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The Metropolized Partial Importance Sampling
MCMC mixes slowly on minimum reversal

rearrangement paths
István Miklós, Bence Ḿelykúti, and Krister Swenson

Abstract—Markov chain Monte Carlo has been the standard
technique for inferring the posterior distribution of genome
rearrangement scenarios under a Bayesian approach. We present
here a negative result on the rate of convergence of the generally
used Markov chains. We prove that the relaxation time of
the Markov chains walking on the optimal reversal sorting
scenarios might grow exponentially with the size of the signed
permutations, namely, with the number of syntheny blocks.

Index Terms—Stochastic programming (G.1.6.k), Markov pro-
cesses (G.3.e), Analysis of Algorithms and Problem Complexity
(F.2.m) Biology and genetics (J.3.a)

I. I NTRODUCTION

T HE fact that the gene orders of genomes evolve by
inversions was discovered earlier [40] than the DNA

double-helix itself [43]. Although the computational problem
was clearly stated already in 1941, the first study of the
computational complexity of sorting by inversions was pub-
lished only in the ’90s [22]. The first polynomial running time
algorithm was given by Hannenhalli and Pevzner [19], which
has been subsequently improved [21]. The best algorithm
today takes sub-quadratic time to find an optimal sorting path
[41], and a linear running time algorithm exists that calculates
the minimum number of inversions needed to transform one
genome into another (without giving a sorting path) [3].

Unfortunately, the problem does not scale well with the
number of genomes: the inversion median problem – namely,
finding an intermediate genome that minimizes the sum
of distances from three input genomes – is known to be
NP-complete [12]. Several heuristic approaches have been
published on finding the optimal inversion median of three
genomes, and some of them are based on considering all
optimal sorting paths. Siepel introduced an algorithm for
finding all sorting reversals [38]. Bragaet al. [11] gave an
algorithm to find all optimal sorting scenarios, however, the
running time of this algorithm might grow exponentially with
the length of the input genome [7]. Counting all optimal
sorting paths and the problem of sampling from the uniform
distribution of them in polynomial time are still unsolved.

Markov chain Monte Carlo methods (MCMC) [29], [20]
for genome rearrangement have been introduced a few years
ago, which try to explore the posterior distribution of rear-
rangement paths instead of highlighting a single optimal one.
They define different models where genomes can evolve by
reversals [23], [42], [24], reversals and translocations [14], or
reversals, transpositions and inverted transpositions [30], [33].

The general theory of MCMC states that the Markov chain
will be in the prescribed distribution after an infinite number
of random steps. A Markov chain has to approximate its target
distribution in a reasonable time, in other words, it has to mix
quickly to be applicable in practice.

We conjectured that the mixing of MCMC methods on
genome rearrangement might be slow, since for a related
problem we had already had a negative result: we had showed
that the sampling protocol of Ajanaet al. [1] generates a
distribution of minimum reversal sorting paths that might be
very far from the uniform distribution [28].

We present a negative result in this paper: if we restrict
the state space of a special type of MCMC that is used for
genome rearrangement problems to the uniform distributionof
minimum reversal sorting paths, the resulting Markov chain
mixes slowly. Although it does not prove, it gives rise to our
conjecture that the same Markov chain might mix slowly on
larger spaces containing suboptimal solutions.

II. T HE GRAPH OF DESIRE AND REALITY

The genome rearrangement problem calls for a transfor-
mation of one genome into another using a set of possible
mutations. Genomes are typically described as signed permu-
tations: numbers represent the different genes and the signs
represent the reading directions of genes. It is easy to show
that the signed permutations with the usual composition of
permutations form a group, and the mutations act on them
(group action). Therefore, transforming a genomeg1 into g2

is equivalent to sortingg−1
2 g1 into the identity permutation,

+1, +2, . . . ,+n (writing products from left to right, and
hence assuming that mutations act from the right).

A signed permutation can be represented as a graph of desire
and reality (see, for example, [4]). In this representation, the
signed permutation is transformed into a double-length non-
signed permutation replacing+i by 2i − 1, 2i and replacing
−i by 2i, 2i − 1. This unsigned permutation is framed by0
and2n + 1, wheren is the length of the signed permutation.
Vertices of the graph of desire and reality are the numbers
of the unsigned permutation together with0 and 2n + 1.
Starting with0, every other pair of vertices are connected in
the unsigned permutation with a black line, and they are called
reality edges, since they show the reality, i.e. what the neighbor
of 0 is, etc. Also starting with0, every node2i and2i+1 are
connected with a grey arc above the row of vertices, and these
grey arcs are calleddesire edges, since they show which nodes
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should be neighbors to get the identity permutation. Since each
vertex of the graph of desire and reality has a degree of2, the
graph decomposes into cycles. We can distinguishoriented and
unoriented cycles. A cycle is oriented iff there are two reality
edges with different directions on a traversing of the cycle,
otherwise it is unoriented. By definition, intersecting cycles
form components, which partition the graph. A component is
oriented if it contains at least one oriented cycle, otherwise it
is unoriented. The Hannenhalli-Pevzner theorem says that the
minimum number of reversals necessary to sort a permutation
σ that contains only oriented components isn + 1 − c(σ),
wheren is the length of the signed permutation andc(σ) is the
number of cycles. Since a reversal can increase the number of
cycles at most by1 (see for example [38]), the theorem claims
that if a permutation contains only oriented components, there
is always a reversal that increases the number of cycles by1
and does not create an unoriented component.

III. MCMC AND PARTIAL IMPORTANCESAMPLING

A discrete time Markov chain over a state spaceI is a
random walk over the state spaceI and can be given by a
non-negativeI × I matrix P for which

∑

j

pi,j = 1 (1)

for all i. pi,j describes what the probability is that the random
walk jumps into statej in the next step if the actual state is
i. Under some mild conditions, such a random walk globally
converges to a distribution. Roughly speaking, after a large
number of steps, the actual state will be a random state
following a given distribution, regardless of the startingstate
of the chain.

The Metropolis-Hastings algorithm is a general algorithm to
create a Markov chain that converges to a prescribed distribu-
tion π. It needs a primary Markov chain that is irreducible and
aperiodic on the state spaceI. Irreducibility means that there
is a non-zero probability to reach any statej from any state
i after a finite number of steps. Aperiodicity means that the
greatest common divisor of the lengths of the possible cycles
of the Markov chain with non-zero probability is1. Moreover,
it is also necessary that for anyx, y ∈ I, px,y > 0 implies
py,x > 0. The Metropolis-Hastings algorithm transforms this
chain to another chain in the following two steps:

• (proposal) Draw a randomy from the primary chain’s
transition distributionT (·|xt), where xt is the state in
which the chain is after stept.

• (acceptance) Draw a randomu from U [0, 1]. Let xt+1 =
y if

u ≤
π(y)py,xt

π(xt)pxt,y

(2)

and letxt+1 = xt otherwise.

The resulting Markov chain(xt) will be reversible, irreducible
and aperiodic, and hence, it will converge toπ since the
detailed balance holds [29], [20].

Sometimes each point in the state spaceI can be represented
as a vector, and the primary Markov chain modifiesxt by
changing a subset (or window) of its coordinates,w. Let w′

denote the newly drawn coordinates ofy proposed fromxt.
It is easy to show that the acceptance ratio in Eqn. (2) can be
replaced by

π(y)T (xt, w
′|y)

π(xt)T (y, w|xt)
(3)

whereT (a,w|b) tells the probability of proposinga from b by
choosing and modifying the coordinatesw, without changing
the equilibrium distribution,π, even if y can be proposed
by altering a larger set of coordinates ofxt [26]. When the
newly drawn coordinates ofy do not depend on the respective
coordinates ofxt, the algorithm is called Metropolized Partial
Importance Sampling.

In the case of genome rearrangements, the state space of
MCMC is the set of allowed transition paths between two
genomes. Such a state space can be considered as being com-
prised of(n + 2 − c(σ))-tuples of genomes (g1, intermediate
genomes connectingg1 to g2, andg2). A Metropolized Partial
Importance Sampler cuts out a subpath from the current path,
which is framed by genomesgk and gℓ and draws a new
subpath transforminggk into gℓ. This subpath is drawn from
a distribution that does not depend on the cut out subpath. In
published implementations [14], [23], [24], [30], [33], [42], the
new subpath is drawn step by step, drawing a new intermediate
genome by considering the list of mutations that act on the cur-
rent intermediate genome. If the allowed transition paths are
the minimum reversal sorting paths, then the next intermediate
genome is drawn by applying a random, uniformly distributed
sorting reversal on the current intermediate genome. In the
next section, we prove that this kind of MCMC mixes slowly
in the worst case.

IV. PARIS MIXES SLOWLY ON MINIMUM REVERSAL PATHS

A. Speed of Convergence of Markov chain Monte Carlo algo-
rithms

The Markov chain Monte Carlo methods provide an al-
gorithm that constructs a Markov chain for any input data.
Below D denotes the data, and the convergence is measured
as a function of the size ofD. We would like to measure the
convergence of a Markov chain on state spaceID with what
is called the maximal variation distance from the equilibrium
distribution after stepk starting in an arbitrary positioniD.
We define

τiD
(ǫ) := min{k0|∀k ≥ k0, dv(δT

iD
P k

D, πD) ≤ ǫ} (4)

whereδiD
is the vector whose coordinates correspond to the

possible states of the state spaceID and which contains1 for
the coordinate representing stateiD, and contains0s for all
remaining coordinates,PD is the transition probability matrix
of the Markov chain,πD is the equilibrium distribution, and
dv(·, ·) is the variational distance defined as

dv(π1, π2) =
1

2

∑

i∈I

|π1(i) − π2(i)| (5)

We say that a Markov chain converges quickly if

max
iD∈ID

τiD
(ǫ) (6)
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is a polynomial function of bothlog(1/ǫ) and |D|, and the
Markov chain converges slowly if there exists anǫ such that
for all l ∈ N,

max
iD∈ID

τiD
(ǫ) = Ω(|D|l) (7)

Aldous [2] showed that

max
iD∈ID

τiD
(ǫ) ≥

ρD

2(1 − ρD)
log

(

1

2ǫ

)

(8)

where ρD is the second largest eigenvalue modulus, that is
max{λ2,D, |λr,D|}, whereλ2,D is the second largest eigen-
value of the transition matrixPD, and λr,D is the smallest
eigenvalue ofPD (if the Markov chain is reversible, all
eigenvalues are real numbers). Consequently, if the second
largest eigenvalue converges to1 exponentially with the size
of the data, then the MCMC converges slowly.

The Cheeger’s inequality gives a lower bound on the second
largest eigenvalue. We define the ergodic flow of a setSD ⊆
ID as

F (SD) :=
∑

x∈SD,y∈ID\SD

PD(y|x)πD(x) (9)

and the conductance of a Markov chains

ΦD := inf

{

F (SD)

πD(SD)

∣

∣

∣

∣

SD ⊂ ID, 0 < πD(SD) ≤
1

2

}

(10)

It can be shown [27] that

1 − 2ΦD ≤ λ2,D (11)

It follows that the convergence of a Markov chain is neces-
sarily slow if there are setsSD, for which F (SD)/πD(SD)
converges to0 exponentially with|D|. A heuristic explanation
is that the small ergodic flow betweenSD and its complement
means a bottleneck, and a Markov chain having a bottleneck
cannot be quickly mixing. Below we construct a series of data
with suchSDs, hence prove that the proposed MCMC mixes
slowly in at least one case.

B. The example

For eachn ∈ N we construct a13n − 2-long signed
permutation. Fig. 1. shows the general structure of the permu-
tation from our example. Its graph of desire and reality can
be split into two parts. The first part is a single component
that consists of4n − 2 rainbow motifs, each chained to the
next, with a six-long cycle chained to the end. The second
part containsn repeats of ten-long cycles being equivalent to
the−1, −2, −3, −4 permutation. Such permutation exists for
everyn. The general permutation of the first part is shown in
Fig. 2, the second part contains the numbers in the identical
order, one positive sign is followed by four negative signs,
namely, the second part of the permutation is

8n − 1, −(8n), −(8n + 1), −(8n + 2), −(8n + 3), 8n + 4, . . .

It is easy to show that the first part of the permutation
needs4n reversals to get sorted, and it has exactly two optimal
sorting paths by reversals. Moreover, these two sorting paths
have only the start and end genome in common, all the
intermediate genomes of the two sorting paths are different.

Each ten-long cycle in the second part of the permutation
needs4 reversals to get sorted, and each of them has26
optimal sorting paths. Of these26, 4! = 24 paths reverse
single numbers one by one, and they form a four-dimensional
hypercube, i.e. they have14 common intermediate genomes
in addition to the start and end genomes. The remaining
two sorting paths reverse the first or last three numbers of
such ten-long cycles alternately, twice each. The Hannenhalli-
Pevzner theorem says that all sorting paths of a permutation
are combinations of the sorting paths over its components,
therefore there are

|ID| = 2 × 26n ×
(8n)!

(4n)!(4!)n
(12)

sorting paths of thenth member of the series. This set of
paths can be partitioned into two, equal size parts based
on which path they use for sorting the first component.
Let SD be one of these sets. We are going to show that
F (SD)/πD(SD) converges to0 exponentially fast withn, and
hence, exponentially fast with|D| = 13n − 2.

The first observation is that

F (SD)

πD(SD)
=

1

|SD|

∑

x∈SD,y∈ID\SD

PD(y|x) (13)

sinceπD is the uniform distribution. We proceed by cutting
SD into three parts such that the first two parts are ‘negligibly‘
small, and the third contains an ergodic flow towards the
complement ofSD that is too small. LetSD,1 be the subset
of SD which contains the paths in which there are less than
(

7 + 9

11

)

n intermediate genomes between the first and last
sorting reversals of the first component. Since each sorting
path contains8n reversals and4n reversals sort the first
component, there exists ac1 > 1 for which

|SD,1|

|SD|
= O

(

1

cn
1

)

(14)

since the reversals sorting the first component can be posi-
tioned without constraints in

(

8n
4n

)

ways into each complete

sorting path, and in less than
((7+ 9

11 )n

4n

)

ways if all these
mutations must be put in a window that is less than

(

7 + 9

11

)

n
long, and the number of possible windows in an8n-long series
of reversals isO(n2).

The remaining setSD\SD,1 contains sorting paths in which
the complete sorting of at least9

11
n ten-long cycles are

between the first and the last sorting reversals of the large
component. LetSD,2 be the subset ofSD\SD,1 that contains
paths in which at most3

4
n ten-long cycles are sorted with

single number reversals between the first and the last sorting
reversals of the large component. It is obvious that there exists
a c2 > 1 for which

|SD,2|

|SD|
= O

(

1

cn
2

)

(15)

since the number of ten-long cycles that are sorted with single
number reversals are binomially distributed with mean24

26
k for

k ≥ 9

11
n. Hence 3

4
n < 24

26
k, and we can apply the Chernoff

inequality.
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Fig. 1. The general structure of the graph of desire and reality of the signed permutation that we generated. See main text for details.

6n−2, 6n−3, 1, 6n−4, 6n−1, 6n−5, 2, . . . k, 6n−2k−2, 6n+k−2, 6n−2k−3, k+1, . . .
2n−2, 2n+2, 8n−4, 2n+1, 2n−1,−(8n−2), 2n, 8n−3, 8n−1

Fig. 2. The general form of the signed permutation for the firstcomponent on Fig. 1

Let SD,3 be SD\ (SD,1 ∪ SD,2). We have

F (SD)

πD(SD)
=

1

|SD|

(

∑

x∈SD,1,y∈ID\SD
PD(y|x)+

∑

x∈SD,2,y∈ID\SD
PD(y|x)+

∑

x∈SD,3,y∈ID\SD
PD(y|x)

)

(16)

|SD,1| and|SD,2| are upper bounds for the first and the second
sum, hence

F (SD)

πD(SD)
= O

(

1

min{c1, c2}n

)

+
1

|SD|

∑

x∈SD,3,y∈ID\SD

PD(y|x)

(17)
Recall that

PD(y|x)=
∑

w

TD(y, w|x)min

{

1,
πD(y)TD(x,w′|y)

πD(x)TD(y, w|x)

}

=
∑

w

min {TD(y, w|x), TD(x,w′|y)} (18)

and hence,PD(y|x) can be bounded by

PD(y|x) ≤
∑

w

TD(x,w′|y) (19)

Let c = min {c1, c2}, and we have

F (SD)

πD(SD)
≤ O

(

1

cn

)

+
1

|SD|

∑

w

∑

x∈SD,3,

y∈ID\SD

TD(x,w′|y) (20)

where the first sum runs only on windowsw that contain at
least the first and the last reversal sorting the large component.
The inner sum sums for ally the probability that such a
subpath is proposed in thew′ window that transformsy into
in the SD,3 set. For a particulary, there is ac3 > 1 such that
the probability of the transformation towards anyx ∈ SD,3,

namely,
∑

x∈SD,3
TD(x,w′|y) is O

(

1

cn
3

)

. This is because at

least 3

4
n ten-long cycles should be sorted by single number

reversals for a successful transition. However, in the proposal
distribution the number of ten-long cycles that are sorted by
single number reversals is binomially distributed with mean
2

3
k for k smaller thann and we can again apply the Chernoff

bound. The number ofys in the subsetID\SD is exactly|SD|,
the number of possible windows is onlyO(n2), hence for some
1 < c∗3 < c3

F (SD)

πD(SD)
= O

((

1

min{c1, c2, c∗3}

)n)

(21)

V. D ISCUSSION ANDCONCLUSION

In this paper we showed that the Metropolized Partial
Importance Sampler might mix slowly on the set of minimum
reversal paths. The cause of slow mixing are the big gaps
in the optimal sorting paths, like the gaps between the two
optimal sorting paths of the large component in our example.
Due to these big gaps, large portions of the actual sorting path
should be replaced in the proposal to get an irreducible chain.
The large changes cause small acceptance ratios, and even-
tually slow mixing. One might argue that the Metropolized
Partial Importance Sampling could be improved on the above
mentioned example if it resampled mutations only on one
component (whose mutations might not be consecutive on the
current path). However, big gaps are common in genome re-
arrangements paths, for example, it can be shown that hurdle-
cutting and hurdle merging [19] sorting paths are disjoint
except for the start and the end genome. Both the hurdle-
cutting and the hurdle-merging paths might be numerous,
and we conjecture that the Metropolized Partial Importance
Sampler might mix slowly even on sorting two hurdles.

Our result does not prove but suggests that the similar
MCMC methods on the posterior distribution of all sorting
paths [14], [23], [24], [30], [33], [42] might also mix slowly.
Indeed, the key point in our proof is that the back-proposal
probability is vanishingly small for the majority of the setof
pathsSD, and we saw similar behavior in the case of the
posterior distribution of rearrangement paths. The BADGER
software [39], [24] has a pre-burn-in phase in which the
proposal and backproposal probabilities are omitted from
the Metropolis-Hastings ratio, and this makes the likelihood
improve significantly. If that pre-burn-in phase is switched off,
the burn-in phase remains at low likelihood values and no
convergence is obtained. Indeed, our experiments [13] showed
that without this pre-burn-in phase, the Markov chain does not
converge on Yersinia phylogenies. Therefore we had to use
the BADGER software instead of our software, which does
not apply this pre-burn-in trick [33].

However, this proof does not imply in any sense that no fast
mixing Markov chain exists for sampling from the uniform
distribution of minimum reversal sorting paths or posterior
distributions of genome rearrangement paths under a Bayesian
framework. Indeed, there are at least two possible ways to
improve the mixing of Markov chains: with novel proposals
that might destroy bottlenecks and with parallel chains that
exchange information. We show one example for each.
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• Let a reversal be described as a double cut-and-join (DCJ)
mutation [8]. The DCJ representation of a reversal tells
which adjacencies are changed in the signed permutation.
Let sorting paths be described by their series of reversals
in DCJ representation. For example, the sorting path:
+3,+4,−1,−2 → +1,−4,−3,−2 → +1,+2,+3,+4
is represented by(0, b3|b1, e2) (e1, e4|b2, 5). This
means that before the first reversal, the beginning of gene
3 was at the beginning of the permutation (represented
as 0), the beginning of gene1 was in adjacency with
the end of gene2, and the first reversal swapped the
positionsb3 andb1. Similarly, the second reversal breaks
the adjacencies betweene1 and e4 and betweenb2 and
the end of the permutation by swappinge4 andb2. Note
that (a, b|c, d) means the same reversal as(d, c|b, a), but
differs from, for example,(b, a|c, d).
Let the vertices of a graph be the minimum reversal
paths of a signed permutation. Let two points of this
graph be connected iff at most four, not necessarily
consecutive reversals can be removed from each of their
DCJ representations such that the remaining patterns will
be the same (note that the remaining representations
of DCJ mutations might not represent valid DCJ op-
erations). Our conjecture is that the graph will always
be connected if the signed permutation contains only
oriented components. Above this conjecture, it is an
open question if such fixed number of removals holds
for all signed permutations, and if so, the so-obtained
Markov chain (namely, remove a fixed number of not
necessarily consecutive reversals and put back reversals
not necessarily to the same place) can be transformed
into a quickly mixing MCMC. The hope that such a
Markov chain might be quickly mixing is due to the fact
that in such Markov chain there is a polynomial lower
bound for the backproposal probabilities (and hence for
the acceptance ratio) while the diameter of the Markov
chain will grow also polynomially with the problem size.

• For an n long, signed permutation that can be sorted
in k steps, we create a Markov chain whose states are
k + 1-tuples. The first coordinate of any element in the
state space contains the signed permutation, and thelth
coordinate contains a transformation path from the given
signed permutation to an other signed permutation that
can be sorted inl − 1 steps.
We define a Markov chain on this set that changes
two consecutive coordinates, thelth and l + 1st in the
following way. The newlth coordinate is the shortened
path in the oldl + 1st coordinate, and the newl + 1st
coordinate is a random extension of the oldlth coordinate.
Applying the appropriate Metropolis-Hastings ratio, the
Markov chain will converge to the uniform distribution.
We could prove that this Markov chain on its own
generally will not converge quickly to the equilibrium
distribution [31], however, the mixing is quick on Yersinia
data if the following inside-swapping step is also added
to the transition kernel of the Markov chain. The inside-
swapping step swaps two consecutive commuting rever-
sals on one of the sorting paths. To do such a step, we

first choose a randomi between2 and k + 1, then we
count all the neighboring reversals in the sorting path
in the ith coordinate that can be swapped. We select
a random pair, calculate how many commuting reversal
neighbors there are after swapping them, and calculate the
corresponding Metropolis-Hastings ratio with which we
accept the change. We compared this Markov chain with
the Importance Sampling method of Ajanaet al. [1], and
showed that this latter method explores only a negligible
part of the possible sorting reversals. Since the Partial Im-
portance Sampling method applies the same Importance
Sampling transition kernel, this again suggests that the
slow convergence of the Markov chain we described in
this manuscript might be a general problem in case of
real data, not only for the example we gave.

We also would like to highlight that a commonly used
method, Parallel Tempering [16], also known as(MC)3 [37]
will not work. Indeed, we showed that an MCMC might mix
slowly even if the target distribution is the uniform one, and
the uniform distribution cannot be further heated.
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