one move and insert all @8 in the second move. To avoid
scenarios like this we impose a parsimony criterion: we deehave insertions of a particular number
or deletions of a particular number, but not both.

El-Mabrouk [32] showed that a minimum edit scenario of isw@ns with deletions of contiguous
segments can be computed in polynomial time. However, iamesnunknown as to whether minimum
edit scenarios of inversions with inversions, deletiomg] msertions is inP. We combine the result of
El-Mabrouk with new insight in Sectidn_3.3.
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3.2 Duplicate Elements

Some genomes may have duplicated genes; we represent émesaag by sequences that contain more
than one occurrence of a number. We call the set of all elesnefiobm a sequence thgene family(or
family) =, and the size of the family in sequen6és occ(z, S). A family with occurrence greater than

1 is amulti-elementfamily. For example, the sequenge= (3 7-16-3 4-6 5 3) has multi-element
family 3 and multi-element family 6 whergc(6, S) = 2.

3.2.1 Problem Definitions

The first work dealing with multi-element families and insien minimization was initiated by Sankoff
[66], who posed the exemplar problem:

Problem 3.2.1((ERD) Exemplar Reversal Distanceliven sequenced and B, each with at least
one element from some alphabi&tfind a (not necessary contiguous) subsequeticand B’ of each
sequence with exactly one occurrence of each elementsd thatd(A’, B’) is minimized.

The elements oft’ and B’ are called theexemplars The ERD problem was proven NP-Hafrd [20]
and currently no good algorithms exist to solve it. The fwilog two related problems are of particular
interest in this section:

Problem 3.2.2((OtMDA ) One-to-Many Duplicate Assignment problen@iven a sequenced € ¥*
and an integem, rename all but a single element from each multi-elementlyaim be unique, so as
to minimize the number of inversions, insertions, and @elstnecessary to turd into the identity
permutation of length.

Problem 3.2.3((MtMDA ) Many-to-Many Duplicate Assignment problenGiven two sequences, B €
¥*, find a renaming of elements from multi-element familiesdding A’ and B’, so that the following
conditions are satisfied:

1. for each multi-element family of A or B, there exist exactlynin(occ(x, A), occ(z, B)) pairs of
elements — one from and one fromB — each pair having been renamed to the same unique
element,

2. all other occurrences aof (in one of the sequences) have been renamed to be uniquentdeme
and

3. the length of the minimum scenario of inversions, insegi and deletions from’ to B’ is mini-
mized.

OtMDA and MtMDA remain tricky to reason about due to the conation of operations that are
considered in the objective function (inversions, ingertdeletion). Thus, there exist few results beyond
those presented in Sections]3.3 3.4 that directly app®tMDA and MtMDA. For instance, it
remained unclear as to whether they are in P or not. For thsoreresearchers have chosen to focus on
specific aspects of the problem. The following is a summahefvariations and simplifications found
in the literature:

(OtMRD) One-to-Many Reversal DistanceThe same as OtMDA except the objective function only
counts the number of inversions in the subsequence restrictthe remapped elements.

(MtMRD) Many-to-Many Reversal Distance The same as MtMDA except the objective function only
counts the number of inversions in the subsequences tedtti the remapped elements.

(RDD) Reversal Distance with DuplicatesThe same as MtMRD except the input is restricted to se-
qguences with equal size gene families (for any familycc(z, a) = occ(x, B)).
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(OtMCM) One-to-Many Cycle Maximization The same as OtMRD except the objective function only
counts the number of cycles in the induced breakpoint graph.

(MtMCM) Many-to-Many Cycle Maximization The same as MtMRD except the objective function
only counts the number of cycles in the induced breakpoimplyr

(OtMBM) One-to-Many Breakpoint Minimization The same as OtMRD except the objective func-
tion only counts the number of breakpoints in the inducednpgation.

(MtMBM) Many-to-Many Breakpoint Minimization = The same as MtMRD except the objective func-
tion only counts the number of breakpoints in the inducednpéation.

In the following section we attempt to put these problemsi@laith our own work into context.

3.2.2 Background

Our approach [54] was the first to address the OtMDA problerpregenting a constant-factor approx-
imation algorithm. We briefly present a refined (and improuaderms of the error bound) version of
this work in Sectio_3]3. One of the main steps in finding olutsmn to the OtMDA problem requires
the computation of theninimum covera minimum cardinality set of non-overlapping substrinfyer
the input sequencd) that match (in forward or reverse direction) the maximurmber of elements
from the lengthn identity permutation. For exampl¢(l 2),(3 4),66 -5)} and{(1 2 3),(-6 -5 -4)} are
both covers ford = (-6 -51 2-6 -5 -4 3 4 1 2 3) withn = 6, but only the later is a minimum cover.
Computing the minimum cover in this case is equivalent to BiM It turns out that the greedy method
of repeatedly choosing a largest common substring from asathportion ofd and the identity yields
a minimum cover (see Lemrha 3.8.3). The relaxed analogue IMeIttdBM, applicable to MtMDA, is
unfortunately APX-Hard to compute even with a guaranteé dbgx, A) = occ(x, B) for all = [41]).
We show in Sectioh_3l4 that the MtMDA problem has a satisfgcsolution in practice.

Chenet al. [26] attempted to solve RDD as a step in solving a larger gmblgiven two nucleotide
sequences, find genes that are most likely to have been theigdhe nearest ancestor (called ortholo-
gous genes). A step in their algorithm uses an analogue taifienum cover, named more verbosely
“minimum common string partition”: find a minimum cardirtglipartition of two strings into the same
collection of substrings or report that none exists (edaivato MtMBM). A thread of work exists that
addresses MtMBM under various restrictions|[41, 27| 50, AfiJof these results apply only to instances
where for allz, occ(x, A) = oce(x, B), so cannot be directly used within our approximation frammyv
but could lead to progress in the future.

While, as we stated, the use of common partition-based mdstiwlimited (APX-Hard) for the
MtMDA problem [41], these methods are also somewhat limitedDtMDA due to the existence of the
following family of permutations.

Theorem 3.2.4. There exists a family of permutations where the minimum comstring partition
yields a distance twice that of the optimal for OtMDA.

Proof. TakeA to be a sequence of length that is created by concatenating the permutatign(-1 -2
...—n) and a permutationl; where every adjacency is a breakpoint and there are onlgswtllength
fourfl. Because itis comprised only of length four cyclds, must have an odd number of elements (
is odd) and will need exactlgn + 1)/2 inversions to sort. Choice of either all the elementslgfor all
the elements ofl, will yield the minimum size coven. Thus, if all the elements ofl; are chosen to
match those in the identity; inversions and 1 deletion are required whereas if all thmeigs of A,
are choserin + 1)/2 inversions and 1 deletion are required. Saagows the ratio of optimal to worst
case cover choic;;#, goes to 2. O

IFor instance, take the permutation of length n = 2m+(m-+1):
Az = (-(2m+1)-1 (2m+2)2m2-(2m+3)-(2m-1)-3 (2m+4) (2m-2). . .-(m-1) (n-1) (M+2) m -n-(m+1) )
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Since cover (minimum common partition) based methods siratiempt to rename the sequence
S0 as to minimize the number of breakpoints, better solattonOtMDA can sometimes be found by
attempting to minimize cycles in the resulting breakpoirgpip. We offered a first look into the power
of this approach in([83], which we present in Section 3.5. Wuwek by Chenet al. [26] also has
a cycle maximization heuristic applied after assigning aimum common partition. The only other
known work attempts to directly solve MtMCM by formulating ateger linear program which has an
exponential (im, the length of the sequence) number of formulas and vasdB&.

Bryant [20] established that the exemplar reversal digt§B&D) problem is NP-hard via a reduction
(the simple version is found as an addendum to the origina¢mpdrom the unsigned reversal distance
problem (proven hard by Caprara[25]). The reduction takesunsigned permutation — the input for
the unsigned reversal distance — and replaces each elemaitht two elements{e —e). This way the
exemplar problem picks a sign for the elements of the undigeemutation so as to minimize the signed
inversion distance, which yields a minimum reversal sderfar the unsigned permutation. Notice that
the identical reduction to OtMRD (and hence, MtMRD) holdshe@et al. [26] showed that RDD is
NP-Hard with a similar technique. Note, however, that tléiduction cannot be applied to the cycle
maximization problems (OtMCM and MtMCM) due to the fact thlhé assignment that maximizes
cycles does not necessarily give the minimum reversal riistgas when hurdles are crea&d)n
Sectior. 3.6 we give a more complicated reduction that appdi¢he cycle maximization problems. The
proof is more general than existing proofs because it subsuhe aforementioned result of Bryant and
Chen.

2with A = (2 -2 1), both choices yield a single cycle but (2 1) is a haindhereas (-2 1) is not. There are also instances
when the assignment that minimizes the reversal distanitalways yieldfewercycles than the maximum cycle assignment:
for A=(2 1 3-35 4) there is one assignment that gives 2 cycles anud?ds whereas the optimal assignment gives 1 cycle
and 0 hurdles.
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3.3 Approximating the One to Many Duplicate Assignment (OtMDA)
Problem

(This is joint work with Mark Marron)

In this section, we extend work of EI-Mabrouk [32] by providia polynomial-time approximation
algorithm with constant error bound to compute edit distgnender inversions, deletions, and unre-
stricted insertions (including duplications) from the agguence to the identity permutation. We also
show that the algorithm we implemented works well in practién approximation with heuristics that
perform well in practice, is the best we can hope for due td\ReHardness result of Sectibn 3.6.

As in the standard statement of the equal gene content pnolle assume that the desired (optimal)
edit scenario is that which uses the fewest operations,alliiperations counted equally. We move from
a subject sequenceto a perfectly sorted targét.

Our approach is based on a canonical form for edit scenarfoshwve introduced in [54]: we
showed that shortest edit scenarios can be transformeceiqivalent sequences of equal length in
which all insertions are performed first, followed by all émgions, and then by all deletions. We state
the theorem here without proof.

Theorem 3.3.1([54]). Given a minimum edit scenari®- o1 - 02 - ... - 0,, = T there is an equivalent
edit scenarioS - ins; -...-insy - invi -... iy, - - - dely - . . .- del, = T where all insertions are followed
by all inversions which are followed by all deletions.

The utility of this theorem is two-fold. As we will see, it imstrumental in the application of
Lemmal[3.34 to our approximation algorithm. It also alloves im practice, to take advantage of El-
Mabrouk’s exact algorithm for inversions and deletionsjolitwe then extend by finding the best pos-
sible prefix of insertions, producing an approximate sohlutvith bounded error.

Sectior 3.3.11 outlines our method for handling unrestiighsertions. Sectidn 3.3.1 gives the algo-
rithm matching that method. Section 313.2 presents the malgorithm outline as well as an analysis
of its error bounds. Finally, Secti¢n 3.B.3 gives some eicgdiresults for method presented here.

3.3.1 Unrestricted Insertions

The presence of duplicates in the sequence makes an analysis more difficult; in particular, it
prevents a direct application of the method of Hannenhalll Revzner and thus also of that of El-
Mabrouk. We could solve this problem by assigning distirarnes to each copy, but this approach begs
the question of how to assign such names. Sankoff proposeskéimplar strategy [66], which attempts
to identify, for each gene family, the “original” gene (astitict from its copies) and then discards all
copies, thereby reducing a multi-set problem to the simgBérersion. However, identifying exemplars
is itself NP-hard[[2ll]—and much potentially useful infortioa is lost by discarding copies. We found a
simple selection method that discards none of the elemétite sequence, based on substring pairing,
while yielding a constant error bound.

Sequence Covers

Our job is to pick a group of substrings from the subject st €very element in the target appears in
one of those substrings. To formalize and use this propedyneed a few definitions. Call a substring
eres ... ey, ablockif we havevy, e; 1 = e; + 1. Given a blocks;, define thenormalizedversion ofs;

to bes; itself if the first element irs; is positive, and the inversion 6f otherwise; thus the normalized
version ofs; is a substring of the identity. Call a subsequefigg of the target string’, thenon-deleted
portion of T' if T,,4 (i.e. only the elements frofi that also exist ir5). Note thatT,,, is not a substring,
but a subsequence; that is, it may consist of several digpairts of7". Thus it is unique. Given a sét
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of normalized blocks irb' such that all the elements are also incomparable under bstrgwg relation,
definew(C to be the string produced as follows; order the string&' téxicographically and concatenate
them in that order, removing any overlap. We will say thatta(sef blocks fromS is acoverfor T if
T,aq is WC. Note that a cover must contain only blocks.

SetT = (1,2,3,4,5,6,7) andS = (3,4,5,—4,—3,5,6,7). The set of normalized maximal blocks
is {(3,4,5),(3,4),(5,6,7)}; Thais (3,4,5,6,7); a possible cover fof" is {(3,4,5),(5,6,7)}; and
WO, is (3,4,5,6,7).

Lemma 3.3.2. For a subjectS, d operations from the identity’, there exists a cover of si2d + 1.

Proof. By induction ond. Ford = 0, S itself forms a cover, since it is a block; hence the cover has s
1, obeying the bound. For the inductive step, note that deistare irrelevant, since the cover only deals
with the non-deleted portion; thus we need only verify thaertions and inversions obey the bound. An
insertion between two blocks simply creates another bladlile one inside a block splits it and adds
a new block, for an increase of two blocks. Similarly, an igi@n within a block cuts it into at most
three blocks, for a net increase of two blocks, while an isiegr across two or more blocks at worst
cuts each of the two on the ends into two blocks, leaving ttervening sequence contiguous, also for
a net increase of two blocks. Since we h&2él — 1) + 1) + 2 = 2d + 1, the bound is obeyed in all
cases. O

Building the Minimum Cover

Let C(T, S) be the set of all (normalized versions of) maximal contigusubstrings (blocks) shared
betweenl” and.S. We will build our cover greedily from left to right with thisimple idea: if, at some
stage, we have a collection of strings in the current coay thhen run through the operator, produces
a string that is a prefix of lengthof our targetl’, we consider all remaining strings@t7’, S) that begin
at or to the left of positiori—that can extend the current cover—and select that whicgmestfarthest
to the right of positioni. Although this is a simple (and efficient) greedy constiugtiit actually returns
a minimum cover, as we can easily show by contradiction.

Lemma 3.3.3. The cover derived by our greedy algorithm is optimal.

Proof. Assume there exists a cover, ay,;,,, that is smaller than the one provided by our construction,
C.onst- Order the sequences(,,;, by increasing value of the smallest index in the sequencex be

the smallest element, say thth element in this order such thatis not the same as thigh sequence of
C.onst Under the same order. We have three cases:

1. During the construction df..,s:, « was not selected far...,.s; because the previous selection of
a cover element id’,,,,s; did not cover all the way to the start index @f Thena is not the first
differing element in the order, a contradiction.

2. During the construction of'.,,.st, & was not selected fof.,,s; because there was a sequence
that had the same start index @sbut covered fewer elements than But this contradicts the
selection criteria for our construction.

3. During the construction of’..,.:, @ was not selected fof'.,,s; because there was a sequence

that had the same start indexa@sbut covered more elements thanThenC,,,,s; has at most as
many elements as,,,;,,, a contradiction.
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3.3.2 Our Algorithm

Now that we have a method to construct a minimal cover, we saig@ unique labels to all duplicates,
which in turn enables the use of EI-Mabrouk’s method for catimg the edit scenario.

We first present a result relating the number of blocks in tbeerc to the maximum number of
insertions and deletions. To do this we will need to look attdrget sequencE with all the elements
that do not appear i removed, we call this new sequenEg to denote that all the inserted elements
have been removed.

Lemma 3.3.4. Let « be the minimal edit scenario froifi to 7', using! insertions andmn inversions.
Let o/ be the minimal edit scenario of just inversions and deletibom S to 7T;,.. The extensiory
(extending’ with the needed insertions) has at mbst m insertions.

Proof. Clearly, our method will do at least as well as looking at eiaskrted string irf” and taking that
as an insertion fofe. Now, looking at the possible effect of each type of operatin splitting a previous
insertion, we have 3 cases. Takas the inserted substring:

1. Inserting another substring cannot split an insertedtsinlg—it just creates a longer string of
inserted elements. (If is inserteduvivow — uvixVW)

2. Deletion of a substring cannot split an inserted sulgstrit just shortens it, even perhaps to the
point of eliminating it and thus potentially merging two gkboring strings. (lfuy is deleted,
UV VV3W — UV1VIW)

3. Aninversion may split an inserted substring into two safeastrings, thus increasing the number
of inserted substrings by one. It cannot split a pair of itegksubstrings because the inversion
only rearranges the inserted substrings; it does not createblocks. (Ifusv; is the substring
inverted,ujusv1vow — U TTUZ VW)

Thus, if we have insertions andn inversions ina, there can be at most+ m < |a| = d inserted
substrings irf". O

Starting with the subject with cover elementgsy, s9,. .., sx) humbered by the order in which
they appear in the targ&t. We place in order (fot from 1 tok) eachs; in its final location inT" with at
most two inversions; one to place it and one to orient its.sigmus, we use at mo&k inversions. By
Lemmd3.3.2 and Lemnia 3.8.3 we havel 2d + 1, so our inversion scenario will have at mdst+ 2
inversions. Theorem 3.3.1 tells us that Lenima 3.3.4 apmiésth insertions and deletions, thus there
at mostk insertions and: deletions. Thus, the edit scenario produced by the propos#tod has at
most6d + 2 operations, wheré is the minimum distance.

While this error bound is large — it is a factor of 3 larger ththe lower bound given in Theo-
rem3.2.4 — itis the lowest known bound for OtMRD. Furthermdhe bounds can be easily computed
on a case-by-case basis in order to provide information eraticuracy of the results for each run. We
expect the error encountered in practice to be much lowettatdurther refinements in the algorithm
and error analysis should bring the bound closer to thateofawer bound.

3.3.3 Experimental Results

To test our algorithm and get an estimate of its performangeactice, we ran simulations. We gener-
ated pairs of sequences, one the sequéhcz 3, ..., n), for n = 200, 400, 800, and the other derived
from the first through an edit scenario. Our edit scenaribganous lengths, include 80% of randomly
generated inversions (the two boundaries of each invessicamuniformly distributed through the array),
10% of deletions (the left end of the deleted string is sekkeiniformly at random, the length of the
deleted string is given by a Gaussian distribution of mg@and deviatiorir), and 10% insertions (the
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Figure 3.2: Experimental results fdo0 genes. Left: generated edit length vs. reconstructed Hengt
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locus of insertion is uniformly distributed at random and tength of the inserted string is as for dele-
tion), with half of the insertions consisting of new elenseand the other half repeating a substring of
the current sequence (with the initial position of the stibgtselected uniformly at random). Thus, in
particular, the expected total number of duplicates in thgext sequence equals the generated number
of edit operations—up td¢00 in the case 0800-gene sequences. We rahinstances for each combina-
tion of parameters (in the figures below, we show the averageémum, and maximum values over the
10 instances). The results are gratifying: the error is comstly very low, with the computed edit dis-
tance staying below% of the length of the generated edit scenario in the linegrgfdahe curve—that

is, below saturation. (Of course, when the generated e€litss® gets long, we move into a regime of
saturation where the minimum edit scenario becomes anibjtshorter than the generated one; our es-
timated length shows this phenomenon very clearly.) Figjtre, and 3 show our results for sequences
of 200, 400, and800 genes, respectively.
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3.4 Applying the Cover to the Many to Many Duplicate Assignmat
(MtMDA) Problem

(This is joint work with Mark Marron, Jijun Tang, and Williadrndt)

Here, we generalize the approach from the previous seai@ormpute the distance between two
arbitrary sequences and show through extensive simuatiat we reconstruct a scenario of operations
that reflects the true evolutionary distance. Since thisnigxperimental result, it is hard to verify
exactly what the minimum number of operations is; hencedhevfing results do not apply to MtMDA
directly, but give an indication of how well our distanceack the true distance. Our algorithm computes
distances between two sequences in the presence of imseiiecluding duplications), deletions, and
inversions; in our simulations, the distance computed wdrgely approximates the true evolutionary
distance up to a (high) saturation level. The approximaiian fact good enough that it can be used in
conjunction with a distance-based phylogenetic recoastnu method (we used the most common one,
neighbor-joining) to reconstruct trees of reasonablessfap to 100 sequences) and very large pairwise
distances with high accuracy.

It is worthwhile to note that although we consider only irsiens (aside from duplicating insertions
and deletions), the properties of a minimum cover discuss&ibction 3.4.11 imply that it would likely
perform well with other operations such as transpositidhg: cover is a model-independent method.
However, due to the fact that transpositions distances etritoybe well understood we do not consider
them in this exposition.

The rest of the section is organized as follows. Sedtionli3e4tablishes the background. Sec-
tion[3.4.2 discusses the difficulties faced when using tvinitrairy sequences and how we solve them
to recover a solution in the spirit of our earlier resultsputlines our method for producing a cover in
guadratic time. Sectidn_3.4.3 presents the design of oustudies while Section 3.4.4 shows how our
constructed cover performs when estimating pairwise tigantes and how these distances can be used
in tree reconstruction. Finally, Sectibn 314.7 uses ouadize method with a more sophisticated tree
building method, and shows that the combined methods elmgiés more accurately than other know
methods.
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3.4.1 Background
The Cover

Our solution attempts to assign each gene in the subject éma fjom the same family in the target;
that is, it creates a maximum matching between the genesriaspmnding gene families of the two
sequences. However, some matchings are clearly prefamblbers because they reduce the number
of insertions, deletions, and rearrangement operatiansres to transform one genome into the other.
We define aninimum coveto be a cover that maps the subject to the target with the feveesmon
substrings. The effect of renaming according to a minimaécds to yield a breakpoint graph_ [42] with
maximum number of cycles of length 2, minimizing the numbkbr@akpoints between the renamed
sequences. Thus a minimum cover is a solution to MtMBM.

Difficulties With an Arbitrary Target

The difference between our work from Section] 3.3 and thahisfgection is the presence of duplicate
genes in the target. When building the cover with the idemtérmutation as the target, all candidate
cover elements from the subject are immediately apparerduse of the unique correlation between
their identity and their index in the target genome. In theecaf an arbitrary target, however, this
correlation no longer exists. Moreover, a cover may no lormgeer all genes from one or the other
genome: clearly, if genomd has more duplicates of geangthan genome&3, and genome3 has more
duplicates of geng than genomed, then any matching between these two sequences must leaee so
duplicates of gene unassigned il and some duplicates of gepainassigned iB. For example, with
subject (1 2 3-5 -2) and the identity permutation (1 2 3 4 5) as target, we hawvarcusing indices
in the target, for indices 1 through 3, one for index 5, and foméndex 2; but for the same subject and
for target €7 1 2 3 5-3), we obtain partial covers for indices 2 through 4 or forided 5 through 6.
We settle for fast heuristics to build our cover due to theltsf Goldsteiret al. [41], who show that
computing a minimum cover is APX-Hard even with a guaranteg¢dcc(x, A) = occ(z, B) for all z.

3.4.2 Constructing a Small Cover

The algorithm used in Sectidn 8.3 looks for the longest matchubstring. As long as such a longest
match is unique, there is no difficulty beyond identifyinglsumatches as quickly as possible. (A naive
cubic-time algorithm will do, although, as we shall see, $hee job can be done in quadratic time.)
When the longest match is not unique, however, finding a minirsover may require an exploration of
the alternatives and thus exponential time. Instead, wagseedy heuristic to break ties.

We have tried several tie-breaking heuristics (and contbtirem to breaking ties at random). One
heuristic is based on identifying a possible extension efrtiatch (to one or the other side). If the
substring to one side of the match is the inverse of the sabsto the same side of the match in the
other genome, for instance, if we had substrings {#22) in the target and (1 2 2 4) in the subject, we
may prefer to match these substrings to each other (eveghhibkere may be another (1 2) elsewhere
in both sequences) because they are only a single invensiam gach other. Another heuristic is to
minimize the interaction between matches. The longer thelmae make at each iteration, the fewer
potential matches may be needed overall, so we may want twsehtbe match with a range of indices
that crosses the smallest number of other match rangeso®8ct.5 contains some conclusions about
the effectiveness of these heuristics.

To find the longest match, we begin by finding all possible meatimatching substrings and then
repeatedly pick the next largest substring, doing necgssrkkeeping to reflect our successive choices.
Let M be the set of all maximal matching substrings between thsudnd the target that have not yet
been picked. For instance, if we start with target genome 11324 5 6 7 8) and subject genome (6 7
345612367 8), weinitially havad/ = {(67), (3456), (12), (3), (678)}. We say that two matches

31



ALGORITHM COVER:

C=10.
M = {s: sis a maximal substring of the subject and target}.
WHILE C' cannot cover the Target DO:
Add longest ! € M to C.
M = M\{l}.
FOREACHo € M that overlaps [ DO:
u = o without the substring common to o and I.
M = M\{o} U {u}.
RETURNC

Figure 3.4: Choosing a nearly minimal cover.

overlapif their indices in the target intersect. By picking the lestymatch, we cover a part of the
target that may overlap with some numbeof other matches, call thew, 0o,...,0, € M. In our
example, match (3 4 5 6) would be chosen first, coveringstirem matches (6 7) and (6 7 8) and the
3 from match (3). The overlapping portion of each matghl < i < s is then removed, resulting in
shorter matches. Thus, three of those matches in our examilplee shortened yielding (7), (7 8), and
(). The resulting algorithm is described in Figlrel 3.4.

We proceed to show that COVER can be implemented to run effigjdirst stating the theorem
and then providing the necessary background to prove it.

Theorem 3.4.1. Algorithm COVER can be implemented to run in quadratic time.

We represenil/ by a list arranged by match length. We keep an auxiliary datectsire, thandex
reference to maintain the sed/ through each iteration. This index reference is an arrayndexed)
of lists, one for each index of the target; each such lisindex list contains the matches that have an
endpoint on that target index. For instance, in our exantpketsuch matches would be (34 5 6), (6 7),
and (6 7 8). These matches are associated with ingiteugh6, 6 through7, and6 through8 of the
target. Thus index of the target would have three members to its index list, beedhe matches (3 4
56), (6 7), and (6 7 8) all have the 6 (from position 6 in the édr@s an endpoint. Index 7, however,
would have a single match (6 7), because (6 7 8) does not havaryendpoint. A simple way to find all
possible maximal matches in quadratic time is to slide thogest over the target, comparing all possible
combinations of indices between the two. Each match foumdaised inM and the index lists for its
endpoints. The key to this implementation is the efficiertaip of overlapping matches. With the index
lists we can find alb € M that overlap a givem € M by examining each list that corresponds to an
index thatm spans. When the mateh that spans indicesthroughk is chosen, we can shorten eagh
that overlaps from the left by relocating it from the indest for j,¢ > j > k, to the index list fori — 1.
Similarly, eachoy, that overlapsn from the right can be relocated to the index list ko#- 1.

Lemma 3.4.2. The maximum number of matches that can have an endpoint aa igidex of the target
is bounded byin, wheren is the length of the longer genome.

Proof. Each index in subject or target can be of two types: a leftgitrendpoint of a match. All four
combinations of endpoint types can occur for a given paindfdes. If there were more than one match
per pairing of endpoint types then one of them could not beirmalx therefore there can be at most four
distinct maximal matches associated with every pair ofdesli Since there areindices in the subject,
there can be at mogt, matches associated with a single index of the target. O
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It follows immediately that the number of maximal matchessgen two sequences, the larger of
which has size, is O(n?).

Lemma 3.4.3. Initialization of M and of the index reference takes quadratic time.

Proof. We know that the number of maximal matche®ig:?) and that the length of a match is bounded
by the size of the sequences. We can add a match to a list peghlny length in constant time through
direct indexing. Likewise, addition to the end of a giveneardist can be done in constant time. Since
there areO(n?) matches and placement into the index referenc@(is), we can build these lists in
guadratic time. O

Lemma 3.4.4. A match can be relocated between index lists at most twiarédbking removed from
consideration.

Proof. It is sufficient to show that a matchwill not be encroached upon from the same side twice.
Assume that is shortened from one direction by matehand later from the same direction by match
m’ without being covered. Because was picked by the algorithm firsip’ must not stretch past
the opposite end of.. Therefore, eithern’ covers less tham or e must be completely covered —a
contradiction in either case. O

We are finally ready to prove Theorém 314.1.

Proof. (of Theoren 3.4]1) Initialization takes quadratic time ifiraa[3.4.8). Each match in each in-

dex list is visited a constant number of times (Lenima 8.4When visited, each match is shortened,
removed from consideration or relocated to the index lishatedge of the most recently chosen match,
and then relocated in the length list. Since each of thesetipes runs in constant time, the running

time is bounded by a constant times the total number of matziséed. Since each index list is visited

at most once and the length of that list is at most linear (Latai3.4.2 an"3.4.4), the running time is

O(n?). O

Theorem 3.4.5. The distance function can be computeditm?) time.

Proof. The cover can be generated and applied{n?) time. Then the algorithm presented in [54] or
[32] can be applied. Both methods rundin?) time. O

3.4.3 Experimental Design

We used two types of tests to assess the accuracy and ufilityrdree distance algorithm. The first
set of tests were designed to determine if our distance iimetccurately modeled the true pairwise
tree (true evolutionary) distances. The second set of tests used to evaluate the effectiveness of our
distance function within the most simple distance-basedogienetic reconstruction algorithm.

Pairwise Error

For this experiment, we generated evolutionary trees withwn edge lengths and compared the pair-
wise distances between the leaves with those computed bglgarithm. Variance in tree shape does
not matter here; in fact, since we want a large range of pa@rtiee distances, a perfectly balanced tree
is best.

In the following tests we used the simplest version of thehmetdescribed earlier. The algorithm
picks the largest match to make and in the case of ties pick®bthe tied matches at random. Clearly
other information is present in the sequences that couldigeaa better choice of match and thus lead
to a more accurate distance score. However, all of the heuneethods that we used failed to have
a noticeable impact on the accuracy of the distance valuened. Furthermore, in experiments with
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a large number of random restarts, we found that most of theesaclustered around the true value
with a small number of outliers; we also found that averagingr a smaller number of random restarts
and discarding any substantially outlying points providedistance estimate that was nearly indistin-
guishable from the distance estimate computed with the fisardbest heuristics (see Section 314.5).
While the use of biological information to select the bestahaould prove effective in generating more
biologically plausible evolutionary paths, the currentthoel seems to perform quite well in terms of
distance computations.

Not enough is known about inversions, deletions, insesti@md duplications to enable one to set
good parameters (such as lengths of inversion, for insjanpéori, so we chose values so as to ensure
that a single operation would not completely alter the gemolkhost of our tests were conducted with a
root genome of 800 genes on a tree of depth 4; such a tree haaviland thus 120 pairs of sequences
with paths from 2 to a maximum of 8 edges between sequences.

Tree Reconstruction

We tested the performance of our distance functions usiigipber-joining, the standard distance-based
tree reconstruction method. Due to the dearth of real-wiwdds reconstructed using biological tech-
niques, we had to generate model trees that would exercisagarithm over a wide range of plausible
models of gene-order evolution. (We conducted one studygusial data with very large numbers of
insertions and deletions; partial results to date show @men80].) We generated one thousand trees
using a variation of the birth-death model that producesgefavariation in tree topologies, especially
imbalanced ones that are known to be insufficiently repteskeim a pure birth-death modeél [44]. The
only constraint that was placed on the operations was teatthected number of inserted elements was
equal to the expected number of deleted elements, in ordereip all genome sizes within a reasonable
range. (Cases where certain sequences are much smallattiess, due, e.g., to symbiosis, certainly
exist, but the variation generated by our mechanism neadgrapasses that case already.) Three ran-
dom restarts of our distance algorithm were used for eactopabdes to produce the pairwise distance
matrix.

Within the thousand trees the percentage of inversiongddrom 50% to 90%. The remaining
percentages were split evenly between insertions (dulgcand non-duplicating) and deletions. Non-
duplicating insertion and duplication percentages wergegaover three different tests, in which each
received a quarter, a half, and three quarters of the pegenThe expected Gaussian distributed length
of each operation filled a range of combinations from 5 to 3€rafons per operation type. Finally, the
expected number of event per edge was 20 with a Gaussiaibdiiett variance of 10 operations.

To generate a tree we began with the identity genome on 8G8sgerd performed 200 evolutionary
operations on it using the same parameters that are speftifigénerating the tree. This genome was
then used as the root of the tree. For each node we checkeshibuld become a leaf, based on the
maximum depth allowed and a random choice, if not we stoppittherwise we created each of the
two children by performing the randomly selected operatitas specified in the previous paragraph)
on the parent. Each type of operation (inversion, non-daptig insertion, duplication, and deletion)
was selected at random according to a fixed distribution. ifitezval over which an operation acts is
produced with one endpoint selected at random and a lengthndirom a Gaussian distribution. For
duplications, the interval to be duplicated is selectedthed inserted at an index chosen uniformly at
random in the genome.
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Figure 3.5: Experimental results for 800 genes with exgketige length 10. Left: generated distance
vs. reconstructed distance; right: the variance of contpdistances per generated distance.
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Figure 3.6: Experimental results for 800 genes with exgketige length 20. Left: generated distance
vs. reconstructed distance; right: the variance of contpdistances per generated distance.

3.4.4 Experimental Results
Pairwise Error

We present results for one of the many mixes of operations inssur simulations; other mixes gave very
similar results. This particular data set used a mix of 708érnsions, 16% deletions, 7% insertions, and
7% duplications. The inversions had a mean length of 20 atahaard deviation of 10. The deletions,
insertions, and duplications all had a mean length of 10 witttandard deviation of 5. We used four
trees of 16 leaves as described earlier, with 10, 20, 40, @rekpected operations per tree edge; these
choices can result in very large pairwise distances—up txpacted 480 operations (on just 800 genes)
for the most distant pairs. For these four trees, our algoritvas run with 10 random restarts and simple
randomization for the selection of the matchings.

Figured 3.b through 3.8 show the results (as a scatter ptbedf20 data points for each experiment)
for these four datasets. In each figure, the left-hand plmwstihe estimated tree distance on the ordinate
against the true evolutionary distance (from the simufgtion the abscissa. A perfect result would
simply trace the 1:1 diagonal, which is lightly marked onfeptot to aid in evaluating the results. The
right-hand plot displays the deviation from the 1:1 ideahdanction of the true evolutionary distance,
plotting largest and smallest differences between congpugkies and the true value, for each true value.

These plots show that our distance estimator tracks theetrol@itionary distance very closely up
to a saturation threshold, where it starts lagging senjobehind the true value. Such saturation is of
course expected; what is surprising is how high that saturdahreshold is. On sequences of roughly
800 genes, saturation appears to occur only around 250tew@uy events and our estimator tracks very
accurately to at least 200 events. Moreover, the smallés pidicate that the variance is very small up
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Figure 3.9: Experimental results for 1,200 genes with etqubedge length 20. Left: generated distance
vs. reconstructed distance; right: the variance of contpdistances per generated distance.

to 200 events and remains reasonable up to 250 events.

These results are not limited to small trees. We ran ano@messof tests involving trees of 50
leaves; while the main purpose of these tests was to assesgsidlity of tree reconstruction using our
distance computations, we checked the computed distaged@ssathe true distances for these trees as
well. Figure 3.9 shows the same two scatter plots (this timeoaghly 1,250 data points) for one such
tree. For these larger trees, we used a root genome of 1,2@3 ge order to prevent early saturation;
the example reported in the figure used an expected edgeénleh@0O evolutionary events. With the
larger number of genes, saturation now does not occur ustileaich at least 350 evolutionary events.
The error plot shows that the error remains sharply bound@dighout the range of values tested.

Tree Reconstruction

Since our distance computation tracks tree distances swadely and since distance-based methods are
guaranteed to do well when given distances that are clobe toue evolutionary distances, we also ran a
series of tests designed to ascertain the quality of tremnstiaiction obtained with the most commonly
used distance-based reconstruction method, neightringp(NJ). The NJ method runs in low cubic
time and thus is applicable to large datasets, but, likeisthdce-based methods, it is known to produce
poor results when the range of tree distances gets largee(spel60].

Recall that we generated a very large number of diverse tyg@dgies, producing a population
of trees that more closely matches the observed balandgstista{44] than would be the case with a
pure birth-death process. We evaluated results using dnelatdRobinson-Foulds (RF) distandé4],
which is simply (in the case of binary trees, as in our serfesxperiments) the number of edges (or
bipartitions) present in one tree, but not in the other. Wesd cases, we present tRé- error rate
which is the ratio of the RF distance to the number of taxa énttee. In terms of the latter measure,
most systematists will consider rates above 10% to be uptatae and rates below 5% to be very good.

The tree reconstruction performed very well on the gendraes, as shown in Figure 3110. Ap-
proximately 65% of the reconstructed trees had a RobingadE error rate of less than 5% and only
15% of the trees had an error above 10%. This reconstructaandane without any use of error correc-
tion, variances, or knowledge of the underlying model tleatagated the trees; it also used the simplest
form of neighbor-joining. Thus, it would be easy to improtiege results by refining the reconstruction
method.

As an additional check, we also compared how well our metrerbpms with respect to simply
removing duplicate content and applying El-Mabrouk’s éxaethod [32]. This comparison gives us an
indication of how important it is to handle duplication irtiesating true tree distances. We computed
a distance matrix for each tree where a single entry of a rmatas obtained by pairwise removal of all
duplicate content and subsequent computation using Ekddi&ts exact method. The NJ method was
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Figure 3.11: The difference in RF distance between the ndethithout duplicates and our method as a
function of the number of duplicates on an edge.

applied to each matrix to obtain a tree. Over all thousarebttiee reconstruction without duplicates had
a lower RF error rate than ours on only 14% of the trees; funloee, in three quarters of those cases,
the overall RF error rate for both methods was lower than 1@P&tis, these were relatively easy cases.
Thus, our method does better on the harder cases; the awdifimyence in RF error rate on the trees

where our method did worse on was 1.2, while the averagerglifée in RF error rate on the trees our
method did better on was 3.5. This is strong evidence thatmaihod makes significant improvements
on the state of the art. Furthermore, because of this low eate in the 14% of cases where our method
was not the best, there is good reason to believe that algliggiter tie breaker (see Section 3]4.5) will

yield even more cases where the method presented here wins.

To examine how well our technique handled copies, we condpgioe every test run) the RF dis-
tances of our reconstruction with those of the reconstaatiithout duplicates as a function of the total
number of duplications. Figute 3]11, a scatter plot of tHiedinces in RF distance, indicates that, as
the number of duplicates increases, our method does condsly better at reconstructing the tree.
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3.4.5 Improved Heuristics

For distances used in tree reconstruction, the relativeriongl of the values is more important than their
absolute magnitude; it is most important to see computddriiss increase as the simulated distances
do. Our major goal with the introduction of more sophistchheuristics is to reduce the variance of the
scores so that the distance ordering will be more consiatghpotentially result in more accurate trees.

The results presented earlier in the section used a verylsihguristic; we selected the longest
match for a cover element and then chose a match at randoe dasles of ties. We investigate two more
promising tie-breaking heuristics (introduced in Secifd.2): picking a match that has the smallest
overlap with the other cover elements or picking a match biitoy at the immediate context of the cover
elements in the source genome. By choosing the match thatinamal overlap with all other matches,
we maximize the number of longest-match candidates foréxéenound. To understand the motivation
for the context driven heuristic suppose we are trying todicdver element for a subsequence (of genes)
s in the target. Also suppose that in the target, the subsegquerthe left ofs is s; and to the right of
s is s,. Then we would like to pick a match in the source genome thatie context subsequencgs
ands/. that are as similar tg; ands, as possible.

To assess the improvements when using these heuristicavteaasets of pairwise distance com-
parisons. One set used sequences of length 800 with 20Qtiopsrixom the identity to the first taxa and
200 operations between the taxa. The second set used seguéfength 1200 and took 400 operations
between the identity genome and the first and between thafidsthe second taxa. In both data sets the
probability of an operation being an inversion was 80%, afidp@ deletion 10%, of being a duplicating
insertion 5%, and of being a non-duplicating insertion 5%e Tistance between each pair was then
computed using three heuristics, first the random seleetasrun, then the score was computed using
overlap minimization, and finally the score was computedgitie overlap minimization with context.
Figure[3.12 indicates that there is little difference in ¢neor values for the various methods. More im-
portantly, the more sophisticated heuristics have vettg linpact on the variance. All methods resulted
in a sample variance of about 22.6 for the sequences cotesiruith 400 operations.

3.4.6 Saturation

Unsurprisingly, the high-error trees have arisen fromrsdion in the pairwise distance data. To this
point, we have referred to saturation as being the point evtter variance grows too large to make the
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Figure 3.14: Histogram of the error (actual distanrceomputed distance) as the ratio of the computed
distance to the genome size increases.

calculated distances useful. We now use a numerical definisaturation occurs whenever the true
evolutionary distance exceeds the distance computed wutdenethod (which, it should be recalled, is
not necessarily a minimum edit distance).

We compared reconstructed trees with an RF error greaterlid# to trees with RF errors of less
than 5%. In the high RF error category over 91% of the distamagices show saturation, whereas in the
low RF error category 75.5% of the matrices are devoid of amyration. The distribution of the number
of operations where saturation occurs for the high and lowneR6&r groups is shown in Figute 3113.
Further investigation into the properties of the trees i ligh and low RF categories revealed little
correlation between factors such as tree size, genomeisigerfes), or distribution of operations. The
major limiting factor in the accurate reconstruction ofeseausing this distance score is thus definitely
the onset of saturation. Since the average genome size iaxpa@riments was approximately 1000
elements, reconstruction is highly accurate when the cosalpedit distance does not exceed 10% of the
genome size and in general performs well until the numbeipefations exceeds 25% of the genome
size. Even in these cases the distance computation perfjuiteswell up to the saturation point, as
illustrated in Figuré_3.14. The vertical axis is the difiece between the actual and computed distances
while the horizontal axis is the ratio of the computed distato the genome size. Note that in a regime
of saturation the computed distance stays the same whibetbal distance is rising, so only the positive
points should be considered when looking for saturation.
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3.4.7 Sophisticated Tree Reconstruction

We still lack a good approach for inference of ancestral geders under thmsertion, duplication, loss,
and rearrangemenfiDLR) model, both from the point of view of computationafat and from that of
accuracy. Indeed, Theorém 3J3.1 and the study of Earneditdg et al [30], indicate that internal gene
orders are seriously underconstrained and so may not bélseinferred—we need a more detailed and
sensitive model of the evolutionary operations on a generorgl.

Thus, we tested our method with a reconstruction algorithat $earches for a parsimonious tree
from all possible topologies, using linear programming|[8%ang and Moret[84] proposed a linear
programming (LP) formulation that obviated the need to saver 99.99% of candidate topologies in
their experiments. It turns out that the LP score was closegmto the actual score that Tang and Moret
proposed using this score in lieu of scoring the tree, amgidiny median computation. The resulting
reconstruction lacks ancestral orderings, but gives aldggpan estimated score, and estimated edge
lengths (the values of the LP variables), much as a maxiniketiHood reconstruction does for sequence
data. Specifics about the full tree reconstruction algorittan be found in our paper [[79].

Experimental Design

Our objective is to verify that computing under the full iDltRode, i.e., handling both rearrangements
and changes in gene content, allows for better reconstru¢tian handling only rearrangements on
genomes reduced to signed permutations. Relative accigrfys our main evaluation criterion. How-
ever, absolute accuracy is needed in order to put the cosgmain perspective. Since, in phylogenetic
reconstruction, error rates larger than 10% are considemadceptable, there is obviously little use in
improving the error rate by a factor of two if the result istjbsinging it from 60% down to 30%. We
also need to test a wide range of parameters in the iDLR madedell as to test the sensitivity of the
methods to the rate of evolution. These considerationsedigutesting on simulated data, where we
can conduct both absolute and relative evaluations of acgubefore we move to applying the tools
to biological data, where only relative assessments ofescoan be made. The range of dataset sizes
need not be large, however, as we know that applying DCM nalst[85] scales up results from datasets
of fewer than 15 taxa to datasets of over one thousand taxalitti¢ loss in accuracy and very little
distortion over the range of parameters. As we can run mamg tests on small datasets and as our
primary interest is the effect of model parameters on acgukse generated datasets in the range of 10
to 13 taxa.

Simulated trees are often generated under the Yule-Handougl—they are birth-death trees. Many
researchers observed that these trees are better baléiacethost published ones. Other simulations
have used trees chosen uniformly at random from the set wéaltopologies, so-called “random” trees;
these, in contrast, are more imbalanced than most publisbesl Aldous[2] proposed thiesplit model
to generate trees with a tailored level of balance; depgnaolinthe choice of, this model can produce
random trees{ = —1.5), birth-death treesd = 0), and even perfectly balanced trees. We use all three
types of trees in our experiments; forsplit trees, Aldous recommended usifig= —1 to match the
balance of most published trees; instead, we chose the ptgato match the computational effort on
the datasets from which those trees were computed, whiasléalusing = —0.8. On random ang-
split trees, expected edge lengths are set after the tregagem by sampling from a uniform distribution
on values in the s€ftl, 2, ..., r}, wherer is a parameter that determines the overall rate of evolution
the case of birth-death trees, we used both the same prawtdseaedge lengths naturally generated by
the birth-death process, deviated from ultrametricity tiresh scaled to fit the desired diameter.

We generate the true tree by turning each edge length intarespmnding number of iDLR evolu-
tionary events on that edge. The events we consider undéliimodel are insertions, duplications,
losses, and inversions of genes or contiguous segmentsohadeeral genes—in particular, inserting,
duplicating, or deleting a block @f consecutive genes has the same cost regardless of the Valué/e
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forced the expected number of inserted and duplicated elisnt@equal the expected number of deleted
elements, in order to keep genome sizes within a genera¢raifg varied the percentage of inversions
as a function of the total number of operations from 20% to 9U%e remaining percentages were split
evenly between insertions/duplications and losses, Wéltbalance of insertions and duplications tested
at one quarter, one half, and three quarters. The expectess{aa-distributed length of each operation
filled a range of combinations from 5 to 30 genes. These ardithams similar to, but broader in scope
than, those used in the experiments reported in Sweeisaki81]

In all our simulations, we used initial (root) genomes oftD@enes. The resulting leaf genomes are
large enough to retain phylogenetic information while éitiig large-scale changes in structure. These
sizes correspond to the smaller bacterial genomes and afide conclude that our results will extend
naturally to all unichromosomal bacterial genomes.

The collections of gene orders produced by these simukatiom then fed to our various competing
algorithms. These are of two types: (i) algorithms runnimgtioe full gene orders, namely NJ and
our new LP-based algorithm; and (ii) algorithms running goadized gene contents, which include NJ
again (running on the inversion distance matrix produce®BAPPA), GRAPPAI[59], and MGR [88].
Gene contents are equalized by removing genes from famiiissmore than one gene, then keeping
only singleton genes common to all genomes. On some of tteasats, the equalized gene content is
minuscule—with high rates of evolution, the number of gesteagred by all 12 taxa is occasionally in
the single digits, obviously leading to serious inaccuraan the part of reconstruction algorithms. We
collect the data (including running times, the actual trée®rnal inferred gene orders, inferred edge
lengths, etc.) and compute basic measures, particulalRtbinson-Foulds[64] distance from the true
tree—the most common error measure in phylogenetic recamnsn.

Results and Discussion

We ran collections of 100 datasets of 10 to 13 genomes, eat/9@d genes, under various models of
tree generation and various parameters of the iDLR model.us®e birth-death, random, amdsplit
(with 8 = —0.8) models, with evolutionary diameters (the length of thegkest path, as measured in
terms of evolutionary operations, in the true tree) of 201,400, and 800 operations. (We ran tests
with diameters of 800, but noted that most resulting insarexhibited strong saturation—that is, that
many of the true edge lengths were significantly larger tharedit distances between the genomes at
the ends of the edge; since no reconstruction method can lénvilee presence of strong saturation,
we did not pursue diameters larger than 800.) For each ttamesl, we measured its RF error rate
(the percent of edges in error with respect to the true tred)tlaen averaged the ratios over the set of
test instances for each fixed parameter. We computed tloeofdtie RF rate for our approach with that
for NJ on full genomic distances and with those for the thiger@aches with equalized gene contents,
binning the results into one “losing” bin (the other methad better), one bin of ties, and 5 bins of
winners, according to the amount of improvement. Not all i@@ances are included in these averages,
because some instances had equalized gene contents ofgusg genes and could not be run with
GRAPPA.

We present below a few snapshots of our results. Table 3vsstie results of using full genomic
distances fof3-split trees on datasets of diameters 200, 400, and 500y 86/t inversions. In this case,
no difference was found between the results returned by Bebbdsed method and those returned by NJ
using full genomic distances. The average RF error rate i6RMvas 23% for diameter 200, 32% for
diameter 400, and 42% for diameter 500. As simple a methodldmNdily beats existing methods that
must rely on equalized gene contents, often by large fageogs, factors of 4 or more in 26% of the
cases with diameter 200 with respect to MGR). The reductiagriior rate was sufficient in many cases
to turn unacceptable results (with error rates well in exa#sl0%) into acceptable ones.

Experience with sequence data leads us to expect that an Mi@anshould do better than NJ when
the diameter and deviation from ultrametricity get largewr OP-based approach is a hybrid: unlike an
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Dataset NJ GRAPPA MGR
200 || 16-4-25-1-0| 50 | 4 14-0-11-4-0f 1| 3 26-6-21-4-1| 36 | 6
400 4-0-5-4-0|1 23| 0 3-0-6-1-0f 0| O 5-1-7-6-12| 1| 4
500 5-5-5-8-0| 69 | 8 || 11-2-14-17-15| 18 | 23 || 17-7-14-17-14| 24 | 7
w t | w t | w t |

Table 3.1: The accuracy for NJ on full genomic distances anthfee evolutionary diameters compared
to three methods on equalized gene contents. Column trgblew wins, ties, and losses, in percent.
Quintiles in the winning columns denote error reductiongdayors larger than 4, 3, 2, 1.5, and 1.

MP method, it does not reconstruct ancestral labels, batdikMP method, it attempts to minimize the
total length of the tree; thus it should at least occasigralitperform NJ. We tested this hypothesis on
random trees and birth-death trees where, in both casesnegajed edge lengths by uniform sampling
from the sef{1, 2, ..., r}, for values ofr ranging from 20 to 100, still using 80% inversions. Talles 3.

and[3.B present the results, this time limited to the refeevGR and to the two methods using full

genomic data.

| 20 40 60 80 100

LP| 09 80 78 6.0 260
NJ| 05 85 87 95 255
MGR | 11.3 31.8 34.0 350 490

Table 3.2: Error rates, in percent, on random trees for tleeamproaches using full genomic data and
for MGR on equalized gene contents.

| 20 40 60 80 100

LP| 02 85 76 57 194
NJ|14 90 85 80 180
MGR | 9.7 31.7 31.8 33.7 514

Table 3.3: Error rates, in percent, on birth-death treeghfertwo approaches using full genomic data
and for MGR on equalized gene contents.

Both tables show gains for the LP-based method over simpksiyolutionary rates increase, until
both methods start failing at = 100. Note that the accuracy gains over MGR are consistently very
high.

Keeping the proportions of inversions to 80%, however, ithee very realistic, as gene duplications
and losses are presumably more frequent in nature thamng@ments, nor very challenging, as, given
a bounded set of possible gene choices, duplications asededll saturate sooner than inversions. The
experiments of Swensat al [81] did not test low percentages of inversions, so we rasafdiests with
20% inversions only, keeping all other relative percersagfeevents identical. Table 3.4 shows these
results. We were pleased, and somewhat surprised, to @baetwal improvements in the quality of
trees for rates up to = 40; the threshold effect toe = 60 corresponds to a type of saturation caused
by too many insertions and deletions. (Approaches with lezpehgene contents are not reported, since
they failed completely, as expected.)

Finally, we reproduced the results of Earnest-DeYdung[@i]Jthe dataset of 13 bacteria, with
genome sizes ranging from 1,000 to over 5,000 genes and gemtek of up to 70 members, this
time without any special preprocessing, and using our L$ethapproach rather than NJ. Once again
the resulting phylogeny is one SPR (subtree) move away frahaf Lerat et al. The large disparity in
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|20 40 60 80
LP[38 30 210 37.8
NJ|31 49 189 337

Table 3.4: Error rates, in percent, on birth-death treek wily 20% inversions.

gene content between species in this dataset was hand@datidally, for the first time for this dataset
(or, indeed, for any other set of cellular genomes).

3.4.8 Conclusion and Future Directions

We have outlined a method that accurately computes tregndiss$ (true evolutionary distances) under
the full range of evolutionary operations between two aabjt sequences. Our experimental results
indicate that the accuracy is excellent up to saturatiori¢chvis reached remarkably late—for instance,
with sequences of roughly 800 genes, our distance computatimains highly accurate up to 200—
250 evolutionary events. Indeed, these distances areadecemough that the simple neighbor-joining
method applied to distance matrices computed with our glgoreconstructs trees with high accuracy.
These findings open up the possibility of reconstructinglgdsnies from whole-genome nuclear data,
as opposed to the organellar data that have been used sodae $kown that the more sophisticated
LP method can utilize our distances better than the simpighber-joining procedure.

While our experiments show that our distance computati@cdsirate, the accompanying scenario
of evolutionary events is only one of many possible sequefiteses a “canonical form[54]); hence
our level of confidence in the correctness of reconstructestral sequences is low. In order to re-
construct good ancestral sequences, we will need additmolagical information, such as boundary
constraints (centromere, origin of replication, etc.hgth distributions, and sequence data around each
gene. Unfortunately, direct comparisons between the rathGhenet al. [26] and those of this section
are hard due to the fact that the Chen algorithm takes nidéesequences as input. The second half
of the algorithm works on two gene sequences where the nuafiloecurrences of a particular gene in
each genome is equal, but other than that their method islictuite similar to ours. No study has
been done to discern whether the minute differences in otinade make any difference in distance
estimation or duplicate assignment.
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3.5 Towards a Practical Solution to the One to Many DuplicateAssign-
ment (OtMDA) Problem

(Work in this section was joint work with Nick Pattengale)

Whereas many of the results earlier in this chapter showatdath can get close to the true pairwise
distance in the presence of duplicate and missing genehijsirséction we show that some instances
of OtMCM can be solved optimally. If the particular optimallstion to OtMCM has no hurdles in it
— a fact that we can check in linear tin€e [9] — then we know we dlave a solution for OtMDA.
Fortunately, the results of Sectibh 2 suggest that this evbketly be the case, making a minimal solu-
tion for OtMCM a minimal solution for OtMDA. We conclude thedion by giving a framework for
approximating OtMCM.

3.5.1 The Generalized Breakpoint Graph

We have seen in Sectign 1.P.1 that the basic structure desga pair of sequences with no duplicates
and equal gene content is theeakpoint graph(actually a multigraph). For this section, however, gene
families need not be singletons, so we generalize the aarigtn to includeonly singleton gene families
as follows. LetBG 4 g denote the breakpoint graph for sequengesand B. As with the normal
breakpoint graph, each singleton gené A becomes a pair of verticeg,” and g* (the “negative”
and “positive” terminals); however, we leave out the gemrilias with multiple members, since only
the singletons have a readily usable structure. We needcdormanodate gaps left in the sequence
where duplicate genes exist ih Call the versions ofi and B without multi-gene familiesA’ and B
respectively. We add an edge dasireedge, in the charming terminology 6f [69})—,y™) for each
singletonz andy, wheneverr occurs immediately to the left af in B’. We add areality edge (also
known elsewhere as a black edge), y9) if = is the element to the left of in A" and we have either
p = q if z andy have different parities (i, naturally) orp # ¢ if x andy have the same parity. Thus
desire edges trace the (re-)ordering4that we need to achieve to matéh while reality edges trace
the given ordering ofi. Figure[3.15 illustrates the construction.

A=@4 -3 2 3 1 6 9 3 8 -10 -7 9
(a) the genomel

Component 1 Component 2

o \‘\\u ~ -
Cycle A 7/ /¥ Cycle B\ / - Cycle C \ \
20 NN\ N / Yy S \

O+ 4* 4t 272t 1- 1t 6~ 6+ 8~ &t 10110~ 7+ 7 117
A=0 4 2 1 6 8 -10 -7 11
B=o0 1 2 4 6 7 8 10 11

(b) the breakpoint graptBG 4, 5

Figure 3.15: A genomed and its associated breakpoint grapli=4 5 (with respect to the identity
permutationB) after genes from families with duplicates (3 and 9) are nexdodesire edges are shown
in gray, reality edges in black.
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(a) a subgraph oBG 4, g before (b) the two possibilities after

addingd; the dashed line is the addingd

desire edge that will be split

Figure 3.16: Adding an elemeritto a breakpoint graph.

3.5.2 The Consequences of An Assignment

Our job of assigning duplicates may be compared to that biteig books in a library with unlabeled
shelves. Each book has a proper location on a shelf and teuttipies of a book must be shelved to-
gether. A librarian can proceed by first removing missheb®oks and then identifying the appropriate
location of each book based on the context of the books thairein their correct spot.

In our problem each multi-gene family has been removed fioenordering, leaving a structure of
cycles defined by singleton genes. We call each gene in a-gant family of B a candidate since
it is one of the choices for a duplicate assignment to a cporeding gene inA. Like each book in
the library, each candidate has a location between two réngpelements irB’; each family, like each
group of book copies, contains candidates that all sharesdlee destination (when sorted) between
elements ofA. For each candidaté, denote by3™(d) the positive terminal of the next smaller (in
value) element ilBG 4 g and by~ (d) the negative terminal of the next larger element. We caliehe
vertices thébookend®f d and the cycle on which they reside tigelf of d. For instance, in Figuife 3.115,
the bookends for the family of gerdg(a family of 3 members) arg™ and4~ and therefore the shelf for
the family of 3s is cycleA. Although the definition of bookends applies equally welsiagletons, we
are only interested in bookends for candidates: bookerdgaat of the breakpoint graph, but candidates
are not, since multi-gene families do not appear in the lpeiak graph.

Once we have chosen a candidate, the candidate and its ntpighine inA effectively form a
singleton gene family, so we can add the candidate to th&pbogat graph. The consequences of that
choice are summarized in the following easy lemma, whicledies many of our results.

Lemma 3.5.1. When a candidaté is chosen, exactly two edges are affected: the reality dufespans
the location where!l is added and the edge between its bookends.

Proof. Refer to Figuré 3.16. Adding to BG 4 i splits the reality edge that spans the location where
d is added, creating two new endpoints andd—, as well as splitting the desire edge that links(d)
and(3~ (d) to meet each of " andd . O

We say that a candidatéis addedon-cycleif, once added, it lies on its own shelf; otherwise it is
addedoff-cycle The following is an immediate consequence of LerimaB.5.1.

Lemma 3.5.2. When a candidate is added off-cycle, two cycles get joined.

3.5.3 The Cycle Maximization Problem

We have formulated duplicate assignment as two optimizgiroblems (OtMDA or MtMDA): choose
an assignment of duplicates that maximizes the number ¢dsye the resulting breakpoint graph (that
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Figure 3.18: The breakpoint graph of Figlre 3.15 inscrilmethiee circles (cycld is not shown).

is, BG 4, g to which the chosen candidates have been added). Note éhatdbr in which the chosen
candidates are added does not affect the structure of thitimgsbreakpoint graph.

Consider cycl€” in Figure3.15. This cycle is associated with the subseqigh, 8, —10, —7,9, 11),
which contains two occurrences of gedieghus we must choose which of these two occurrences to call
the match of gen® in B. Figure[3.1V shows the augmented breakpoint graphs mgudtbm each
choice of candidate. The graph on the left, where we chosesathdidate betweehands, has one more
cycle than the graph on the right, where we chose the carediittveen—7 and 11, and is thus the
better choice.

As we've seen, the choice of a candidate is advantageouslyed on a breakpoint graph inscribed
in a series of circles, one for each cycle in the graph. We eéngaeh cycle ofBG 4 g in a circle
by choosing any start vertex and then following the cycleguFe[3.18 shows three of the four cycles
of Figure[3.15 inscribed in three circles. Returning to tlve possible duplicate assignments shown
in Figure[3.1¥, we can look at the inscribed versions of tlgaphs, as illustrated in Figure 3119(a).
Choosing candidates adds edges across the circle, edgasahaross each other, depending on the
parity of the candidates and the locations of their bookemtie effects on the graph can be represented
in just onecircle-drawing as shown in Figurie 3.19(b). In this representation, we tdethe@ two choices
by drawing two curved line segments, both originating onglemeter between the bookents™ and
8T and each ending between the two terminals of the correspgrdindidate. Choosing the candidate
between6™ and 8~ gives rise to desire edges that do not cross in the inscriepesentation; we
represent such choices with solid lines. The other carelidstweery— and 11—, does give rise to
crossing desire edges; we represent such choices withdllsas.

These curved lines represent assignnogrgrations we will call an operation represented by a solid
line astraightoperation (because it does not introduce crossings) andepnesented by a dashed line
a crossoperation. The collection of all operations that share aipemt represents all members of a
gene family fromA4, so we also call it #&amily and call its common endpoint (between the bookends and
represented by a solid disk on the periphery of the circldinfigures) thdamily home We can now
state the three constraints for our optimization problem:

1: Each family home is a distinct point on the circle.
2: The family home is not the endpoint of any operation nobat family.
3: The other endpoint of each operation is unique to that apen.

The objective to be maximized is the number of cycles. Fi?8 shows the operations for each of the

47



(a) the graphs of Figure-3.17 inscribed (b) the two choices of
in circles part (a)
superimposed

Figure 3.19: How the cycle splitting problem can be insatibrea single circle.

Figure 3.20: The operations that represent the gene fanfidieour running example.

gene families from our running example. Operations thas<aycles are off-cycle and therefore will
join cycles.

Figure[3.21 shows a single cycle and its operations for tmpliied (“one-to-many”) case where
B has only singletons and for the general (“many-to-many8ecahere bottd and B have multi-gene
families. (The case where two multi-gene families have #reesbookends can be handled because the
relative location of the bookends does not change.) In timegd case we have multiple homes per
family, with one additional constraint:

4: Each home in the same family must connect to all of the sauagoints.

The problem thus becomes picking as many operations as dinereomes per family such that the
cycle count is maximized. The only additional complicatistthat applying an operation removes that
operation from consideration in all other homes for its fgrtas required by the fourth constraint).

Straight and cross operations display a form of duality shigigests we can focus on straight opera-
tions alone.

Theorem 3.5.3. Applying a cross operation converts all operations that intersect(call the set of
such operationd) to their complement—crosses are replaced by straights straights by crosses.

(a) a one-to-many instance (b) a many-to-many instance

Figure 3.21: Examples of circle-drawings for the simplifease (left) and the general one (right).
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(a) drawn on the (b) zooming in (c) after (d) result
circle as usual on each applying cross redrawn on the
operation operationc circle

Figure 3.22: lllustration for Theoren 3.5.3. Labels for gménts along the circle are numbered.
1

i

3

(a) before (b) after
application application

Figure 3.23: Applying cross operatien

Furthermore, for any two operations iR if they intersected before applyingthen they no longer do
after applyinge, and vice versa.

Proof. We sketch the proof graphically, using Figlre 3.22, a tyipsitaation where three operations,
two of which are crosses, one a straight, overlap each oftercross operation shown in parts (a) and
(b) twists, but does not break the cycle, as shown in partif@e redraw the cycle inscribed neatly in
a circle, we find we must reverse the indices on half of theegyeigure 3.2R(c) shows the result after
reversing indices on the bottom half of the cycle. Inteliggcbperations no longer intersect and the
identities of the operations have been inverted. O

Figure[3.28 shows the implications of Theorem 3.5.3 in a ncoraplicated setting.

3.5.4 Buried Operations

An operation makes no contribution to the cycle count of aglete assignment if the two new desire
edges it creates lie on the same cycle. In Figurel 3.24, theehof candidates for the gene families are
indicated in the breakpoint graph on the left and shown asatipes in the inscribed representation on
the right.

In Figure[3.2b, we show again the three operations depictddgure[3.24(b), but this time only
the three operations and the resulting two cycles are shdlete the operation corresponding to gene
family 2 (shown as a heavy curve): the curved edge is bounded on abchythe same cycle; we say
that such an operation muried Since the two desire edges created by this operation lib@same
cycle, the operation does not increase the number of cyldadt it actually reduces the number of
cycles, which stood, in this particular example3after operations-6 and—4).

Theorem 3.5.4.If a duplicate assignment creates a totabdiuried edges, then the number of cycles is
bounded by: — b + 1, wherea is the number of cycles present in the breakpoint graph ieduxy the
shared singleton genes plus the total number of duplicat@yaments to be made.
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(a) the breakpoint graph (b) the inscribed version
of BGA,B

Figure 3.24: An example witll = (2-34 -6 5-4 -2 6 1). Chosen duplicates are shown in grey.

Figure 3.25: The cycle and the operations; operation “28 {thavy curve) is buried.

Proof. The number of cycles cannot exceed- 1, since each duplicate assignment can give rise to at
most one new cycle. Consider the effect on the breakpoimihgod choosing an operation: a single
desire edgel is replaced with two desire edgé$ andd),, and a single reality edgeis replaced with
two reality edges’ andr),. By constructiond) andd,, each inherit one of the original endpointsdf
similarly, } andr/, each inherit one of the original endpointsofBy assumption, the chosen edge is
buried, so that/; andd,, lie on the same cycle; therefore so do all of the original eimip ofd andr.
Thus all of the newly created edges must lie on a cycle thaadir existed. Since this is true of any
buried operation, every one of the buried operations deesslay one the maximum number of attainable
cycles. O

3.5.5 Chains and Stars

There exist two patters of straights that, while need notaiorburied operations, nevertheless impose
sharp bounds on the number of cyclesk#&hain (for £ > 3) is an assignment in which operations
form a chain, that is, each chosen operation overlaps twbheobtherk, its predecessor and successor
around the circle. Figufe 3.26(a,b) illustrateshains. Ak-star (for k£ > 1) is an assignment in which

k operations form a clique (each overlaps every other). Ei§26(c,d) illustrates-stars.

Remark 3.5.5. For any integerk > 1 (but recall thatk-chains are only defined fdr > 3), we have:

1. ak-chain has no buried operations;

< \/
) 5
<< » <P

(a) a 4-chain (b) a 5-chain (c) a 3-star (d) a 4-star

Figure 3.26: Some examples of stars and chains.
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(a) operations indicated by heavy (b) the resulting reduced instance;
lines (and arrows) are those chosen heavy edges will produce an

to produce the reduced form of part optimal solution to the reduced
(b) instance

Figure 3.27: Creating a reduced instance and solving it.

in ak-chain withk odd, the cycle count i,
in ak-chain withk even, the cycle count &
in ak-star withk even, every operation is buried and the cycle court is

A

in ak-star withk odd, no operation is buried and the cycle court.is

We conjecture that these two patterns, along with buriedatioms, describe all operations that may
reduce the number of straights that do not create a new cycle.

3.5.6 Reduced Forms

A serial assignment procedure could reach a state in whicbpeoation remains that could split a
cycle. We call such a stateraduced fornof the instance. In a reduced form, an instance is composed
of multiple cycles linked by the operations from the remagnfamilies. This structure lends itself
naturally to a graph representation; an analysis of thiplgraveals conditions under which optimality
can be verified.

Theorem 3.5.6. After applying a maximal nonoverlapping set of straight ratiens M, remaining
operations can only (by themselves) join two cycles.

Proof. The application of a set df nonoverlapping straights always yieldsew cycles, each separated
from the others by two adjacent operations or, in the casa afuéermost cycle, by one operation that
separates it from all others. Singé is maximal, every remaining operation from every family ib&ps

an element of\/. Application of anym € M, therefore, must span two of the new cycles, joining them
into one. O

Figure[3.2¥(b) shows the reduced instance induced by aygplyach of the (straight) operations
chosen in Figuré_3.27(a). We are left with a reduced form ¢aat be viewed as a graph where the
vertices are the cycles created so far; but because thdt grembedded in the plane, the edges incident
on a vertex are strictly ordered, in distinction to a normalpdp.

We can now take advantage of graph properties such as flaraftles, and connected compo-
nents. Because of the ordered nature of the edges incidentaigiven vertex, planarity is somewhat
specialized in our case: nonplanar edges can occur in gigiplations than in general graphs, as shown
in Figure 3.28(c). Cycles again play a vital role in these geaphs. If we restrict our attention to planar
graphs, we can look at the elementary cycles (those thahidaln inside face of the planar embedding)
and obtain directly the value of an optimal solution. As shaw Figure 3.28, each connected compo-
nent produces a cycle around its outer hull (one of the cyfdethe outer face of the planar graph).
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(a) the effect of (b) a reduced form: (c) adding a “nonplanar”
applying lines trace the cycles operation to the reduced
an operation between created by the operations form from (b) joins the
two circles cycles

Figure 3.28: The effect of choosing operations on a reduced.f

(a) the solution embedded (b) the circle-drawing of the
through a reduced form solution

Figure 3.29: An optimal solution to the reduced instanceigure[3.27

Each elementary cycle yields another cycle to its insidguie{3.28(c) shows how nonplanar edges can
join these two cycles.

Theorem 3.5.7. The number of cycles in a solutighto a planar reduced instance with elementary
cycles and:c connected componentsi¥.S) = m + cc (m is the cycle rank of).

Proof. This certainly holds for a reduced instance with no openatioAssumeR(S) = m + cc for
a particular instance and solution, then look at the effécduling another edge. If that edge links
two previously disconnected components, then the cyctasarthe hulls of these components will get
merged, removing a cycle and a connected component. If tus Enks two connected components,
then an elementary cycle will be created. Since the edgedadddanar, we know that the same cycle
runs past both endpoints of the operations and thus thetapewaill split it. O

It remains to relate results on reduced forms back to thanalignscribed breakpoint graph for-
mulation; we illustrate the process in Figlire 3.29, wheeeldfit part shows the solution obtained on a
reduced form and the right part shows the correspondindignlinscribed in the circle.

3.5.7 An Approximation Framework

We evaluate a solutiofi against an optimal solutiof for a particular instance. Callpc(.S) the number
of breakpoint graph cycles created for a solutibgo that the approximation ratio for the algorithm that
creates solutiot¥' is Zﬁg((g)) Call the maximum set of non-overlapping operations (ferdincle-drawing

of the instance) in the solutia$i* C S and the same in the optim@* C O. We continue by comparing

the score given for the reduced form induced¥iyandO*.

Properties of Solutions

In this section we show that a solution with a maximum numibeoanected components (in a reduced
form) will be no worse than half the optimal. Theorém_3.5. hédpful if a solutionS happens to be
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planar (in our peculiar way, where the edges incident to a particudatex have a fixed ordering). We
can turn the formula of Theorem_3.5.7 into an inequality whee ignore the effect (on the score)
introduced by non-planar edges:

Theorem 3.5.8.cc < hpce(S) < m + cc wherecc is the number of connected components in a solution
S andm is the cycle rank of.

Proof. The lower bound comes from the fact that, as noted earli@h eamponent of the solution
represents at least one cycle. Now we prove the upper bound:

Take the maximum cardinality planar subgraphof S and the score of that subgraphc(P) =
mp + ccp. Trivially, we know thatcc = ccp. Call the set of non-planar edgés= S \ P. Each edge
in N will add one to the cycle rank sa = mp + |N|. Each edge ofV must span two elementary
cycles inP. Take a maximum subset of those ed@és C N such that no two edges iN* span the
same two cycles. Each edge N will join the two elementary cycles into one so we haye:(S) <
cc+mp—|N*|+|N\N*|. Sincemp—|N*|+|N\N*| < mp+|N| = mwe havehpc(S) < cc+m. O

The inequality in the above formula arises from the fact thay a subset of the edges &\ P
can positively contribute tapc(P). This formula provides us a way to compare solutions without
worrying if a solution is planar or not; at first glance it salyat if we maximize the number of connected
components irs we are within somen of the optimal. Thatn is at most. —|O*| wheren is the number
of families so any solution that maximizes the number of @mted components would be no worse than
m = O(n) from the optimal. This does not appear to help since themtistbetween two permutations
isO(n).

However, it is well known that a graph with cycle rank v vertices, and edges hasc = v—e+m
connected components. Thus we can find a version of ThdofefhtBat suites us.

Corollary 3.5.9. v — e+ m < hpe(S) < v —e+2m

This is interesting because it relatesand2m. Indeed, if we were to find a solution with maximum
v —e+m we would be within half of the optimal solution. Apparentiiye non-planar factor can detract
at mostm from a solution. We proceed to show that whenis maximized to obtain a solutiof,
m < cc and thus the optimal solution is at most doubje:(.S). ..

Theorem 3.5.10.For a solutionS wherevg — es +mg (in the reduced form induced I$/) is maximum
and an optimal solutior® (with vp,e0,me) it must be thahpc(S) > hpe(O), providedvp — ep > 0
orvg —eg > 0,mop > mg.

Proof. By Corollary[3.5.9, we know thakpc(S) is at leastvs — eg + mg, SO we have(vs — eg +
mg) < 2hpc(S). Also by Corollary3.5.8, we havepc(O) < vo — ep + 2mo, which (because when
vg — eg +mg IS maximum so i2(vg — es +mg)) is No greater thaB(vs — es +mg) provided we have
vo—eo > 00rvg—eg > 0,mp > mg. We concludéipc(0) < vp—ep+2mo < 2(vg—eg+mg) <
2hpe(S). O

3.5.8 Conclusion

We have described a graph-theoretical framework in whichefwesent and reason about duplicate
assignments and their effect on the number of cycles presehe resulting breakpoint graph. We
have given some foundational results about this framewiadtding several that point us directly to
to algorithmic strategies for optimizing this assignmeénte believe that this framework will lead to a
characterization of the duplicate assignment problem dsaseo the development of practical algo-
rithmic solutions. We showed that this framework gives agnaxe that could lead to an approximation
algorithm for certain classes of instances of OtMCM and M#lGVe will see in the next section that
the work here also leads to NP-Hardness results.
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3.6 NP-Hardness Proof for OtMCM, MtMCM, RDD, OtMRD, and MtMR D

We have seen that a choice of a duplicate has the effect dtirsgpland joining the cycles of the break-

point graph; in order to minimize the distance, we choosdicafies so as to maximize the number of
cycles. We show that One-to-Many Cycle Maximization (OtMLCiBINP-Hard by a reduction from a

restricted version of 3-Dimensional Matching (called mgke Matching). We conclude the section by
showing how this powerful reduction extends to MtMCM, RDOMRD, and MtMRD.

3.6.1 Triangle Matching

We pose a restricted version of the 3-Dimensional Match8igM) problem (called “Triangle Match-
ing” or TriM) as a graph problem on colored vertices. Notet tha input to TriM is restricted in our
presentation to only chordal (triangulated) graphs; tbgriction is imposed only for ease explanation
since the two reductions that follow carry through even wtieninput is a general graph on colored
vertices.

Input: A chordal (triangulated) grapy = (V, FE) such thatV' = X UY U Z (XY, andZ are the
coloredsets)and NY =XNZ=YNZ=0.

Output: A set of triangles{(z,y, z) | (z,v), (v, 2), (z,2) € Eforz € X,y € Y,z € Z} such that
every vertex exists in exactly one triangle.

The difference between TriM and 3DM is subtle; TriM is thesien of 3DM suitable for drawing
on a page. Figure_3.B0 shows an instance of 3DM where an undiedetriple is produced from three
other triples when drawn on a page. Since TriM is a graph prolihis case is built into its structure so
there is no such thing as an “unintended triple”.

Figure 3.30: An instance of 3DM with triplegy, z, x), (z,2',v'), (z,9', 2') } that can’t be represented
by a graph. The dotted triple;, z, 3’) is an unintended byproduct of the other three.

Theorem 3.6.1.TriM is NP-Hard.

Proof. The standard reduction from 1in3SAT to 3DM (se€ [39]) canibectly applied to TriM so as to
show it NP-Hard. O

3.6.2 Preliminaries

Sectiori.3.5.8 describes the terminology and concepts thate to reason about the cycle maximization
problems. A consequence of Lemma 3.5.1 is that a cycle caplibeé$o two if the orientation (sign) of
the chosen candidate is correct. Without loss of generality we later see — we can consider only those
instances that are a single cycle. Thus, the choice of a datadis advantageously viewed on a graph
inscribed on a circle; a problem instance of OtMCM can bemlye a circle-drawing Figure 3.21(a).
Our reduction will rely heavily on the fact that we can creatpermutation that yields a desired
configuration of separate cycles. As depicted in Figurel3a#lcan include, in a constructed instance
to OtMCM, single operation families (no choice is allowelat start us off in a desired configuration.
So each single operation family would be its own cycle-vertdote that operations that exist between
cycle-vertices now link the cycle-vertices creating aaiton where the two breakpoint graph cycles are
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(a) the gray operations induce a (b) the induced instance with three

particular instance cycle-vertices

Figure 3.31: Creating a three cycle instance of OtMCM.

(a) length 3 cycles from TriM are (b) a solution tok-OtMCM
(1,3,5),(1,4,5), (2,3,5), (2,3,6) (dark edges are chosen candidates)

Figure 3.32: An instance of TriM converted xeOtMCM.

joined into one. Figure_3.33 and Figlre 3.28 give the readieeldor the effect of linking cycle-vertices
by edges.

3.6.3 TriM to OtMCM

We reduce TriM to OtMCM through the decision version of OtMCllIedk-OtMCM. k-OtMCM asks
the question: “can we find a solution for OtMCM that yieldsycles”. k-OtMCM reduces to OtMCM
because the number of cycles in a solution to OtMCM, of cquraa be compared tb to obtain an
answer tok-OtMCM. We assume that the number of vertices in a TriM instais divisible by three
because we can immediately return “no” if it is not.

Setup

We say that a cycle-vertes links toanother cycle-verte® if there exists a candidate from a family on
A which connects td3. We convert an instance of TriM to an instanceke®tMCM. For eactw € V
we create a separate cycle-vertéx) € C' using the method described in Section 3.6.2.

Cycles are linked based on the edge#inEachc € C has a single family associated with it where
candidates from it will connect. For each edgeb) € E we create a candidate linkinga) to ¢(b)
where ¢ € X andb e Y)or(a € Y andb € Z) or (a € Z andb € X). This construction results in
a setup where all cycle-vertices representing elemeni$ lifik only to elements ol”, elements oft”
link only to elements o7, and elements o link only to elements ofX. The possible configurations
of solutions that satisfy-OtMCM, as we will see, is thus very limited. Figure 3.32 slscan instance
of TriM that has been converted xsOtMCM and one choice of candidates tihaOtMCM might take.

A key notion is summarized in the following remark (illustd in Figuré 3.33). ..

Remark 3.6.2. Two cycle-vertices bridged by a candidate cannot createva eycle. Three cycle-
vertices linked in a triangle, however, combine to form a oguale.
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(a) Three cycles to be (b) One cycle (strong (c) A new cycle (dotted) is
joined by straight black) exists when two created once all three are
operations. are joined. joined.

Figure 3.33: The effect of choosing candidates across €ycle

Limitations on Structure

As stated, the structure of feasible solutions that satisB(tMCM is greatly limited by our construction.
We explore these limitations here by viewing our instancé&-@tMCM as a graph where the cycle-
vertices inC are the vertices and the edges are dictated by the canditlatebvious way. This is done
so that we can use the termpath, cycle andconnected componeitrt the expected manner on this meta
graph (the word cycle no longer refers to the cycles in the HPlgunless explicitly noted).

The most important corollary of our construction deals withinherent “directionality”. When
inspecting a solution to ouk-OtMCM instance we can start at a cycle-vertex@nand follow the
candidate from its associated family; from the cycle-vettat we next reach we can follow its candidate
and so forth. Without loss of generality we call this movetrdock-wise (and movement in the opposite
direction counter clock-wise); this matches the way we ldragvn the example in Figufte 3132.

We restate Theorem 3.5.7. ..

Theorem 3.6.3.The number of breakpoint graph cycles in a planar soluSonith m elementary cycles
andcc connected components/ipc(S) = m + cc (m is the cycle rank of).

The following lemmata refer to properties #fOtMCM instances that have been reduced from
TriM. . ..

Lemma 3.6.4. Any clock-wise path on a connected component in a solutist tetminate at a cycle.

Proof. If this is not true then there exists a cycle-vertex that teates a clock-wise path. This is a
contradiction because every cycle-vertex has at leastamdigdate coming from it and there are a finite
number of cycle-verticeg (| is finite). O

Lemma 3.6.5. Every connected component in a solution must have exadat!yyxie.

Proof. A consequence of Lemma 3.6.4 is that every connected componest have at least one cycle.
Assume that there is more than one cycle in a connected campostarting from a cycle-vertex on
one cycle we must be able to follow a clock-wise path from @mother cycle. This is a contradiction,
however, because the clock-wise degree of any node is 1. O

Lemma 3.6.6. The length of all cycles in a solution must be a multiple of 3.

Proof. By our construction a cycle-vertex f&€ only links to a cycle-vertex fo¥’, a cycle-vertex fol”
only links to a cycle-vertex fo#, and a cycle-vertex foZ only links to a cycle-vertex foX. So every
cycle is a multiple of 3. O

Lemma 3.6.7. All feasible solutions t&-OtMCM must be planar.

Proof. This is a direct consequence of Lemma 3.6.5. O
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Mapping the Solution

We know from Lemma-3.6]15 and Lemrha 316.6 that the candidaigranent given by:-OtMCM wiill
be comprised of connected components with a single cyctetsses length that is a multiple of 3. We
seth = Yo,

3

Lemma 3.6.8. With k& = %2, k-OtMCM can be satisfied if the candidate assignment is caagrof
only length 3 cycles.

Proof. From Lemmata 3.615 and 3.6.6 we know that there exists no eonent of size less than 3. Since
every feasible solution th-OtMCM is planar (Lemma-3.617), we know the number of breahkipgraph
cycles can be calculated from the number of connected coemterand cycle rank by Theorém 316.3.
By Lemmal3.6.b that formula can be simplified, in our case,&d(S) = 2cc. Since the number
of splits created is related only to the number of connectedponents and the number of connected
components will be maximized when they are all of minimune size know that the maximum number
of splits occurs when a solution is comprised of only lengtty@es. The Lemma follows immediately
from the fact that the greatest number of length 3 cyclesiplesis '—‘g‘ (vielding ‘—?2 breakpoint graph
cycles). O

Theorem 3.6.9. OtMCM is NP-Hard.

Proof. Itis straightforward to see that by construction, and Leri3m6a8,k-OtMCM will give a solution
with disjoint triangles of cycle-vertices if and only if theeexists a partition of the vertices for TriM into
disjoint triangles. As previously noted;OtMCM is NP-Hard implies OtMCM is NP-Hard. O

3.6.4 TriM to MtMCM, ERD, OtMRD, and MtMRD

It follows immediately from Theorem 3.6.9 that MtIMCM is NPakl. The same reduction can be used
to show OtMRD — and hence, RDD and MtMRD — to be NP-Hard as Iangahurdles are created
in the breakpoint graph implied by a feasible solution to @Ml We show that any instance with a
feasible solution containing: cycles and some hurdles can be converted into an instankeanxycles
and no hurdle (hurdles can be detected in linear time).

Notice that our reduction used only straight operationstraight associated to an element with a
particular sign will be a cross when the element has the dgpsign (see Sectidn 3.5.3). For a particular
feasible solution to OtMCM that has bad components, we caplgichange two straight operations on
the cycle (we know there is one by Lemina 3.6.5) of each bad ooe to a cross. Since this entails
flipping the sign of two elements in the permutation we knoat #ach such component will now have
two elements of opposite sign to the others and hence, wjbloel (see the definition of bad component
in Section Z2.1l). The number of cycles will remain the sameaime the analogue to Figure 3.33 that
possesses two Ccross operations).
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Chapter 4

Reconstructing Ancestors

Suppose that a set of extant species have evolved so thahylagenetic relationship between these
species can be represented by a binary tree. A toy exampleafuxh phylogenetic tree is in Figlrel4.1.
The problem of ancestral reconstruction calls for us tolltigeinternal nodes of this tree with the states
of the genome just prior to each speciation event. In thatioadl approach of Tesler and Pevzner
[88], one of many so-called median permutations is takeretthb ancestor permutation. To this end,
in Section[4.1l we introduce a fast heuristic to speed up amutave the median score of the most
commonly used median algorithm. In Section 4.2 we introdunew and powerful means to accurately
compute ancestral permutations.

4.1 Noninterfering Inversions

(This is joint work with Jijun Tang and William Arndt)

Phylogeneticists have sought to exploit the advantagesmé-grder data (no need for reconcilia-
tion of gene trees, very little saturation, existence oé rawents that uniquely characterize some very
old divergences, etc.), but have had to contend with the ¢dghputational complexity of working with
such data. Of particular interest in a phylogenetic coritette problem of finding the median of three
genomes, that is, finding a fourth genome that minimizes time sf the pairwise distances between
it and the three given genomes [67]. This problem, while dgpéairly easy for aligned sequence data,
is NP-hard for gene-order data [23,/63]. Since phylogenetionstruction based on reconstructing
ancestral states may need to compute such medians regedastilapproximations or heuristics are
usually needed, although exact methods have done well fall g@nomes (from organelles, for in-
stance)[[5]7, 70]. One such heuristic, implemented in thelleosoftware MGR([88], attempts to find a
longest sequence of inversions from one of the three givanrges that, at each step in the sequence,
moves closer to the other two genomes. However, nothingdw/labout the theoretical behavior of this
heuristic and no systematic experimental investigatioitsafisefulness has been conducted. Recently,

(12 34).

(1-3-2 4)./ \.(1 23-4)
B1-2 4)./ \ 23-14)

Figure 4.1: A phylogenetic tree. The ancestral (internajenlabels are bold.
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Figure 4.2: The breakpoint gragh(m = (-6 -4 -2 1 -3 -5)).

Arndt and Tangd[7] provided significant improvement on ttesitistic by considering sets cbmmuting
inversions, that is, inversions that can be arbitrarilyrdeoed among themselves without affecting the
end result.

In this section, we show that finding maximum cardinalityssftcommuting inversions is equivalent
to finding maximum independent sets on circle graphs andrsbeaone in low polynomial time—we
give a simple algorithm for this purpose. We also shed lighthe relationship between maximal sets of
noninterfering inversions and independent sets on cin@phs. We further classify sets of commuting
inversions intanterfering and noninterfering inversions, whemeninterfering inversionsire commut-
ing inversions that also make maximal progress (e.g., wsvarmedian). Finally, we characterize the
relationship of sets of noninterfering inversions to signas and that of signatures to inversion medians.

For most of the section, we show how to analyze single petiontin terms of commuting and
noninterfering inversions; in Section 4.1..4, we show hoextend the analysis to multiple permutations.

4.1.1 Definitions

In this section we use extensively the fundamental defimitipom Section 1]2.

Commuting and Noninterfering Inversions

Depicted in Figuré 412 is the breakpoint graph that we widl far our running example in this section.
Cycle-splitting inversions on this graph are of particufderest to us because, in the absence of hurdles,
they are the inversions that mowene inversion closer to the identity. A set of cycle-spiiftinversions

on a permutationr arecommutingif and only if the application of them in any order yield tharsa
permutationr.

Definition 4.1.1. A set ofm inversions onr (with respect tar) is noninterferingif and only if

1. the setis commuting; and
2. applying these inversions in any order mowedoser tor by m inversions.

Example 4.1.2.For 7 = (-6-4-21-3-5) a maximum cardinality set of commuting inversions is
{p(1,1), p(1,4), p(1,5), p(1,6), p(2,3), p(3, 3), p(4,4) } while a maximum cardinality set of noninter-
fering inversions igp(1,1), p(1,2), p(1,4), p(4,4)}.

Edit Partial Orders and Inversion Signatures

We informally introduce some notions here that are usedilyeavthe Sectiorf 4.2. Recall that adit
scenariois a minimum-length sequence of inversions that tarimto, say,r. Theedit partial order
(EPO), then, is the graph of all edit scenarios betweamndr; the permutations are vertices and edges
link those permutations one inversion away from each offlee intersection of all EPOs from a set of
permutationsP to permutationr is thesignature graphand any vertex (permutation) in this graph is an
inversion signatureSee Definitio 4.2]1 for a more formal treatment.
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So a set of noninterfering inversions of sizeconstitutes a subgraph of the signature graph of size
Yoo (T) = 2™, This motivates our use of noninterfering inversions fat fzomputation of inversion

signatures; experiments in Sectionl4.2 confirm that thidoukis often faster that other known methods.

Circle Graphs and Permutation Graphs

When a set of chords is drawn so that each endpoint of the dlesradn a circle we have ehord
modelof a circle graph. Theircle graphrepresents the intersection of these chords where ea@xvert
corresponds to a chord and each edge corresponds to integsetwords([[36]. For a permutation we can
define gpermutation graptas follows. Each vertex is an element of the permutation anebge(u, v)
exists if and only ifv > u andv appears to the left af in the permutation [37]. It is simple to see that
a permutation graph is a circle graph.

4.1.2 Maximum Sets of Commuting Inversions

We now show how to find a maximum cardinality set of commutingersions efficiently, omitting
proofs due to space limitations. We can interpret the irgl@fean inversion to be indices of an interval
on a line. Two interval®verlapif and only if they are disjoint or if one is contained insidetother,
and two intervals that share the same endpoint do not ovehtafhis way each oriented inversion of
7« could be mapped to an interval yielding a set of intervalmeof which overlap and some of which
may meet at an endpoint.

Lemma 4.1.3. A setC of inversions commute if and only if no two inversions fiGraverlap.

Thus, we have a set of intervals that when projected ontoctegjield a chord model of a circle
graph [40]. Call this circle graplirc. See Fig[[4}4(a) for an example of such a graph. It is cledr tha
a maximum independent set G- corresponds exactly to a maximum independent set of commuti
inversions. With the use of th@(n) algorithms by Bader et al.|[8] to build the HP-graph anddhe?)
algorithm of Valiente[[89] for maximum independent set otirele graph, we get the following theorem.

Theorem 4.1.4. A maximum cardinality set of commuting inversions can baddn O(n?) steps.

4.1.3 Maximum Sets of Noninterfering Inversions

In this section we show how to relate the problem of findingtaaoninterfering inversions to finding
an independent set on the union of two circle graphs.

Since a set of noninterfering inversions is also a set of catimg inversions, the constraints 6%
(from Sectior 4.1]2) will have to be satisfied. Additionahstraints must be introduced to ensure that
the set of commuting inversions that are picked also sorp#dreutation, call the graph representing
these constraint&'s. We will see that these intricate interactions can also peesented by a circle
graph; first this is shown for a component that can be repteddmy a single cycle in the breakpoint
graph and then is generalized to any permutation.

Single Cycle Components

One important property of commuting inversions is that thgliaation of one inversion can not disturb
the orientation of an inversion it commutes with.

Lemma 4.1.5. Given mutually commutative oriented inversigns, j) and o (k, ), the application of
(without loss of generality) will either

1. makes span two different cycles or
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2. leaveo oriented.

Proof. Call r ands the reality edges being acted upon &y At least one of- or s will remain intact
after the application op, say it isr. At least one of the vertices incident ¢anust remain intact, call
it v. There is a pathP from v to aw incident tor that does not include. Note that the adjacencies of
v andwu are not affected by and that, because is oriented, ifv is on some side of thenw is on the
same side of. But p can only remove a subpath of the cycle when creating anogtode.cBecause
ando commute, whether the removed subpath is also a subpdatooiot,« andv will remain on the
same sides of their respective reality edges, thus leatimintersions oriented. O

Each oriented inversion will split the cycle into two by sywéap the affected vertices of the desire
edges being acted upon. Thus, when we embed the cycle onle wigccan represent the action of
an inversion as a cord with its endpoints on those desiresedger two inversions that intersect and
act upon a disjoint set of desire edges we know that applymgyaf them will put the reality edges
acted upon by the other on different cycles; so in this camedacting chords represent inversions that
interfere.

Finding the interactions between inversions that sharalayedge takes more care however. More
specifically, consider the set of inversions that all shareadity edge as an endpoint and share the
same desire edge. For example the set of inversions that s¥elity edge2—,17) is {p(2, 3), p(3, 3),
p(4,4), p(4,5), p(4,6)}, which can be partitioned into inversions that share e@ge 1) {p(2,3),
p(3,3)} and those that shate—, L") {p(4,4), p(4,5), p(4,6)}.

The following lemma describes the structure of the interfiee between those that share a desire
edge. First, let us order such a dein two ways. Call the ordering: : I — N that which numbers
inversions from shortest to longest. As stated, the actfaananversion onG(-) is to swap endpoints
of the two desire edges being acted upon. Because they shameal upon reality and desire edge we
can look at the shared vertexthat will be affected by all inversions ih The ordering5 : I — N is
that which numbers inversions by the order in which we visihonv endpoint, starting at the common
reality edge and proceeding through

Lemma 4.1.6. Take inversions, j € I. i interferes withj if and only ifa(i) > «(j) and

B(i) < B(j).

(In other words, an inversion interferes with all shortevémsions that appear after it on the cycle.)

Proof. Recall thatv is the shared vertex that will be affected by all inversiamd.i For an inversion
ielandanyj € {k|k eI\ {i}anda(i) > a(k)} with endpointsy andu respectively, we know that
1 interferes withj if and only if w ends up on a different cycle tharafter applying:. If we follow the
cycle in the same order used to bufidthe reality edges we visit before encounteringre those that
will be remain on the cycle witlkh when it is attached by the new reality edge. So those invesdioat
act upon such reality edges will remain oriented, and theyearactly thosg that haves(j) < (7).
The others will respect(i) < 5(7). O

Example 4.1.7.Fig.[4.3(a) shows the graph from Flg. 4.2 embedded on a circienposes the ordering
on all inversions that share desire ed@&", R™) so thata(p(1,1)) < a(p(1,2)) < a(p(1,4)) <
a(p(1,5)) < a(p(1,6)). We also haved(p(1,6)) < B(p(1,1)) < B(p(1,5)) < B(p(1,2)) <
B(p(1,4)). So forp(1,5) we havea(p(1,5)) > a(p(1,4)) > a(p(1,2)), as well asp(p(1,5)) <
B(p(1,2)) < B(p(1,4)), which tells us thap(1, 5) interferes wittp(1, 2) andp(1,4). Further,a(p(1,5)) <
a(p(1,6)) andB(p(1,5)) > B(p(1,6)) shows thap(1, 5) interferes withp(1, 6). Fig.[4.3(b) shows the
result of applying inversiop(1, 5) on the graph.

Corollary 4.1.8. The interference relationship between all inversions #wton the same desire edge
can be represented by a permutation graph.
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(a) Chords rep- (b) After applying inversion
resent inversions that will effect p(1,5).
the desire edgés™, R ™).

Figure 4.3:G(m = (-6 -4 -2 1 -3 -5)) embedded on a circle. We see the affectitiatsionp(1,5) has
on those inversions acting upon the same desire gd@e}) interferes withp(1,2), p(1,4), andp(1, 6)
but notp(1,1).

Theorem 4.1.9.Gs can be represented by a circle graph.

Proof. If two inversions both act an a reality edge then apply Cargld.1.8. Otherwise, embed the
cycle on a circle and notice that the effect of an inversioiw isplit the circle (see Fi@. 4.3). Therefore,
a chord model representing the interference between twersions that don't share a reality edge is
obtained by drawing a chord for each inversion between thigyedges it acts upon. O

Fig.[4.4 shows the two circle graphs that represent the @ntt of the HP-graph from Fig._4.2.
In this caseG¢ is a subgraph of7s so Go U Gy is a circle graph. A maximum cardinality set of
noninterfering inversion would be represented by the sehofds{ AB, AC, AE, DE} (matching that
from Exampld 4.112).
3+E_.1+ 4—C 2t

67 R™
(a) The chord model fofF . (b) The chord model fof's.

Figure 4.4: The chord models for circle graphs represertiagonstraints ot (7 = (-6 -4 -2 1 -3 -5)).

The union of two circle graphs, however, does not necegsggld a circle graph. We handle this
by decomposing the problem into computationally easyatoete and hard-to-handle subproblems by
using the first of two phases from the polynomial time ciralapip recognition algorithm of Bouchet
[16],[73]. This first phase repeatedly decomposes the graphejgin decomposition This is done by
finding a partition on the verticdg, andV; (|V;| > 2 and|V5| > 2) so that the set of all edges between
V1 andV; form a complete bipartite graph. Call the sets of vertices tompose this complete bipartite
graphVi. C V; andV,. C V5. This subgraph is then replaced by the two graphs inducedkigg
only vertices inV; and V5, and adding a marker vertex to each graph connected tolgplgand V5,
respectively.
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Once no such decomposition exists (i.e. a subgraph is panceprd model is found for each sub-
graph in the second phase. If every prime subgraph yieldera chodel, then we can apply the quadratic
algorithm of Valiente[89] to find the maximum independent &fethe circle graph. If only some sub-
graphs yield a chord model, we can handle those indepepdegitl the same algorithm. The computa-
tionally hard-to-handle subgraphs are those that do ntit giehord model. It is on these subgraphs that
we are forced to run a general algorithm for maximum indepandet. Call this algorithmd/7.5(-).
Fig.[4.5 shows how a set of vertices is partitioned into cotete component¥; = Vi, U Vi, U Vi,
andV, = Vo, U Vo, U Vo, Where Vi, Vaa, Vip, andVy, are possibly empty sets. In our setting, the

Figure 4.5: What the chord model of a join decomposition wdabk like if such a chord model exists.

setsVia, Vip, andVi. (resp.Va,, Vop, andVs.) may not actually yield chord models, but the representa-
tion of Fig.[4.5 is instructive in seeing how the independ®it of such a decomposition interact with
each other. Now when composing solutions of independestaehard-to-handle subgraphs we must
consider two possibilities: either 1) vertices frdm. andV;. are used forM 1S(V;) and M1S(V3)
respectively, or 2) vertices from none or only one of the twowsed. For the later case all vertices from
both independent sets will be in the independent seGion G¢. In the former case we can use the
vertices fromV;,. or from V5. but not both, so we recursively tedf 1.5(Vy, U Vip,) + M1S(V2) and
MIS(Vaq U V) + MI1S(V7) and use the larger of the two as the score for the subproblem.

Multiple Cycle Instances

In Sectio 4.1.8 we show how to represent the constraintscofrgponent that is comprised of a single
HP-cycle. In this section we show how to transform a multgylele component into a single cycle while
appropriately ignoring inversions that are created by tioegss.

In [42], Hannenhalli and Pevzner introduce the notion ¢f @)-split where a cycle of length six or
larger is split into two (by adding two vertices) in such a vilgt preserves at least one minimum edit
scenario in the process. Such a change in the graph can leseefed in the corresponding permutation
by a remapping of some vertex labels, this process is callgdtg-padding Here we introduce the
inverse operation to the split, th{é, )-join, which takes two cycles and joins them in such a way that
preserves all edit scenarios. Similarly, the analogue eoptdding is the€d, r)-shrink A (d, r)-join
removes the vertices™ andz™ (from two different cycles) for some permutation elemertiong with
reality edgegz—,ry) and(z™,72), and desire edges—, dy) and (z T, dy). After removal, the edges
r = (r1,r2) andd = (dy,dz) are created to form a valid HP—grap?(w). It is easy to verify that a
(d, r)-join operation is equivalent to@, r)-shrink which acts by removing the elemenand renaming
all other elements with magnitude> z to have magnitude — 1 with the same sign. SG(7) = G(r).

Lemma 4.1.10. Apply to permutationr a (d, r)-shrink by removing an element(corresponding to
verticesz~ and ™ from two different cycles) to obtaifn. The EPO forr will be a subgraph of the
inversion EPO forr andd(w) = d(7).

Proof. The length of the permutation decreases by one but so doasuthber of cycles, therefore
d(m) = d(7). We now show that thé&d, r)-join of cyclesC; andCs turning G(r) to G(r) will preserve
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the relative direction between edges. Fix a direction orcitete with reality edgdz—, 1) by visiting
r1 beforexz~ followed byd;. Conversely, fix a direction on the cycle with edge", r2) by visiting d-
beforex™ followed byrs. Thus, after the application of thé, r)-join the remaining reality edgecan
be visited fromr; to r, in a tour continuing tel, andd; from desire edgé. Since the direction for the
new edges is consistent with the direction of the remove@®dfe direction of to reality edges irt’;
andC} is also consistent. So any inversion that acts on e¢igesr;) and(x*,r3) for a edit scenario
on 7 will now act onr for a edit scenario ort. Since(z~,71) and(z™,r2) are on different cycles of
G(m), there can be no oriented inversions done that act on thettthe aame time. O

An important corollary to Lemmia4.1.110 is that all orientaddrsions onr will be preserved. Thus,
we can shrink a multiple cycle component to an “equivalegtile and then run the algorithm ignoring
oriented inversions introduced by the shrinking process.

4.1.4 Handling Multiple Permutations

When improving the MGR heuristic for medians or implemegtin greedy heuristic for maximum
signature computation, one needs to consider sets of iomershat occur in multiple permutations.
This is done by simply ignoring intervals that don’t occura&@nted inversions in all permutations,
while merging the constraints on the remainder of the peatiarts. That is, to find the maximum
independent set of commuting/noninterfering inversiomsnany permutations, take the intersection of
the sets of oriented inversions over all permutations andtie above algorithm on the union of the
remaining constraints.

4.1.5 Two Notes on Hurdles

There are two places that hurdles complicate our analydi® fifst concerns the existence wisafe
oriented inversions, those that make an oriented compamanriented. Of course, inversion that are
unsafe on their own are easily identified (one way is to juphaihe inversion and check the component),
thus we simply remove all unsafe inversions from considmmabefore running our algorithm. It is
possible, however, that a set of noninterfering inversianrs collude to create a hurdle.

Given a permutation that already contains hurdles, we cbalteft with another tough situation.
Suppose every component is a hurdle and that ther@ @rgof them (there exist unoriented components
of size three). There are an exponential number of ways tgengmese hurdles. It is clear that each
combination of merges yields a new set of oriented invessiarthe end, it is not clear as to whether
an exponential search of these combinations in necessaffjceSit to say that hurdles are very rare in
practice, as confirmed by a theorem of Capraral[24, 80].

4.1.6 Experimental Results

We improved the MGR heuristic using maximum independento§etommuting/noninterfering in-
versions. Given three genomég, G, and Gz, we define the median score of a genotido be
d(G,G1) + d(G,Gs) + d(G,G3), whered(G, G;) is the distance between geno@eandG;. To find
the genome that minimizes the median score, the new mediar shooses the maximum independent
set of inversions which bringS'; closer to bothz, andGs. The algorithm will then iteratively carry on
maximum independent set of inversions in the three genomisthe maximum sets are empty. At the
end of this procedure, the three given genomes are transtbtmpotentially three new genomes, and
we report the one with the lowest median score as the resuléslian.

To assess the speed and accuracy of this new solver, we itasset the the same datasets of Arndt
and Tangl[7]. The datasets were generated by assigningehttidpermutation on the internal node,
and then the three leaves were created by applying reamamgesvents along each edge respectively.
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There are two factors governing the number of events on edgb: dhe number of total evolutionary
events and the tree shape. The total number of events wasstiartge o80 to 140, and three tree shapes
were used: trees with almost equal length edges, i.e., tleeathree edges ar@ : 1 : 1); trees with
one edge a bit longer than the other two, i.e., of ré&io 1 : 1); trees with one edge much longer than
the other two, i.e., of rati¢3 : 1 : 1). We compared the new method to Caprara’s median solvert(exac
but slow), MGR and Arndt’s solver. For each combination afgpaeters, ten trees were generated and
the average results were reported.

Tabled 4.1l and 412 show the median score found by each methddlable§ 413 arld 4.4 show the
time used by each method. We found from these tables thatetvenrethod not only runs faster than
MGR, but also returns more accurate medians. When the dstase difficult ¢ > 120), the new
method is abou20 ~ 30 times faster than MGR. Compared to Arndt’s method, the ndwesds about
3 ~ 100 times faster with d& ~ 2% sacrifice of accuracy.

We believe with some small amount of extra computation, treuacy of our new solver can be
further improved. The three new genomes obtained when #iretsstops actually form a new instance
of median problem. We applied Caprara’s solver to these sewal{er) median problems for all the
testings and found that the scores were improved for mossocaben- < 100-the median scores are
almost the same as applying Caprara’s solver to the origigalian problems. However, for> 120,
the new median instances were still very difficult and none alale to finish. These results suggest that
a better method should be developed to handle the new metitamces.

(1:1:2) (2:1:2) (3:1:1)
r=80 r=100 r=80 r=100 r=80 r=100
Score lower bound 86.2 104.2 89.4 105.8 85.7 101.3
Caprara’s median score 87.9 107.6 91.4 109.8 88.0 105.2
Arndt's median score 88.2 109.5 91.8 111.4 89.1 106.7
MGR median score 90.3 113.7 94.3 116.8 89.8 110.0
New method’s median score  89.1 111.8 92.6 114.1 90.0 108.1

Table 4.1: Comparison of median scoressfat 100.

(2:1:1) (2:1:1) (3:1:1)
r=120 r=140 r=120 r=140 r=120 r=140
Score lower bound 116.1 123.5 116.1 122.7 110.3 117.6
Caprara’s median score N/A N/A N/A N/A N/A N/A
Arndt's median score 125.8 135.3 124.5 134.7 117.9 127.0
MGR median score 132.9 143.6 131.4 142.8 123.6 135.1
New method’s median score 127.9 139.5 126.9 138.5 120.6 130.1

Table 4.2: Comparison of median scoressfor 120. N/A indicates a method cannot finish.

4.1.7 Conclusions

There were two algorithms introduced, one that computesxaman set of commuting inversions and
one that computes a maximum set of noninterfering invessiorhe former has a worst case running
time of O(n?) while the latter runs, under certain detectable conditiomé)(n?) time when the circle
graph recognition algorithm of Spinrad [72] is used. Whearsthconditions aren’t met, we show that the
problem can be decomposed so that only certain subprobleguire exponential work (in the size of
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(2:1:1) (2:1:1) (3:1:1)
r=80 r=100 r=80 r=100 r=80 r=100
Caprara’s time 3.6 12876 57.2 31387 4.3 6908
Arndt's time 324 551 123 409 1.6 9.3
MGRtime 11.2 51.9 11.6 78.2 10.3 35
New method’s time 3.3 5.3 4.1 8.4 4.6 9.1
Table 4.3: Comparison of running time for< 100 (in seconds).
(1:1:2) (2:1:2) (3:1:1)
r=120 r=140 r=120 r=140 r=120 r=140
Caprara’s time > 172880 | > 172880 | > 172880 | > 172880 | > 172880 | > 172880
Arndt's time 1485 1187 673 453 30 226
MCERtime 271.6 560.1 237.8 626.9 135.3 385.4
New method’s time 13.8 19.7 11.1 21.3 9.2 12.4

Table 4.4: Comparison of running time for> 120 (in seconds).

the subproblem). Let us comment that due to the intersestiem described in Sectién 4.11.4, the more
sequences we are comparing, the sparser the intersectikalysto be. We expect this to contribute to
lower running times in practice.

The work of Arndt et al.[[[7] has shown that the MGR-style shdor medians can be improved by
the use of a more deliberate choice of inversions during ecked\Ve expect the algorithms presented
to continue those improvements to provide fast and accunattod for large genomes. The MGR-
style objective function has also been formalized as a bdarca maximum signature. While we have
shown some relationships of sets of noninterfering ine@sito sighatures, and signatures to medians,
we show in the next section a direct application of our nanfering inversion algorithm to signature

computation.
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4.2 Inversion Signatures

The study of evolution is a study of patterns of change, tad af conservation, the latter being typically
easier to detect and characterize. Moreover, elementei@isacross many species were probably
present in their last common ancestor and preserved thiselghtion pressures, so that these conserved
elements probably play a major role in the fithess of the asgas Biologists have long studied patterns
of conservation in DNA sequences: first pairwise sequemu#ssity in large databases (as in the widely
used FASTAI[62] and BLASTL[5]), then multiple sequence afigamts and phylogenetic reconstruction,
and finally the reconstruction of ancestral sequences, emuavof enquiry that has seen much activity of
late (see, e.g.. [52]). Recently, researchers have algedta look for characteristic patterns of change
across a collection of species—an example beinglib&iminating subsequence$ Angelovet al. [6].

All of these efforts aim at recovering what one could tefemomic signatures-subsequences that best
characterize the evolutionary history of the given grouprganisms.

As more genomes are fully sequenced, interest in recotistjucomplete ancestral genomes has
grown; Pevzner’s group, for instance, has published extelyson the topic in the context of vertebrate
genomes (see, e.g., [18,117]), as has a group headed by efaasdl Miller [53]. However, while re-
arrangements such as inversions, transpositions, teaiglos, and others are complex and powerful
operations, our models for them remain poorly parametgrinften reduced to the simplest case of
uniform distributions. Under such models, reconstructibrmncestral genomes for organisms that ex-
hibit significant divergence (in contrast to mammals or exentebrates) remains poor, mostly due to the
enormous number of equally “good” evolutionary scenai8is[B5]. It is therefore natural to turn once
again to genomic signatures, this time formulated in terfre rearrangement (rather than a sequence
evolution) model.

In this section we introduce a measure of similarity definetiieen two genomesith respect to a
third. The key idea is the introduction of the third genome, whitdves us to take into consideration the
evolutionary paths from the two genomes under study to ting, tthus basing our measure of similarity
on the evolutionary history of the two genomes rather thahga their current configuration. Naturally,
these evolutionary paths are not unique under current ra@shel thus a number of ancestral states can
be reached on the way from the two genomes under study to itldegitnome. We call these states
rearrangement signatureend further distinguish those that are farthest from thel thgnome (the most
recent, as viewed from the perspective of our two genomesrustddy) agmaximum rearrangement
signatures Although the concepts introduced here apply to any regauent operation, we study
these signatures under the operation of inversion, the acomsimonly used rearrangement operation in
work to date[[58]. We show that maximum signatures carry mofdrmation about ancestral genomes
and that they can often be computed within a reasonable ambtime in spite of the very large search
space. We use simulations under a wide variety of condittorghow that the maximum signatures
pinpoint the true ancestral genome, either recoveringtiight or producing one very close to it, and to
show that these signatures can be used to reconstructieghiafdogenies, all using a polynomial-time
heuristic that runs much faster than a full exhaustive $earc

4.2.1 Notation and Definitions

Remember thatg, 71, ..., 74 forms anedit scenariofrom = to 74 if for all 7;, 0 < i < d, we have
d(m;, mi+1) = 1; each inversion applied along this path is then deemeddininversion Take each
m; to be a vertex and link two vertices with an edge whenever tlieesponding permutations occur
consecutively on an edit scenario. This graph representstilporder with relation “is part of an edit
scenario from”. We call this thedit partial order, or EPO. We denote the EPO between andn, as
EPOr,(mq) or EPO; (). Soif we havers = (2-1-3) andry = (1 2 3), then an edit scenario between
them might visit permutations,; = (-2 -1 -3) andm; = (-2 -1 3) before reaching,. Figure 4.6 shows
the EPOs for (21 -3) and (2 3 1).
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Figure 4.6: The union of the edit partial orders for {(-2 3 1), (2 -1 -3} andr = (1 2 3). The signature
graph forP is highlighted in bold.

We are interested in the intersection of EPOs, which willdy/tbe desired inversion signatures. For
a set ofk + 1 permutations, one of which is the reference permutatiole¢dahelocus aninversion
signatureis the permutation corresponding to a vertex in the intdiaeof thek EPOs from each of the
otherk permutations to the locus.

Definition 4.2.1. The set of alinversion signaturefor permutationsry, . . ., w5 with locusry, is
Sp (m1,.,m) =V <EPOWL (m)NEPO;, (m2)N---NEPO,, (wk)) , WwhereV (i) denotes the set
of vertices of graplt.

Whenever the context is unambiguous, we shall simply wijte for Sy, (71, .., 7). Similarly,
the signature graptonry, . .., m; with respect tary, is the graphE PO, (m1) N EPO, (m2) N --- N
EPOy, (7). Aninversion signaturer; € Sy, is thus a permutation that embodies some of the com-
monality between thé& other permutations with respect4g, in the sense that they all possess an edit
scenarios tory, that passes through,. A maximum signatures a signature irb, that is as far away
from 7r;, (and thus as close to thkeother permutations) as possible.

Definition 4.2.2. The set of almaximum signatures S = {7, € Sy, |forall 7} € Sy, ,d(rp,ms) >
d(mr,7.)}.

A maximum inversion signature is thus a permutation thataggnts the “maximum commonality”
between thé permutations: it is as close to thespermutations as possible while still being part of all
edit scenarios ta;,. From a biological perspective, this edit scenarios fronto the signature can be
thought of as the evolution that happened before specjaiidhe pattern of change that thesequences
have in common.

As with the special case for Steiner points calledrtterlian]68], we find it helpful to name the case
with & + 1 = 3. For this case we have two permutations andzz and an ancestor locus, and we
call Sy (74, 7p) the pairwise maximum signature

In Figure[4.6 we haver 4, = (2 -1 -3), 75 = (-2 3 1), andr;, = (1 2 3) (theidentity permutation of
length 3). The signature graph is outlined in bold. The digms in this case are2 -1 -3), (-2 -1 3),

(1 2-3), and the trivial signature;, = (1 2 3). The only maximum signature is also the only maximal
signature €2 -1 -3).

4.2.2 Methods
We begin with an investigation of rearrangement-based ménsignatures as defined above, then give
procedures for signature-based phylogenetic and ancestanstruction.

Computing Signatures

Definition[4.2.1 can be restated inductively in terms of eddiénarios that move from the locus,
towards the other permutations, . . . , 7. We say that some permutatiarhas acommon edit inversion
r with respect tary, . .., 7y, if we observed(ry, ;) — d(wp,rm;) = 1for1 <i <k.
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Definition 4.2.3. The locusry, is an inversion signature for permutations, . . . , 7. If permutationr
is an inversion signature andis a common edit inversion with respectitq . . ., mx, thenrz is also an
inversion signature.

Thus, starting at the locus (which is the smallest possilpleasure), one can enumerate all signa-
tures by repeatedly applying every possible common edirgign to the current collection of signatures;
maximal signatures are those signatures for which no cormeddrinversion exists and maximum sig-
natures are the largest of these maximal signatures fieefatthest away from the locus). Common edit
inversions form the basis for the MGR algorithm of Bourqud &evzner[[17], who used a greedy al-
gorithm that picks a single path by always choosing the cometit inversion that provides the largest
number of common edit inversions at the next step.

The signature space is of course very large. In particdlgieitwo permutations of interest are just
one inversion apart, then the space of all signatures caaugghly the same size as the inversion EPO
between one of the permutations and the locus—and that éxgactation, exponentially large in the
pairwise distance. (However, the complexity of finding a meat signature is unknown at this time.)
We use the greedy heuristic of MGR to construct maximal digea and show that it often returns
the maximum signature. It is not optimal, however: consttierpermutationsg4 = (-4 1-52-6 3),

78 = (-4162-53),andr;, = (123456). In the signature graph of Figlre 4.2.1, vertibes ¢an
be produced by the greedy heuristic are highlighted, nonehafh are a maximum signature.

Noninterfering Independent Sets

We introduced noninterfering sets of inversion in Sedfidih Zhe concept of noninterfering inversions
extends naturally to our framework with a defined ancestor.

Definition 4.2.4. A set of inversiongk is mutually noninterferingor =4 and g with locusxy, if it is
noninterfering forr;, with respect tar4 and also forr;, with respect torg.

Such mutually noninterfering sets form the basis for armogeedy algorithm: we repeatedly find
and apply tor;, sets of mutually noninterfering inversions until there aome left. Mutually noninter-
fering sets can be found very quickly, so a greedy algoritlased on this approach runs very fast. We
use this particular greedy heuristic in our experiments.

Signature-Based Tree Reconstruction

Since signatures are just nodes along evolutionary pdtbg,dan be used as internal nodes in a process
of phylogenetic reconstruction. We begin with a naive atgm to illustrate the basic approach.

The idea is to overlay the EPOs from each of the leayes. . , 7. to the locusr;, and construct a tree
representative of the resulting structure. Consider thefseese EPOS) = { EPO,, (m;)|1 < i < k};

Figure 4.7: The signature graph fop=(-41-52 -6 3);ip=(-4 16 2-5 3), andr;,=(123 45 6).
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our algorithm constructs a tree from the current versio® giteratively choosing a node from pairwise
intersections of graphs i@ and updating) to reflect this choice. Specifically, at iteration

1. select fronD a vertexr that maximizesi(nr, 7s);

2. if the vertex selected in the previous step belongs torttegsections o4, Pg € O, then create
a node in the tree to be the parent of the subtrees repredanied and Pg;

3. inOreplaceEPO;, (r4) andEPO,, (m) with their intersection.

This algorithm yields a tree without internal node labets;duse EPOs are not closed under intersection,
so that a node in the tree may represent two graphs €’dhat no longer have a least upper bound.

Our second algorithm overcomes this problem; in additioyieids implicit edit scenarios from the
leaves to the root that join at the internal nodes. In thisrowed version, we maintain the invariant that
elements of) are always EPOs. Thus only the third step of the iteratioffésted, and replaced by the
following:

e in OreplaceEPO;, (m4) andEPO,, (rp) With EPO, (7s).

Step 1 in each iteration is obviously the computationaltgmsive one; our implementation for this step
uses the MGR heuristic.

Distance-Based Bound on Signature Size

We develop an upper bound based on pairwise distances taselluate our greedy signature methods
in the experimental phase. Denote Ayresp.B, the inversion distance between the locus apdresp.
ng, and byD the inversion distance betweery andng. (Inversions distances can be computed in
linear time [9].) Now consider some arbitrary signatuagefor this triple and denote its size, or distance
from the locus, by; Figure[4.8 depicts the situation. As all distances arediditinces, we can write
A —a = B — band, by the triangle inequality, + b > D; combining the two, we get

a27D+§_B,

with the symmetric version fdr. Without loss of generality, assume> B; then we get

D+A—B>
2 )

drp,mg) =c< A— (
the desired upper bound.

TA

TL

Figure 4.8: The distances around a signattie
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4.2.3 Results and Discussion

We demonstrate the use of pairwise inversion signaturearfoestral reconstruction and for phyloge-
netic reconstruction through extensive simulations. W §how that, under certain reasonable condi-
tions, maximum signatures coincide with ancestral genameest of the time, then proceed to show that,
under more stringent conditions, maximum signatures aveayncide with ancestral genomes. Since
no polynomial-time algorithm for computing maximum sigmas is known at present, we show that
our heuristics perform well, both in terms of accuracy amghing time, even when applied to larger
genomes (to the size of small prokaryotic genome). Finale/show that the signature method use for
phylogenetic reconstruction produces trees comparakdgalfity to neighbor-joining while providing
ancestral reconstructions along the way.

Maximum Signatures as Ancestral Genomes

Our experiments for ancestral reconstruction simply up&ets of genomes generated from an ancestral
genome by generating three evolutionary paths, using ratydohosen inversions. The locations of
these inversions is distributed uniformly at random, beirtlengths are distributed according to one of
two possible distributions: uniform and normal. The lersgiithe edges from the ancestor to the three
leaves are chosen in both a balanced manner and severaldskeam@ers. All of our experiments used
1,000 repetitions unless stated otherwise and the reselgpted show averages over these 1,000 tests.

We present most of our results in the form of tables. Tablesrdugh 6 group columns by the
percentage of the length of the longest simulated gatin the triplet. For instance, column two of
Table[4.5 shows the percentage of true ancestors that éneWwit5 x |P| inversions away from a
maximum signature (in this case, no more than one inversi@y &#ecauséP| is no greater thas for
any row of column two). The rows in these cases are labeletidgdge length as a percentage of the
genome size.

The first set of tables apply to triplets where all edges hlagesame length (that is, the same number
of random inversions). Table 4.5, for normally distribufedersion lengths, shows that the simulated
ancestor is a maximum signature most of the time, even wheretblutionary rates are extremely
high. When the rates are already high 10% of the genome si2é,d the true ancestral genomes are
maximum signatures. The table also shows that (the lastdws aside) the true ancestor is within 2
inversions from a maximum signature more than 90% of the.tifable[4.6 shows similar, but slightly
weaker results for uniformly distributed inversion lergjth

The next set of tables examines the influence of the size of¢heme. Table 417 shows that the
accuracy scales well. In addition, we tested genomes ofl€i@ethe results are shown in Tablel4.8.

Table 4.5: Percentage of the time that the true ancestor iaxdmm signature, under normally dis-
tributed inversion lengths on genomes of size- 30.

# of ops as % of | P|
% of n 0 <15% <20% <50%
10 97 97 97 100
15 93 93 93 100
20 84 84 93 100
25 78 88 88 100
29 68 83 93 100
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Table 4.6: Percentage of the time that the true ancestor isx@mm signature, under uniformly dis-
tributed inversion lengths on genomes of size: 30.

# of ops as % of | P|
% of n 0 <15% <20% <50%
10 94 94 94 99
15 87 87 87 100
20 69 69 84 100
25 53 73 73 100
29 36 58 77 100

Table 4.7: Percentage of the time that the true ancestor iaximmm signature as a function of the
genome sizex for simulated edge lengths efx 0.1.

% of | P|
n | 0 <15% <20% <50%
30 || 97 97 97 100
35 96 96 96 100
40 || 95 95 95 100
45| 95 95 95 100
50 || 94 94 98 100
551 95 95 98 100
60 || 91 91 97 100
65 || 93 93 98 100
70 | 91 96 96 100
75| 86 92 92 100

Table 4.8: Percentage of the time the true ancestor is a nnaxisignature, under normally distributed
inversion lengths on genomes of size= 100.

# of ops as % of | P|
% ofn 0 <5% <10% <15% <20% <50%
5 95 95 95 95 99 100
8 91 91 91 97 99 100
10 90 90 100 100 100 100
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Table 4.9: Percentage of the time that the true ancestor examm (method 1) or maximal (methods
2 and 3) signature, under normally distributed inversiorgths on genomes of size= 30. Method 1
finds a maximum signature by exhaustive search; method Zhuseseedy Bourque-like approach; and
method 3 uses the approach based on maximum sets of noeiirtgrinversions.

# of ops as % of | P|

%ofn | Method|| 0 <15% <20% <50%
1 97 97 97 100

10 2 97 97 97 100

3 96 96 96 99

1 93 93 93 100

15 2 93 93 93 100

3 89 89 89 100

1 84 84 93 100

20 2 83 83 92 100

3 76 76 85 100

1 78 88 88 100

25 2 76 86 86 100

3 67 77 77 100

1 68 83 93 100

29 2 66 81 89 100

3 57 69 76 100

Computing Maximal Signhatures

The exhaustive algorithm rapidly reaches its limits: fongmes of size 100 with edge lengths of 10,
computations already take on the order of hours instead wfites. Tablé 418 shows favorable results
for exhaustive computation of maximum signatures on suctogpes. We now proceed to compare
these results with those of our new maximal signature dlyos. Under most circumstances, the true
ancestor is found by such maximal signature computations.

Table[4.9 shows that the Bourque-like approach and the appreased on noninterfering inversions
fare well with respect to the exhaustive search, the lati@pming off first. Tablé 4.0 shows results for
the two greedy methods on genomes of di@@. For reasonable rates of evolution (10% or less per
edge), we again see that the true ancestor is found most tifrtee

Finally, we tested on genomes of more realistic sizes, batsie usually considered forbidding for
ancestral inference—up to 1,000 genes. With 50 random €pentedge the Bourque-like computations
take just under 30 minutes, while for 80 random events thiey tender 2 hours. The accuracy remains
very high: in 99% of the 380 trials with 50 random events pegeedhe signature returned is within
5 inversions of the true ancestor, while in 66% of thesedritile signature returned is in fact the true
ancestor. The approach based on noninterfering inverssobg far the fastest, taking under a half a
minute for each of these trials, even with 80 random eventegge. Using 50 random inversions per
edge, we found that 97% of the 1000 trials gave an ancestbinabt inversions of the true ancestor,
while 57% gave the true ancestor. With 80 events per edge @& an ancestor within 8 inversions of
the true ancestor, while 15% gave the true ancestor.

The largest genomes we tested had size 2000 (corresporawsmaill bacterial genomes, for in-
stance) and 100 operations per edge, and 5000 (correspgotwdithe genomes of free-living bacteria
such as E. coli) with 250 operations per edge. All trials gawgnature within 10 inversions of the
true ancestor, while 90% gave one within 4 inversions, alhimg in under 2 minutes per trial for size
2000 and 4 minutes per trial for size 5000. These speeds armeusly higher than methods such as
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Table 4.10: Percentage of the time that the true ancestomiaxamal signature, under normally dis-
tributed inversion lengths on genomes of size 100. Method 2 uses the greedy Bourque-like approach
while method 3 uses the approach based on maximum sets eftedaring inversions.

# of ops as % of | P

% of n Method|| 0 <5% <10% <15% <20% <50%
5 2 95 95 95 95 99 100

3 94 94 94 94 98 100

8 2 90 90 90 97 99 100

3 86 86 86 92 94 100

10 2 85 85 94 97 100 100

3 77 77 85 87 98 100

15 2 68 68 92 98 100 100

3 54 54 73 90 98 100

20 2 43 63 89 98 100 100

3 28 41 74 90 98 100

Table 4.11: Percentage of the time that the true ancestomaximal signature, under normally dis-
tributed inversion lengths on genomes of size- 50. Edge length$ (to a child) and- (to an ancestor)
vary from 5 to2a while a = 5 (number of inversions to the other child). Each entry shdwesixhaustive
method to the left of the Bourque-like method.

C

b 5 7 10 12

51194 94|92 91|87 87|—- 82

7190 90|88 88|82 82|- 79

10|88 8884 83,80 80|- 73

128 86(83 83| — 76|—- 66

MGR or median-based reconstructions, yet the accuracgdsrmalich higher. Thus, by focusing on the
characteristic (shared) patterns of inversions, we are t@blvin on two fronts at once, mostly because
we avoid the confusion and long explorations associateld nvitltiple reconverging paths.

Skewed Trees

The true ancestor will not always be equidistant from th@deaand the locus. While large amounts
of skew can sometimes move an ancestor farther from a maxisigmature, the true ancestor usually
remains very close to a maximum signature.

We call the number of random inversions from the locus to the ancestor and the number of
random inversions from the true ancestor to each of the $saemdb. We fix a to be 10% of the total
length and vary: andb from values equal ta up to 2.5 times:. Table[4.1]l shows that for genomes of
size50, the true ancestor is a maximum signature in most cases andlthost as often it is a maximal
signature found by the Bourque-like greedy method. Our mari signature method appears slightly
more robust to skew on one of the child branches as opposé@wom the branch to the locus.

Tree Reconstruction

We simulated evolution over 300 trees to test our signdtamed tree reconstruction method. We found
that our method (using the Bourque-like signatures foriefficy) reconstructs the true topology most of
the time and that any error remains very small. The trees wamstructed using the birth-death model
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Figure 4.9: The size of the generated trees.

and the mean of the normally distributed edge lengths wasd/&énom 5 to 9 operations with a standard
deviation varying from 2 to 3. The mean of the normally dizited inversion lengths was varied from
8 to 30 with a standard deviations varying from 5 to 10. Theegated trees have from 5 to 24 taxa and
are distributed as shown in Figure 4.9.

Two methods were used for choosing a locus. The first methed e true root of the tree given
by the simulation (an ideal method not available in prac¢tidecourse), while the second method used
a random leaf as the locus. With the true root as the locus,owedf that 94% of the trees were re-
constructed perfectly, while 16 of the 17 remaining treed &adkobinson-Foulds error of 2, giving an
average RF error of 0.15. With a random leaf as the locus, weddhat 85% of the trees were recon-
structed perfectly, while 28 of the 45 remaining trees ha®kB&rerror of 2 and 11 of the last 27 had an
RF error of 4, giving an average RF error of 0.5.

Using the true root as the locus demonstrates that the [s@rgignature contain a great deal of
information about the phylogeny. Using a random leaf asdbad demonstrates that such information
remains recoverable even when the choice of locus is anpifeand usually far from ideal), justifying
our initial claim that comparing two genomes with resped third tremendously enriches what can be
had from a direct pairwise comparison. (As an example, titegiswere not properly reconstructed by
the neighbor-joining method, which uses strictly pairnésenparisons, were commonly reconstructed
correctly by our signature-based method.) Our tests fofqgenetic reconstruction are obviously of
limited scope, meant to exemplify the usefulness of the otkthther than provide a full evaluation; and
the method itself is subject to many obvious improvementttéb ways to choose a locus, usikigvay
signatures rather than pairwise ones to support a top-deeonstruction method, etc.)

Tightness of the Upper Bound

Finally, we present experimental results suggesting tbatupper bound is on average very tight and
then use the bound to show that the greedy signatures, usaddestral reconstruction of genomes too
large for the exhaustive computation, are indeed close t@dmum signature. Since the computed
ancestor is bracketed within this bound, our results imipat the maximum signature is very close to
the true ancestor with high probability.

The upper bound was computed for each trial in Tablé 4.5. Boh ef the sets of 1000 trials,
the average difference between the upper bound and the maxaignature was 0.029, 0.073, 0.176,
0.27, and 0.327 for trials with 10, 15, 20, 25, and 29 percespectively. For the length-dependent
data from Tablé 417, the average difference stays betw@1 @nd 0.082. Table 4.112 indicates similar
performance for experiments run on skewed triplets. Ths fesm Tablé 4.10 give average differences
from 0.024 up to 1.375 for the Bourque-like method and diffeses from 0.048 up to 2.228 for the
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Table 4.12: The average difference between the upper bowhtha computed signatures with normally
distributed inversion lengths and genomes of size- 50. Edge lengthd (to a child) andc (to an
ancestor) vary from 5 tBa while « = 5 (number of inversions to the other child). Each entry shdwes t
exhaustive method to the left of the Bourque-like method.

C

b 5 7 10 12

5 || 0.053 0.053 0.080 0.081 0.138 0.143 — 0.176
7 || 0.106 0.106/ 0.114 0.114| 0.173 0.173| — 0.224
10 || 0.097 0.098 0.165 0.167| 0.203 0.203] — 0.290
12| 0.131 0.132 0.158 0.158] - 0.279| — 0.359

noninterfering inversions method. Only 1 of the tests froemgmes of size 1000 did not match the
upper bound for the greedy method.

4.2.4 Conclusions

In any study of evolutionary changes, the challenge is tiingjgish global patterns from a background
of many local changes—or, to put it another way, to find comatibes among many equally plausible
evolutionary paths that lead to the same modern organism.hade proposed an approach to this
problem that focuses on intermediate states along sucls patthe setting of a speciation event and
seeks to return the last (most recent) states from which ¢gmthies of organisms could still have been
derived. This approach offers multiple benefits: the foausntermediate states translates readily into
one on ancestral reconstruction; the study of paths goirayg a fork (the speciation event) stresses
the role of evolutionary history rather than just final stand the search for the most recent states that
are part of the fork naturally separates common evolutipnhanges (prior to the fork) from individual
variations (subsequent to the fork). Although finding sugnatures appears hard, we gave an efficient
heuristic that does very well through an extensive rangdmfilations. Our signatures are based on
inversions, since inversions are the best studied of thewsagenomic rearrangements to date, but the
concept readily extends to any other rearrangement operatifamily of such operations.
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Chapter 5

Sorting By Inversions in O(nlogn) Time

(This is joint work with Vaibhav Rajan and Yu Lin)

In 1992 Sankoff posed two fundamental questions aboutsiaes: given two signed permutations,
what is the smallest number of inversions required to tansfone permutation into the other and what
is a scenario of inversions implementing this transfororajcs]. The first problem is thus to compute
an edit distance, where the edit operation is the invergiom;second is to return an edit scenario—a
problem usually known as “sorting,” since a simple re-indgxcan turn one of the permutations into
the identity. Many years of work were needed to ascertaircémplexity of each of these problems.
The breakthrough came in 1995, when Hannenhalli and Peyraeided a polynomial-time algorithm
to solve both problems. (In contrast, in 1997, Caprara [B®lsed that both problems were NP-hard
if phrased in terms of unsigned permutations.) The runnimg for both problems has been steadily
reduced over the years. In 2001, Bader et. al. gave an ogliimeal-time algorithm to compute the edit
distancel[8]; and in 2004, Tannier and Sagot, building onatbek of Kaplan and Verbin [46], gave an
O(n+/nlogn) algorithm to produce a sorting scenario. Remaining opentth@sgjuestion of whether
signed permutations can be sorted by inversior@(inlog n) time.

In this chapter, we give a qualified positive answer to thissfjon by describing two new algorithms
for sorting signed permutations by inversions. The firstiaralomized algorithm that runs in guaran-
teedO(nlogn) time, but may fail; successive restarts reduce the prababil failure, but we cannot
guarantee that every permutation will be sorted with higbbpbility with a finite number of restarts,
so that it is not a true Las Vegas algorithm. (Indeed, we gifenaly of permutations that cannot be
sorted by this algorithm regardless of the number of res)aifthe other is a deterministic algorithm that
always sorts the permutation and rungign logn + kn) time, wherek is the number of successive
“corrections” (detailed in Sectidn 8.4) that must be apgphe value, incidentally, that appears not to be
related to the edit distance, although it is bounded by it.giMe a family of permutations for which
is ©(n) (the worst case value fdf) and thus for which our sorting algorithm will run in quadeaime.
However, we present the results of very extensive expetaien showing that the expected value and
the standard deviation @f are small constants (less than 1), independemnt, eb that the running time
of the algorithm is, with high probabilityp(n log n). Thus we conclude (but do not prove) that almost
all permutations can be sorted in optind¥(n log n) time.

5.1 Preliminaries
In this chapter we assume that every permutation efements is framed by elemerit@ndn + 1. In
this way we consider each permutation to be linear, notiage¢ach linear permutation corresponds to

n-+1 circular permutations (of length+ 1), which are equivalent in terms of the scenarios of invesio
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used to sort them. Thepanof an inversiorp(i, j) is the closed interval on the natural numbggrg| and
two spangi, j] and|k, [] overlapif and only if eitheri < k andk < jork <iandj <.

We remind you that two adjacent elementsandr;, 1 for 0 < i < n 4+ 1, form anadjacency An
adjacency is aon-breakpointf and only if we haver;; — m; = 1, otherwise it is éreakpoint An
oriented pair (m;,7;), in a permutation is a pair of integers with opposite sigrshshatr; + 7; =
+1. The inversion induced by an oriented pgir;, 7;), called anoriented inversionis p(i, j — 1) for
mi+m; = +1,andp(i+ 1, j) for m; + 7; = —1. An oriented inversion always creates a non-breakpoint;
we say that ithealsthe breakpoint (or breakpoints—there could be two) to whiehelements of the
oriented pair belonged before the inversion.

We refer you to Definitiol 2.112 of riamed common intervdFCl), and the paragraph following
that for definitions ofgood andbad componentsAn inversion is said to bensafeif it creates a bad
component, otherwise it &afe

A permutation ispositive if it is not the identity permutation and every element isifros. A
positive permutation indicates the existence of at leastbmu component. Any permutation containing
bad components can be transformed to another permutagbmidies not contain any bad component
in linear time [8]. Thus, in the algorithms we describe, weuase that the input permutation does not
contain any bad components.

5.2 Background: Data Structures for Permutations

To implement an algorithm for sorting by inversions, we naethta structure for handling permutations
that supports two basic operations: (i) choose an oriemgztsion, and (i) perform an inversion.

We now describe the data structure of Kaplan and Verbih [4&] stores a permutation in linear
space and allows us to perform an inversion in logarithnmieti The structure is a splay tree, in which
the nodes are ordered by the indices of the permutation, avithadditional flag maintained at each
node.

To perform an inversiop(i, j) between (and including) indicésandj, indexi — 1 is splayed and
the right subtree of the root is split from the root yieldindpgeesl; and7%; whereT.; (1%;) contains
all elements with indices less than (greater than or eqyal tdext, index; is splayed iri>>; and again
the right subtree is split from its root yielding subtrégs, and 7. ; whereT, ; contains all elements
with indices greater thaj andT;.., contains the elements of the permutation that have to besesde
Finally, there are three subtre€s,;, T;., and7 ;. Now, actually reversing the elementsip., can
take ©(n) time since©(n) elements could be reversed in a single inversion. To achayerithmic
time complexity a lazy approach is takenteaersedlag is maintained in each node, which if turned on
indicates that the subtree rooted at the node is reversed.ifétead of immediately reversing a subtree,
we just set its reversed flag. During an inversion the reitag of the root off’,..,, is flipped andl'; is
joined toT;., to getT<;. This is achieved by making,., the right child of the root ofl';, which still
contains the element at indéx 1, yielding the tre€/< ;. T is then joined tdl. ; by splayingj in T,
after whichT,; is made the right child of the root df<;, yielding the final tree which represents the
permutation after the inversion. Since the only operati@t takes more than constant time is the splay
and since splaying takes amortized logarithmic time [74kheinversion takes amortized logarithmic
time.

A tree could have several reversed flags, but the invariamtaiaed is that an in-order traversal
modified by the reversed flags yields the permutation. Soad tiee permutation one would traverse a
reversed subtree in reverse order while flipping signs ahelds read. Nested reversed flags cancel in
the sense that a reversed flag on a node within a reverse@suintiplies that the inner subtree (rooted
at that node) is not reversed. Thus, a subtree rooted at aimoeleersed if and only if there is an odd
number of reversed flags in the path from the root to the naadu@ing the node).

When a scenario of inversions is performed, reversed flaggeanested to arbitrarily deep levels.
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We can push the flag down a traversed path in the tree, by ftighim sign of the element in the node,
exchanging the left and right subtrees, and flipping thersaeeflags in both children. The reversed flag
of a leaf is cleared by just flipping its sign. Pushing down g tizkes constant time per node so the
logarithmic time complexity of splaying is maintained. Byghing down the flags in the splay path we
ensure that the three subtrees creaied, (7., andT, ;) reflect the changes made in all the previous
inversions.

This is exactly the data structure describedlin| [46]; it camdie a scenario of inversions in
O(dlogn) time. The data structure maintains only the state of the ptation at each step (in a lazy
way). However it does not maintain information about omehpairs, nor could it do so efficiently, as a
single inversion could change the orientatiortdf:) pairs. Indeed, using this data structure to maintain
the information necessary to choose an oriented invergieach step would increase the running time
by a factor ofn.

To overcome this problem both Kaplan and Verbin [46], anerl&annier and Sagat[87], used a two-
level version of the data structure in which a permutatiostased in linear blocks of siz€(/nlogn)
each. Corresponding to each block is a splay tree that nianitaformation about all oriented pairs
(m;, ;) such that either; or 7; is in the block. Performing an inversion while maintainingormation
about all oriented pairs take3(y/nlogn) time and choosing an inversion at each sorting step takes
O(log n) time, so that the total time complexity of their algorithrsi(n+/n logn).

In order to run inD(n log n) time, these algorithms need to be able to choose an oriamtetsion in
logarithmic time and thus information to identify such irsiens must also be maintained in logarithmic
time through an inversion.

5.3 Our Algorithm

Instead of addressing the data structure (by designing adaéavstructure that can somehow process
O(n) new pair orientations in logarithmic time), we address that guestion of identifying an oriented
inversion. Our key contribution is that we need not maintaformation abougll oriented inversions
for every permutation at each sorting step—a couple sufficedst cases.

5.3.1 MAX inversions

Definition 5.3.1. Let (7;, 7;) be an oriented pair in a permutation and et be the negative element in
the pair. The oriented inversion corresponding(tg, ;) is a MAX inversion if 7; has the maximum
value of all negative elements in the permutation. The pajr~;) is called theMAX pair of the
permutation.

For example the MAX inversion in the permutatioh5-3 1 -6 2-7) is p(4,6), corresponding to
the oriented paif2, —3), and the MAX inversion in the permutatid@ 3 -1 -4) is p(1, 3), corresponding
to the oriented paif0, —1). We maintain information about only the MAX inversions irefttiata structure
and correspondingly perform a MAX inversion in each sorstgp. The result is algorithm MAX.
Algorithm 1 MAX

1: while there exists a negative element in the permutation
2:  Find index of maximum negative element

3:  Find index ofr; = |7 | — 1.

4:  Perform inversion corresponding to oriented aif, 7;).
5. end while

Because any permutation that contains a negative elematdics a MAX inversion and because any
scenario of oriented safe inversions is optimal [42], we @amclude as follows.
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Lemma 5.3.2. In the absence of unsafe MAX inversions at any sorting stgprithm MAX produces
an optimal sorting scenario.

Algorithm MAX fails to sort only when it is “stuck” at an allgsitive permutation that is not the
identity, which happens when a MAX inversion was unsafe. (@& with unsafe inversions in the next
section.) The same arguments haoldtatis mutandisf we choose an oriented pair with the minimum
negative element, yielding another algorithm, algorithiNMCombining the two strategies and picking
one at random at each step gives us a randomized algoritigoritaim RAND.

Algorithm 2 RAND
while there exists a negative element in the permutadion
randomly select either MAX or MIN
if MAX then
Find index of maximum negative element
Find index ofr; = |m;| — 1.
Perform inversion corresponding to oriented gaif, ;).
else ifMIN then
Find index of minimum negative element.
Find index ofr; = |m| + 1.
Perform inversion corresponding to oriented gaig, ;).
end if
end while

5.3.2 Maintaining information through an inversion

We now show how to maintain information about the maximumatigg element of a permutation
through an inversion using the splay tree data structure.d¥geribe the process for MAX, but the
obvious analog works for MIN.

Let the maximum negative element of a subtieed X,,.,, be the element in the subtree that has the
maximum value among all negative elements in the subtree.nfihimum positive elemenf\/ I N,
of a subtree is defined similarly. These values are storeddh aode of the splay tree. Note that the
MAX,.q of the root node is the maximum negative element of the pextiom, that is, the negative
element of the MAX pair of the permutation. TR AX,,., of a node is the maximum of the following
three: theM AX,,., of the left subtree, théd/ AX,,., of the right subtree, and the element in the node
if the element is negative. Also notice that whenever thensad flag of a node is turned aW,A.X,,.,
and M IN,,s are swapped. Therefore pushing down a reversed flag appigeswap to the children,
unless there is a cancellation of flags.

A splay operation performs a series of rotations based osttheture of the tree and the index being
gueried. Each rotation changes at most three edges of aatedrmubtree while maintaining the binary
search tree propertyM AX,,., can be recalculated for only the subtree that is affectedaRthat to
perform an inversiom(i, j) the splay tree is split into three subtrees which are regbafter the reversed
flag has been set for one of the trees. The valug/efX,,., can be kept for each of the subtrees in the
process by simply checking the children of the root aftehesmeration.

By maintaining the\/ AX,,., values in this fashion, one can maintain the invariant thedf AX,,.,
of the root node is the maximum negative element of the pextioumt through any scenario of inversions.
Since calculatingV/ AX,,., takesO(1) time per node, these modifications do not alter the time com-
plexity of the data structure.

Lemma 5.3.3. For any (signed) permutation of size there exists a data structure that handles an
inversion inO(logn) time while maintaining information about the maximum nagaelement of the
permutation.
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5.3.3 Finding the MAX pair

We now describe how to obtain the elements of the MAX pair irarqutation using the modified data
structure described above.

First the maximum negative element of the permutation iatledt. If the element in a node is not
equal to theM A X, of the node then/ AX,,., of the node lies in either the left subtree or the right
subtree of the node. Therefore starting at the root one catogo the tree looking for the maximum
negative element. Reversed flags must be pushed down alemmath to ensure that/ AX,,., values
are updated and the correct path is followed.

To find the second element of the MAX pair, a lookup vector dhtars (ofn elements) maps each
element to the node that contains the element. These pouiarot change throughout the computation
and enable constant-time lookup of the node containingebersl element of the MAX pair.

5.3.4 Finding the indices of the MAX inversion

In absence of reversed flags, the indices of the MAX inversemmbe obtained directly from the current
location of the nodes corresponding to the MAX pair. Howethex presence of a reversed flag indicates
nodes that have outdated indices, forcing additional worletrieve the correct indices.

The index of a node (with respect to the current state of thepition) can be calculated using the
index of the parent node and the sizes of the left and rightrees. Thus the current index of a node
can be calculated whenever the reversed flag is pushed dowmnitfr The size of the subtree rooted at
a node is easily maintained. If the node is a right child, titeindex is one more than the sum of its
parent’s index and the size of the left subtree. If the nodeléft child, then its index is one less than
the difference of its parent’s index and the size of the riglitree. The index of the root is just the size
of its left subtree. Thus starting at the root, as the revkfisgys are pushed down along any path in the
tree, the current indices can be calculated.

As one traverses the tree from the root searching for thermanxi negative element, the indices are
recalculated. After the node corresponding to the secosmeait in the MAX pair is found using the
lookup vector, its updated index can be retrieved by trawgrsp to the root (using parent pointers) and
returning down the same path, pushing down the reverseddtatysecalculating indices at each node.

5.3.5 Putting it all together

The previous subsections detail all the steps for perfagnairMAX inversion. The time complexity
of each of these steps is easy to analyze. Pushing down theseelflag take®)(1) time per node.
Thus, finding the maximum negative element and its updatéexitakesO(logn) time. Finding the
other element of the MAX pair take3(1) time and obtaining its updated index tak@glog n) time.
Therefore the complexity of finding the two indices (ste@nd3 in algorithm MAX) is O(logn). For
each inversion, maintainingy/ AX,,.q, M1 Npos, MINpeq, andM AX,,s in the nodes take®(1) time
during split and join operations, aiid(1) time for each rotation in the two splays. Therefore perfoigni
the inversion in steg of algorithm MAX takesO(log n) time. So we have proved:

Theorem 5.3.4.For any signed permutation of size a data structure exists that

e allows checking whether there exists an oriented inversian(1) time,

¢ allows performing a MAX (or MIN) inversion, while maintaigi the permutation, irD(logn)
time,

e and is of sized(n).
Theorem 5.3.5.In the absence of unsafe inversions at any sorting stepyithgo MAX produces an
optimal sorting scenario i (n log n) time.
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5.4 Bypassing Bad Components

We saw that algorithms MAX and RAND can get stuck at a posj@emutation by choosing an unsafe
inversion. We offer two strategies for recovery.

5.4.1 Randomized restarts

For algorithm RAND we can simply restart the computationihgphat a better outcome is met in
the next run. Indeed, the experiments from Sedfioh 5.5 shaty for most permutations, this simple
approach suffices. However, this approach cannot always smrmutation as there exists a family of
permutations that it cannot handle. For instance, take ¢n@ytation (3 $4-2): both MAX and MIN
inversions are unsafe because they yield the same posiiveypation (3 1 2 4); this small example can
be extended to any length by appending the requisite nunilparsitive elements.

5.4.2 Recovering from an unsafe inversion: Tannier and Sags approach

Tannier and Sagotl [87] introduced a powerful approach falitign unsafe inversions and augmenting
the sorting scenario till it is optimal. They noticed thaisitomputationally difficult to detect an unsafe
inversion as it is applied; but it is of course trivial to findtdghat one has occurred when the process is
stuck at a positive permutation. Their approach is thostmortem their algorithm traces the sorting
process back to the most recent unsafe inversion and ingertsr more oriented inversions before the
unsafe one without invalidating the already computed sieais (this ensures that the sorting scenario
grows in every trace-back phase.) After the trace-backsahting process continues from the state of the
permutation just before the unsafe inversion. The new gwas that are inserted are chosen such that
the bad component created by the previous unsafe inveisimmlonger created and so, the (previously)
unsafe inversion and all the inversions that followed it barapplied again.

They use theoverlap graph[45] to keep track of the remaining breakpoints (and whetitenot
they are oriented). Using the overlap graph they can find tbst mecent unsafe inversion, find and
insert more inversions before the unsafe one, and contiodimg without invalidating the inversions
that have been applied after the most recent unsafe innef&ry. However, the process may have to be
repeated, as, even after augmenting the sorting scertagioatgorithm may again get stuck at a positive
permutation.

5.4.3 Recovering from an unsafe inversion: Our approach

We use a similar idea, but do not maintain the full overlappbraas it is too expensive to maintain.
Denote byp; the first positive permutation at which the algorithm getscktand byp; the i*" such
positive permutation. Recovering from a positive perniateap; involves three steps: finding the most
recent unsafe inversiom;, finding and inserting two new oriented inversions befereand appending
inversions without invalidating those oriented inversidhat had been applied aftey. We describe
each of these steps in turn.

Finding the most recent unsafe inversion:

In the trace-back phase, startingpatwe undo the inversions that have been done so far in order to
find the most recent unsafe inversipn Thus, each inversion undone joins two cycles and an unsafe
inversion is an inversion that, when undone, creates a gowghonent from bad component(s). Denote
by 7 - S andw - p the result of applying the inversions from the scenario eéisionsS and the single
inversionp to the permutationr, respectively.Undoingthe inversionp in 7 - p refers to performing

onm - p which yieldsz, and undoing the inversiorts = p1, po, ..., p, in 7 - S refers to performing the
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inversions ofS in the reverse order which yields- S - S~! = 7. The scenario of inversions on input
permutationt that results in the positive permutatippis denoted bys;, sop; = 7° - S;. Let B(r) be
the set of bad components in permutatian

Remark 5.4.1. When undoing inversions frof§}, the most recent unsafe inversipnis the first inver-
sion met that turns an element Bfp;) from bad to good.

Finding; is not trivial because framed intervals can be nested. Fomele the positive permutation
(2367458910 1) has two components: the one framed by thécibfphme elements 0 and 11, and
the nested component framed by the elements 3 and 8. Undwnigversionp(2,7) will leave both
bad components intact despite the fact that it occurs witlérframe elements of the larger component.
Thus, in the trace-back phagg2, 7) cannot be an unsafe inversion. However, undoing the irvessi
w(5,7) and (4, 5) will make the inner component good and so these two invessibad they been
the most recent inversion performed, would have also besafenThe following remark characterizes
undoing an unsafe inversion in terms of the components(jn ).

Remark 5.4.2. An inversion is the most recent unsafe inversigrif and only if it is the most recent
inversion to change the indices of a proper nhonempty sulfshiecelements from some component in

B(Pz‘)-

The trace-back algorithm is thus as follows: start undoegitiversion scenari§;, checking after
each inversion whether there exist componentB {p;) with both changed and unchanged indices and
stop when an unsafe inversion is found. We describe how thiddy keeping an ancillary splay tree
where nodes represent adjacencies in the permutatiorr tadrepermutation elements.

The heart of the problem deals with how non-breakpointsrdictewith the undoing of unsafe in-
versions. We present a labeling of the ancillary tree so thmatsafety check can be carried out by a
constant-time comparison on the two adjacencies brokembiynarsion. Each adjacency has a la-
bel indicating the innermost overlying component alonghvatsecond label that is non-null only for
non-breakpoints. For a given component, each group of cakige non-breakpoints (ignoring nested
components) gets a unique second label. Thus an inverséptades only a fraction of the elements
of a component if and only if both broken adjacencies arelémbas non-breakpoints with the same
component and non-breakpoint labels.

In the example, the permutation (2367 458 9 10 1) has compdaiesi X for adjacencies (0,2),
(2,3), (8,9), (9,10), (10,1), and (1,11), and componengllabfor the others. The non-breakpoint labels
are the same for (2,3), (8,9), and (9,10), but different letw(6,7) and (4,5). Inversion2,7) acts
upon non-breakpoints with the same pair of labels whilersiea 1.(5,7) acts upon non-breakpoints
with different component labels and4, 5) acts upon non-breakpoints with different non-breakpoint
labels.

We can list the endpoints of the components of a permutatioimear time [8,/12]. A simple
traversal of the permutation, keeping one stack for eaatl,labn perform the node labeling described
above. Thus the setup of the ancillary tree can be don@(im) time. LetS1; be the scenario of
inversions applied beforg; in S; and.S2; be the scenario of inversions applied aftdr, (including ;)
in S;. Each safe inversion i§2; that is undone will cosO(log n) time so the total cost for finding a
most recent unsafe inversionG&n + |S2;| logn).

Inserting oriented inversions before the unsafe inversion

Recall thatu; is the most recent unsafe inversion in the scengyidheorem 3 in Tannier, Bergeron, and
Sagot[[86] shows that there always exists two oriented swesv1; andv2; that can be applied before
the inversionu; in S;. According to [86], inversiong1; andv2; must have the following properties:

e the span of/1; overlaps the span ¢f;, and
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o either the span af2; overlaps the span ofl; and does not overlap the spangf or the span of
v2; overlaps the span ¢f; and does not overlap the spanudf.

In the following we show how to find al; andv2; with these properties in time proportional to the size
of the bad component that we created.

Lemma 5.4.3. Given an unsafe oriented inversipn and the bad componehtof sizem created by,
one can always find, i®(m) time, inversions/1; andv2; such thatS1; - v1; - v2; - u; is a valid scenario
of oriented inversions.

Proof. We proceed by finding orientedl; andv2; with the properties listed above. A bad component
could have been created in one of three ways whemas applied. Without loss of generality we ignore
the symmetric counterpart to the first case below (both dahappen at once). We also ignore the
inverted versions of each case where the hurdle creatednhasegative elements. This leaves us with
three cases to consider.

o (fmp... . tl+xy ... +Xg FMp .. TXK 1 ... "Xgpl Mgl . ETR)

where the braced inversion creates the bad component
b=+t .. . txstTsy1 ... TTp_1T.

o (Emp...+l+xy ... +X] ~Xp_1 ... "Xp41 FXp. . Xk tr .. ET)

where the braced inversion creates the bad component
b=+t ... txtayy .. e ta, ot

e The third case is the same as the first, except that one or rmdredmponents are created which
span the internal component
R E I P T I = S b o

For the first case, writd, = +l+z, ...z, andR = —r—xzp_1... x5 and examine the substrings
L andR. Since the componert,...,r) is a bad component, there must exist an elemémtZ such
that eithert + 1 ort¢ — 1 is negative and not ih.. Assumeuw is the first such element we encounter by
scanning fromt! to +z,. We locate the rightmost(w — 1) or —-(w + 1) in R by scanning from-z 41

to —r. Now, there are two possibilities.

1. The rightmost element is(w — 1). We havew > [+ 1 and thugw, —-(w — 1)) is an oriented pair;
consequently, there exists an oriented inversian, which is different fromu,;. Now consider
the position of those elements with absolute values betWeet including)l andw — 1. Lety
be the element with the smallest value that does not appéhe feft ofw in L (such an element
must exist becauskeis to the left ofw butw — 1is in R). Thusy — 1 must appear to the left of
w in L. Not thaty cannot be inR, as this would contradict the fact thatis the leftmost element
in L with —(w 4+ 1) or =(w — 1) in R. Thusy must be inL and to the right ofv. After applying
v1;, we will have the oriented paiy — 1, —y), and consequently, another oriented inversian
Notice that the span afl; overlaps the span gf; and the span af2; overlaps the span ofl;
but not that ofu;.

2. The rightmost element is(w + 1). Note that(w, —(w+ 1)) is an oriented pair, so that there exists
an oriented inversiow1,. This inversion must be different from; as otherwisel, would a bad
component in itself. Now we examine the substring to thetragho in L. Let z be the element
with the largest absolute value in that substring. Condiuefollowing two cases:

(&) The absolute value afis less thanv: we consider the elements with absolute values in the
interval [/, z]. Lety be the element with the largest absolute valud in| that appears to
the left of w (such an element must exist because to the left ofw but z is to the right
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of win L). y + 1 cannot be inR, as this would contradict the fact thatis the leftmost
element inL with —(w +1) or —(w — 1) in R. Thusy + 1 must be inL and to the right ofv.
After applyingv1;, we will have the oriented paily, - (y + 1)), and consequently, another
oriented inversion/2;. Notice that the span aofl; overlaps the span ¢f; and the span of
v2; overlaps the span ofl; but not that ofu;.

(b) The absolute value afis larger thanv + 1: We consider the elements with absolute values
in [z,7]. Lety be the element with the largest absolute valugjm] that appears to the left
of —(w + 1) in R (such an element must exist becauge to the left of-(w + 1) in R but
zisin L). y — 1 cannot be to the left ofy in L, as this would contradict the fact thatis
the leftmost element i with —(w + 1) or —(w — 1) in R. Thusy — 1 must be either to the
right of w in L or to the right of-(w + 1) in R. If y — 1 is to the right ofw in L, the oriented
pair (—(y — 1), y) defines the oriented inversiar2;. Notice that the spans ofl; andv2;
overlap the span qf; butv1, andv2; do not overlap. Ify — 1 is to the right of-(w + 1) in
R, after applying-1;, we will have the oriented paity, —(y — 1)), and consequently, another
oriented inversion/2;. In this case the span ofl; overlaps the span gf; and the span of
v2; overlaps the span ofl; but not that ofu;.

For the second case (where the span of the unsafe inversigmmaper subset of the span of the bad com-
ponent), writel, = +l+zq...+tx;, M = —x,_1...—x;y 1 andR = —r—x;_1 ... ~xsy1. In substringsl
and R, there must exist one elemensuch that-(¢ + 1) or —(¢ — 1) is in M and the inversion induced
by this pair is nofu;. Thus, the oriented pait, —(¢t — 1)) or (¢, —(¢ + 1)) defines the oriented inversion
v1;. Sincevl; is different fromy;, there will be some negative elements after applyibhg assume that
the maximum negative element among themqs Thus,y — 1 must be positive and the oriented pair
(-y,+(y — 1)) defines the other oriented inversio®;. It is easy to verify that these inversions have the
required properties.

For the third case, if the innermaost component is also baa Wecan find the two new inversions
using the first case. If it is good, then we find the inversiosiagithe logic of the second case.

The linear-time complexity can be achieved by using a lookegtor that maps each element to
its index in the permutation. (This is created in the begigriind maintained throughout the sorting
process.) Thus, for the first case, with a single scah, efe can findw and-(w — 1) and with another
scan of elements betweémandw — 1 in the lookup vector, the pai(y — 1), —y). The other cases can
be analyzed similarly. Note that in no case do we need to staelament that is not a part 6f Thus
the inversions/1; andv2; can be found irO(m) time. O

Appending inversions to the sorting scenario:

To reiterate, after we get the permutatign= = - S1, we apply the scenariol; - v2; - u; ong;. Now
we would like to ensure that some scenario of inversishwe append after; does not invalidate the
scenariaS2; (i.e. S1;-v1;-v2; - p; - S} - S2; is a valid scenario of oriented inversions). Qallr) the set

of good components for a permutatignA slight extension to the proof of Theorem 3 from[86] shows
the following:

Lemma 5.4.4. The set of good componertigq; - 1;) is identical toG(q; - v1; - v2; - ;).

This tells us that inversions associated whth will be part of distinct components i) - v1; - v2; -
and that these components will be exactly as they atg in;. So any scenario of inversiort will
only heal breakpoints on components other than those2 pf

We continue by showing how to compute 8fj ensuring that we only work on the components of
G(q;- ;). We achieve this by renaming the permutatipin the following way. By definitiong; - 1; has
at least one bad component createdubylong with a possibly nonempty séfq; - ;) The inversions
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that sort the components 6f(qg; - 11;) correspond exactly to the scenafi@;. Thus, our desired scenario
S! of inversions should only displace (if at all) such compdseemithout affecting their structure.

Say there is a componentof lengthm with left frame element. The canonical formé of cis a
permutation of lengthn with ¢[i] = c[i] — 1 + 1, 1 < i < m, wherep[i] denotes theéth element of a
permutatiorp. Components andd are said to bstructurally equivalentf and only if we haver = d.

Lemma 5.4.5. Letg; be a permutation without a bad component andye an inversion such that - 11;
has at least one bad component and a set of good compo@éats 1.;). There exists @, where any
scenario S} that sortsq; to the identity, when applied tg;, will result in a permutation whose only
components are those ®(g; - ;).

Proof. Rename the permutatiap - 1; such that all breakpoints from componentsi(y; - ;) become
non-breakpoints and then ungg to getg,. Note that this renaming leaves one structurally equitale
bad component in place of each bad component, so that theimemés unique. An inversion scenario
that sortsy; to the identity heals all breakpoints from the bad companeny; - 11;; moreover, it does not
act upon any adjacency or heal any breakpoint from comperneni(q; - ;) due to the nesting property
of FCls. O

=]

For example, take; = (2367 4-8-5-9 10-1) andu; = u(6,7). Nowg; - p;is (23674589
10-1), so thatG(g; - ;) is comprised of the components framed by the pair (of fraremehts) (0,11)
and the pair (8,10)g; - 11; is renamed t@; - p1; = (1256 34 789 10), yielding; =(1256 3-7-48
9 10). The sorting scenaris = (p(3,6), p(3,4), p(4,7)) for ¢. can be applied tg; to get 23456 7
8-910-1).

Lemma 5.4.6. Given a permutation with a set of bad component(p), permutationp’ that has one
structurally equivalent bad component in place of eaeh B(p) and only non-breakpoints everywhere
else, can be constructed in linear time.

Proof. If an adjacency is not part of a bad component then label h @itull value; otherwise label
it by the bad component of which it is part of. Also label agjacies with the left and right endpoints
of each component, which can be done in linear time [8, 12].ugéea stackz, the top of which we
denote bytop(R). Perform the following steps until the end of the permutat®reached, i.e., until we
havei = n.

1. p[0] = 0,4 = 1.

2. Label each element|i] with the valuep’[i — 1] + 1, incrementing until the adjacencyp(i — 1]
pli]) corresponds to a bad component.

3. If the adjacencyy(i — 1] pli]) is a left endpoint, then push onf®the valuep[i — 1] — p'[i — 1].
Go to step 4.

4. Do this, incrementing, until an adjacency with a different component label is heac Label
each element'[i| = p[i] — top(R) and if it is a right endpoint, then pop thep(R). Go to step 2.

O

Overall running time analysis:

We call this algorithm, with the recovery phase included, XARECOVER or RAND-RECOVER,
depending on whether algorithm MAX or algorithm RAND is usadhe forward-sorting phase. If
algorithm MAX or RAND gets stuck at a positive permutatipn we proceed by undoing inversions
until a permutationy; is found such that; - u; has fewer bad components thgn Finding such ay;
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Table 5.1:The failure rates for MAX, RAND and RAND+RESTART
Length 100 200 500| 1,000| 2,000| 5,000 10,000 20,000
MAX | 39.5% | 38.9% | 39.0% | 39.1%| 39.3%| 39.3%| 39.3%| 39.2%
RAND | 39.0%| 39.2%| 39.5% | 39.5%| 39.6% | 39.5% | 39.6% | 39.5%
RAND-RESTART| 17.2%| 17.1%| 16.8% | 16.4%| 16.3%| 16.2% | 16.0% | 16.0%

Table 5.2:Number of recovery steps)(for MAX-RECOVER: Average and Standard Deviation
Length| 100| 200| 500/ 1,000 2,000 5,000| 10,000| 20,000
AVE(K) | 0.513| 0.518| 0.522| 0.524| 0.524| 0.525| 0.524| 0.525
SD(k) | 0.765| 0.770| 0.772| 0.774| 0.773| 0.775| 0.774| 0.777

and y; alone takesD(n + |S2;|logn) time. The inversions undone in this step are not discarded as
they can be applied after inserting at least two more ingassi Notice that each inversion undone in
the trace-back must be done or undone on a splay tree at mesttimes and that2; and.S2; for any

two p; andp;, i # j, will be disjoint. Thus theD(n logn) term describes the amount of time spent for
undoing inversions over the entire course of the algorithichjast a linear amount of work beyond that
must be done in each recovery phase.

Theorem 5.4.7.The running time of MAX-RECOVER or RAND-RECOVER(is log n + kn) where
k is the total number of unsafe inversions performed in therigm.

In Section[5.b we show strong empirical evidence that, odaanpermutations of length, the
average value and standard deviatior: oémain constant (abo%t) even as: grows very large, leading
us to conjecture that these algorithms sort almost all p&tions inO(n log n) time. In the worst case,
however, RAND-RECOVER and MAX-RECOVER can u®én?) time, as in the following family of
permutations: build a permutation of lengttby starting with the identity permutation of lengthmod
5 as the first block, followed by /5 copies of the block(i + 3)(i + 1)—(i +4)—(i + 2)(i + 5), each of
which shares its first element with the last element of theqaiing block.

5.5 Experimental Results

We present experimental results for algorithms MAX, RANDAKIRECOVER and RAND-RECOVER.
All of the experiments are on random permutations of lerigth 200, 500, 1000, 2000, 5000, 10, 000
and20, 000. For each length, we tested our algorithmslof00, 000 permutations.

Table[5.1 lists the failure rates for algorithm MAX and algom RAND. Algorithm MAX and
algorithm RAND produce a full sorting scenario with frequgi1%. We also include the failure rates
for RAND-RESTART: the simple heuristic that runs RAND on thput permutation a second time if it
fails to sort at the first attempt. The failure rate for RANIERTART reduces t@6% (= 0.39 x 0.39),
which suggests that the two runs are independent with retpéee failure rate.

Tabled 5.2 and 5.3 summarize the details of the number of/eegsteps k, that we observe in
algorithms MAX-RECOVER and RAND-RECOVER. The average eaund the standard deviation of
k remain constant as grows. Figuré 5J]1 shows the distribution /ofor MAX-RECOVER on random
permutations of length0,000. This figure is representative of the observed distribufarthe other
lengths as well. The similarity to the inverse exponentigction suggests that the upper bound for the
average value of is a constant.
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Number of recovery steps: k
Figure 5.1: The distribution of for MAX-RECOVER on random permutations of lengtb, 000.

Table 5.3:Number of recovery steps)(for RAND-RECOVER: Average and Standard Deviation
Length| 100| 200| 500/ 1,000 2,000 5,000| 10,000| 20,000
AVE(K) | 0.485| 0.489| 0.492| 0.493| 0.495| 0.495| 0.495| 0.499

SD(k) | 0.690| 0.694 | 0.697| 0.697| 0.698| 0.698| 0.698| 0.699

5.6 Conclusions

We have given two new algorithms for sorting signed pernmatby inversions, one a fast heuristic
that works on most permutations, the other a determinikimrithm that sorts all permutations and takes
O(nlogn) time on almost all of them. We have given the results of vetgmrsive experimentation to
confirm these claims. We have thus taken a major step towdidal aesolution of the sorting problem:
we believe tools presented here will eventually lead to afptisat we can sort most permutations in
O(nlogn) time. Future work may also include design of an algorithmealdvith the few remaining
permutations that require more time.
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Chapter 6

Conclusion

We have described improvements in three main areaemiparative genomicggenomic distances in
the presence of duplicate genes, ancestral genome inéeramd the classical problem of sorting signed
permutations by inversions. Behind all of the work in thetfiveo areas is the simplifying assumption
that certain hard-to-compare pairs of genomes are rar@lgugriered. In Chaptéd 2 we confirmed the
validity of this assumption by showing that hurdles andri&sses occur in permutations with probability
O(n~2) and ©(n~19) respectively. This finished the fundamental work that wastetl by Alberto
Capraral[24] ten years ago.

Foundational work for computing evolutionary distancesMeen genomes with unequal and du-
plicated gene content was presented in Chdgter 3. In aatestrsetting where only one of the two
genomes being compared contains duplicated genes we gaypeoximation algorithm with constant
error bound. We expect that this bound may be improved byrdgweg the dichotomy between the
number of cycles and the number of deletfbst do not address this here. We also found nontrivial
but detectable conditions under which we can compute thamaim evolutionary distance between two
genomes. In the process we built a machinery that faciitateeduction showing almost every known
probler@ related to distance minimization with duplicate genes q¢hdefine in Section 3.2.1) to be
NP-Hard.

The methodology of the aforementioned approximation dlgor was extended to be used in the
general setting — where inversions, deletions, and unctsdr (duplicating) insertions — were con-
sidered. We found through simulation studies that thisresiten tracked the true evolutionary distance
quite well, and that simulated trees that evolved througtstipposed model could be reconstructed very
accurately. Further, on the one real dataset we tried — ttasetaof 13 bacteria from Earnest-DeYoung
[31] with genome sizes ranging from 1,000 to over 5,000 gamesgene families of up to 70 members
— we reconstructed the true (accepted by the biologiste)ahmost exactly.

In the process of computing these distances, we alwayseceeatapping from the genes of some
family in one genome to those from the same family in anotfidris mapping is of particular inter-
est because it can give insight into the evolutionary retetip of two genes; the most parsimonious
assignment of duplicate genes could indicate which genig;ated during some duplication event.
Sometimes such genes are calfegsitional homologsinformation of this sort may be instrumental in
identifying orthologybetween genes [38| 4]. Future work must draw this connetiivween positional
homologs and orthology, as well as reconcile the relatignbketween positional homology and gene
function.

1For example, take the permutatiods= (1 2 3 4) andB = (5 3 4 3 -1 -2). If the first 3 ofB is chosen then there are 2
deletions and 2 inversions necessary but choosing the @&;amhile increasing the number of inversions by 2, redubes t
number of deletions necessary. We conjecture that undereitoesmstances any assignment would be within three halfes
the optimal.

2The result does not apply to problems that concern genoménbadoubling [34].
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In Chaptef ¥4 we showed that there are certain conditionsrumdieh ancestral gene sequences can
be reliably reconstructed. But the questions surroundiigstral reconstruction seem to be numerous,
the most striking of which are: if ancestral sequences caimfeered, what will biologists find most
interesting about these sequences; can knowing the azlcestyuence give insight into the regulatory
interdependence of a group of genes; and if some full segsecennot be reconstructed, what other
approximations can we settle for? Computational methogle baly started to scratch the surface in
this field.

Finally, we gave important steps towards a resolution ofstirting by inversions problem. In par-
ticular, we showed how to find an oriented inversion in camstine while maintaining a data structure
first applied in this context by Kaplan and Verbin. We alsovebd that we can recover from an unsafe
inversion in linear time without disturbing already comguiinversions, all without the knowledge of
the overlap graph. Both pave the way for many avenues thatevewarently exploring to finalize an
algorithm that provably runs i@ (n log n) time for almost all permutations.
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