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Abstract. As data about genomic architecture accumulates, genomic rearrange-
ments have attracted increasing attention. One of the main rearrangement mech-
anisms, inversions (also called reversals), was characterized by Hannenhalli and
Pevzner and this characterization in turn extended by various authors. The char-
acterization relies on the concepts of breakpoints, cycles, and obstructions col-
orfully named hurdles and fortresses. In this paper, we study the probability of
generating a hurdle in the process of sorting a permutation if one does not take
special precautions to avoid them (as in a randomized algorithm, for instance).
To do this we revisit and extend the work of Caprara and of Bergeron by provid-
ing simple and exact characterizations of the probability of encountering a hurdle
in a random permutation. Using similar methods we, for the first time, find an
asymptotically tight analysis of the probability that a fortress exists in a random
permutation.

1 Introduction

The advent of high-throughput techniques in genomics has led to the rapid accumulation
of data about the genomic architecture of large numbers of species. As biologists study
these genomes, they are finding that genomic rearrangements, which move single genes
or blocks of contiguous genes around the genome, are relatively common features: en-
tire blocks of one chromosome can be found in another chromosome in another species.
The earliest findings of this type go back to the pioneering work of Sturtevant on the
fruit fly [10,11]; but it was the advent of large-scale sequencing that moved this aspect
of evolution to the forefront of genomics.

The best documented type of rearrangement is the inversion (also called reversal),
in which a block of consecutive genes is removed and put back in (the same) place in
the opposite orientation (on the other strand, as it were). The most fundamental com-
putational question then becomes: given two genomes, how efficiently can such an op-
eration as inversion transform one genome into the other? Since an inversion does not
affect gene content (the block is neither shortened nor lengthened by the operation), it
makes sense to view these operations as being applied to a signed permutation of the
set {1,2, . . . ,n}.

Hannenhalli and Pevzner [6,7] showed how to represent a signed permutation of n
elements as a breakpoint graph (also called, more poetically, a diagram of reality and
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desire), which is a graph on 2n + 2 vertices (2 vertices per element of the permutation
to distinguish signs, plus 2 vertices that denote the extremities of the permutation) with
colored edges, where edges of one color represents the adjacencies in one permuta-
tion and edges of the other color those in the other permutation. In such a graph, every
vertex has indegree 2 and outdegree 2 and so the graph has a unique decomposition
into cycles of even length, where the edges of each cycle alternate in color. Hannen-
halli and Pevzner introduced the notions of hurdles and fortresses and proved that the
minimum number of inversions needed to convert one permutation into the other (also
called “sorting” a permutation) is given by the number of elements of the permutation
plus 1, minus the number of cycles, plus the number of hurdles, and plus 1 if a fortress is
present. Caprara [5] showed that hurdles were a rare feature in a random signed permu-
tation. Bergeron [2] provided an alternate characterization in terms of framed common
intervals and went on to show that unsafe inversions, that is, inversions that could create
new obstructions such as hurdles, were rare [3] when restricted to adjacency creating
inversions. Kaplan and Verbin [8] capitalized on these two findings and proposed a
randomized algorithm that sorts a signed permutation without paying heed to unsafe
inversions, finding that, in practice, the algorithm hardly needed any restarts to provide
a proper sorting sequence of inversions, although they could not prove that it is in fact
a proper Las Vegas algorithm.

In this paper, we extend Bergeron’s result about the possibility of creating a hurdle
by doing an inversion. Her result is limited to inversions that create new adjacencies, but
these are in the minority: in a permutation without hurdles, any inversion that increases
the number of cycles in the breakpoint graph is a candidate. Using Sankoff’s random-
ness hypothesis [9], we show that the probability that any cycle-splitting inversion is
unsafe is Θ(n−2). We then revisit Caprara’s complex proof and provide a simple proof,
based on the framed intervals introduced by Bergeron, that the probability that a random
signed permutation on n elements contains a hurdle is Θ(n−2). Finally, we show that
this approach can be extended to prove that the probability such a permutation contains
a fortress is Θ(n−15). Our results are elaborated for circular permutations, but simple
(and by now standard) adaptations show that they also hold for linear permutations.

Framed common intervals considerably simplify our proofs; indeed, our proofs for
hurdles and fortresses depend mostly on the relative scarcity of framed intervals. Our
results add credence to the conjecture made by Kaplan and Verbin that their random-
ized algorithm is a Las Vegas algorithm, i.e., that it returns a sorting sequence with
high probability after a constant number of restarts. Indeed, because our results suggest
that the probability of failure of their algorithm is O(1/n) when working on a permu-
tation of n elements, whereas any fixed constant 0 < ε < 1 would suffice, one could
conceive taking advantage of that gap by designing an algorithm that runs faster by
using a stochastic, rather than deterministic, data structure, yet remains a Las Vegas al-
gorithm. Indeed, how fast a signed permutation can be sorted by inversions remains an
open question: while we have an optimal linear-time algorithm to compute the number
of inversions needed [1], computing one optimal sorting sequence takes subquadratic
time—O(n

√
n logn), either stochastically with the algorithm of Kaplan and Verbin or

deterministically with the similar approach of Tannier and Sagot [12].
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2 Preliminaries

Let Σn denote the set of signed permutations over n elements; a permutation π in this set
will be written as π = (π1π2 . . .πn), where each element πi is a signed integer and the
absolute values of these elements are all distinct and form the set {1,2, . . . ,n}. Given
such a π, a pair of elements (πi,πi+1) or (πn,π1) is called an adjacency whenever we
have πi+1 − πi = 1 (for 1 ≤ i ≤ n− 1) or π1 − πn = 1; otherwise, this pair is called a
breakpoint. We shall use Σ0

n to denote the set of permutations in which every permu-
tation is entirely devoid of adjacencies. Bergeron et al [3] proved the following result
about |Σ0

n|.
Lemma 1. [3] For all n > 1, 1

2 |Σn| < |Σ0
n| < |Σn|.

For any signed permutation π and the identity I = (12 . . .n), we can construct the break-
point graph for the pair (π, I). Since there is one-to-one mapping between π and the
corresponding breakpoint graph for (π, I), we identify the second with the first and so
write that π contains cycles, hurdles, or fortresses if the breakpoint graph for (π, I) does;
similarly, we will speak of other properties of a permutation π that are in fact defined
only when π is compared to the identity permutation.

A framed common interval (FCI) of a permutation (made circular by considering the
first and last elements as being adjacent) is a substring of the permutation, as1s2 . . .skb
or -bs1s2 . . . sk-a so that

– for each i, 1 ≤ i ≤ k, |a| < |si| < |b|, and
– for each l, |a| < l < |b|, there exists a j with |s j| = l.

So the substring s1s2 . . . sk is a signed permutation of the integers that are greater than a
and less than b; a and b form the frame. The framed interval is said to be common, in that
it also exists, in its canonical form, +a+(a+1)+(a+2) . . .+b, in the identity permutation.
Framed intervals can be nested. The span of an FCI is the number of elements between
a and b, plus two, or b− a + 1. A component is comprised of all elements inside a
framed interval that are not inside any nested subinterval, plus the frame elements. A
bad component is a component whose elements all have the same sign.

In a circular permutation, a bad component A separates bad components B and
C if and only if every substring containing an element of B and an element of C
also has an element of A in it. We say that A protects B if A separates B from all
other bad components. A superhurdle is a bad component that is protected by an-
other bad component. A fortress is a permutation that has an odd number (larger than
1) of hurdles, all of which are superhurdles. The smallest superhurdles are equiva-
lent to intervals f = +(i)+(i + 2)+(i + 4)+(i + 3)+(i + 5)+(i + 1)+(i + 6) or the reverse
f ′ = −(i+6)−(i+1)−(i+5)−(i+3)−(i+4)−(i+2)−(i). A hurdle is a bad component that
is not a superhurdle.

We will use the following useful facts about FCIs; all but fact 3 follow immediately
from the definitions.

1. A bad component indicates the existence of a hurdle.
2. To every hurdle can be assigned a unique bad component.
3. FCIs never overlap by more than two elements [4].
4. An interval shorter than 4 elements cannot be bad.
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3 The Rarity of Hurdles and Fortresses

In this section, we provide asymptotic characterizations in Θ( ) terms of the probability
that a hurdle or fortress is found in a signed permutation selected uniformly at random.
Each proof has two parts, an upper bound and a lower bound; for readability, we phrase
each part as a lemma and develop it independently. We begin with hurdles; the charac-
terization for these structures was already known, but the original proof of Caprara [5]
is very complex.

Theorem 1. The probability that a random signed permutation on n elements contains
a hurdle is Θ(n−2).

Lemma 2 (Upper bound for shorter than n − 1). The probability that a random
signed permutation on n elements contains a hurdle spanning no more than n− 2 ele-
ments is O(n−2).

Proof. Fact 4 tells us that we need only consider intervals of at least four elements. Call
F≤n−2 the event that a FCI spanning no more than n−2 and no less than four elements
exists. Call F(i)≤n−2 the event that such an FCI exists with a left endpoint at πi. We
thus have F≤n−2 = 1 if and only if there exists an i, 1 ≤ i ≤ n, with F(i)≤n−2 = 1. Note
that F(i)≤n−2 = 1 implies either πi = a or πi = −b for some FCI. Thus we can write

Pr
(
F(i)≤n−2 = 1

) ≤
n−2

∑
l=4

1
2(n−1)

(
n−2
l−2

)−1

(1)

since 1
2(n−1) is the probability the right endpoint matches the left endpoint (πl is -a or b

if πi is -b or a respectively) of an interval of span l and
(n−2

l−2

)−1
is the probability that

the appropriate elements are inside the frame. We can bound the probability from (1) as

Pr
(
F(i)≤n−2 = 1

) ≤ 1
2(n−1)

n−4

∑
l=2

(
n−2

l

)−1

≤ 1
n−1

�n/2�−1

∑
l=2

(
n−2

l

)−1

≤ 1
n−1

( √
n

∑
l=2

( l
n−2

)l
+

�n/2�−1

∑
l=

√
n+1

(
n−2

l

)−1)
(2)

where the second term is no greater than

�n/2�−1

∑
l=

√
n+1

(
n−2

l

)−1

≤
�n/2�−1

∑
l=

√
n+1

(1
2

)√
n+1 ∈ O(1/n2) (3)

and the first term can be simplified
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√
n

∑
l=2

( l
n−2

)l
=

4

∑
l=2

( l
n−2

)l
+

√
n

∑
l=5

( l
n−2

)l

≤
4

∑
l=2

( l
n−2

)l
+

√
n

∑
l=5

( n
n−2

√
n

n

)5

∈ O
(

3× 16
(n−2)2 +

√
n n−5/2

)
= O(n−2). (4)

To compute Pr(F≤n−2) we use the union bound on Pr(
⋃n

i=1 F(i)≤n−2). This removes
the factor of 1

n−1 from (2) yielding just the sum of (4) and (3) which is O(n−2). The
probability of observing a hurdle in some subsequence of a permutation can be no
greater than the probability of observing a FCI (by fact 2). Thus we know the probability
of observing a hurdle that spans no more than n−2 elements is O(n−2).

We now proceed to bound the probability of a hurdle that spans n− 1 or n elements.
Call intervals with such spans n-intervals. For a bad component spanning n elements
with a = i, there is only a single b = (i − 1) that must be a’s left neighbor (in the
circular order), and for a hurdle spanning n−1 elements with a = i, there are only two
configurations (“+(i-2) +(i-1) +i” and its counterpart “+(i-2) −(i-1) +i”) that will create a
framed interval. Thus the probability that we see an n-interval with a particular a = i is
O(1/n) and the expected number of n-intervals in a permutation is O(1).

We now use the fact that a bad component is comprised of elements with all the same
sign. Thus the probability that an n-interval uses all the elements in its span (i.e., there
exist no nested subintervals) is O(2−n). Call a bad component that does not use all of
the elements in its span (i.e., there must exist nested subintervals) a fragmented interval.

Lemma 3 (Upper bound for n-intervals). The probability that a fragmented n-interval
is a hurdle is O(n−2).

Proof. We divide the analysis into three cases where the fragment-causing subinterval
is of span

1. n−1,
2. 4 through n−2, and
3. less than 4.

The existence of a subinterval of span n− 1 precludes the possibility of the frame el-
ements from the larger n-interval being in the same component, so there cannot be a
hurdle using this frame. We have already established that Pr(F≤n−2) is O(n−2). Thus
we turn to the third case. If an interval is bad, then the frame elements of any fragment-
ing subinterval must have the same sign as the frame elements of the larger one. If we
view each such subinterval and each element not included in such an interval as single
characters, we know that there must be at least n/3 signed characters. Since the signs
of the characters are independent, the probability that all characters have the same sign
is 1/2O(n) and is thus negligible.

Thus the probability of a bad n-interval is O(n−2). Now using fact 4 we conclude that
the probability of existence of a hurdle in a random signed permutation on n elements
is O(n−2).
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Lemma 4 (Lower bound). The probability that a signed permutation on n elements
has a hurdle with a span of four elements is Ω(n−2).

Proof. Call hk the hurdle with span four that starts with element 4k + 1. So the subse-
quence that corresponds to hk must be +(4k + 1)+(4k + 3)+(4k + 2)+(4k + 4) or −(4k +
4)−(4k + 2)−(4k + 3)−(4k + 1). We can count the number of permutations with h0, for
instance. The four elements of h0 are contiguous in 4!(n−3)!2n permutations of length
n. In c = 2/(4!24) of those cases, the contiguous elements form a hurdle, so the total
proportion of permutations with h0 is

c
4!(n−3)!2n

n!2n ∈ Ω
( 1

n3

)
.

Similarly, the proportion of permutations that have both h0 and h1 is

F2 = c2 (4!)2(n−6)!2n

n!2n ∈ O
( 1

n6

)

and, therefore, the proportion of permutations that have at least one of h0 or h1 is

2× c
4!(n−3)!2n

n!2n −F2. (5)

We generalize (5) to count the proportion of permutations with at least one of the hurdles
h0,h1,. . . ,h	n/4
; this proportion is at least

⌊
n
4

⌋
× c

4!(n−3)!2n

n!2n −
(	n/4


2

)
F2 (6)

which is Ω(n−2) since the second term is O(n−4).

Now we turn to the much rarer fortresses.

Theorem 2. The probability that a random signed permutation on n elements includes
a fortress is Θ(n−15).

Lemma 5 (Upper bound). The probability that a random signed permutation on n
elements includes a fortress is O(n−15).

Proof. We bound the probability that at least three superhurdles occur in a random
permutation by bounding the probability that three non-overlapping bad components of
length seven exist. We divide the analysis into three cases depending on the number l
of elements spanned by a bad component.

1. For one of the three FCIs we have n−14≤ l ≤ n−11.
2. For one of the three FCIs we have 17 ≤ l ≤ n−15.
3. For all FCIs we have 7 ≤ l < 17.
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As we did in Lemma 2 (equation 1), we can bound the probability that we get an FCI
of length l starting at a particular position by

Pr
(
Fl = 1

) ≤ 1
2(n−1)

(
n−2
l −2

)−1

. (7)

In the first case the probability that the FCI is a superhurdle is O(n−11 ·2−n) if the FCI
is not fragmented and O(n−15) if it is (using the same technique as for the proof of
Lemma 3). In the second case the probability is at most

n
n−15

∑
l=17

Fl = n
n−17

∑
k=15

1
2(n−1)

(
n−2

k

)−1

which, by the same reasoning used for equation 2 to derive O(n−2), is O(n−15). Thus
the first two cases both give us an upper bound of O(n−15).

Fact 3 tells us that any pair of FCIs can overlap only on their endpoints. Thus, if we
first consider the probability of finding a smallest FCI, we know that no other FCI will
have an endpoint inside it. So the probability of having a second FCI, conditioned on
having a smaller first one, is dependent only on the size of the first. The same reasoning
extends to the probability of having a third conditioned on having two smaller FCIs.
Since each of the three FCIs spans less than seventeen elements, the probability of each
FCI appearing is at most n∑17

l=7 Fk = O(n−5), and the probability of there being at least
three of them is O(n−15).

We now turn to the lower bound. Consider the probability of the existence, in a random
permutation, of a permutation with exactly three superhurdles spanning seven elements
each. A lower bound on this probability is a lower bound on the probability of existence
of a fortress in a random permutation.

Lemma 6 (Lower bound). The probability that a random signed permutation on n
elements includes a fortress is Ω(n−15).

Proof. Denote by F3,7(n) the number of permutations on n elements with exactly 3 su-
perhurdles spanning 7 elements each. To create such a permutation, choose a permuta-
tion of length n−18 (with zero adjacencies and without hurdles), select three elements,
and extend each of these three elements to a superhurdle, renaming the elements of the
permutation as needed. That is, replace element +i by the framed interval of length
7 f = +(i)+(i + 2)+(i + 4)+(i + 3)+(i + 5)+(i + 1)+(i + 6) and rename all the elements
with magnitude j to have magnitude j +6 (for those with | j| > |i|). After extending the
three selected elements, we get a permutation on n elements where there are exactly 3
superhurdles each spanning 7 elements.

From Lemma 1 and the results about the rarity of hurdles from the previous section,
we have

F3,7(n) >
(n−18)!2n−18

2

(
1−O(n−2)

)(
n−18

3

)



248 K.M. Swenson et al.

where (n−18)!2n−18

2 (1−O(n−2)) is a lower bound for the number of permutations of
length n−18 (with zero adjacencies and without hurdles) and

(n−18
3

)
is the number of

ways to choose the elements for extension. Therefore we have

F3,7(n)
n!2n >

(n−18)!2n−18

2

(
1−O(n−2)

)(
n−18

3

)
1

n!2n

∈ Ω(n−15) (8)

4 On the Proportion of Unsafe Cycle-Splitting Inversions

Denote the two vertices representing a permutation element πi in the breakpoint graph
by π−

i and π+
i (π◦ can denote either). Think of embedding the breakpoint graph on a

circle as follows: we place all 2n vertices on the circle so that:

1. π+
i and π−

i are adjacent on the circle,
2. π−

i is clockwise-adjacent to π+
i if and only if πi is positive, and

3. a π◦
i is adjacent to a π◦

i+1 if and only if πi and πi+1 are adjacent in π.

For two vertices v1 = π◦
i and v2 = π◦

j (i �= j) that are adjacent on the circle, add the edge
(v1,v2)—a reality edge (also called a black edge); also add edges (π+

i ,π−
i+1) for all i

and (π+
n ,π−

1 )—the desire edges (also called gray edges). The breakpoint graph is just
as described in [6], but its embedding clarifies the notion of orientation of edges, which
plays a crucial role in our study of unsafe inversions.

In the breakpoint graph two reality edges on the same cycle are convergent if a traver-
sal of their cycle visits each edge in the same direction in the circular embedding; oth-
erwise they are divergent. Any inversion that acts on a pair of divergent reality edges
splits the cycle to which the edges belong; conversely, no inversion that acts on a pair of
convergent reality edges splits their common cycle. (An inversion that acts upon a pair
of reality edges in two different cycles simply merges the two cycles.)

An inversion can be denoted by the set of elements in the permutation that it rear-
range; for instance, we can write r = {πi,πi+1, . . . ,π j}. The permutation obtained by
applying a inversion r on a permutation π is denoted by rπ. Thus, using the same r,
we have rπ = (π1 . . .πi−1−π j . . . −πiπ j+1 . . .πn). We call a pair (π,r) unsafe if π does not
contain a hurdle but rπ does. A pair (π,r) is oriented if rπ contains more adjacencies
than π does. A pair (π,r) is cycle-splitting if rπ contains more cycles than π does. (When
π is implied from the context, we call r unsafe, oriented, or cycle-splitting, respectively,
without referring to π.) Note that every oriented inversion is a cycle-splitting inversion.
A inversion r on a permutation π is a sorting inversion if d(rπ) = d(π)−1.

Let π be a random permutation without hurdles and r a randomly chosen oriented
inversion on π. Bergeron et al. [3] proved that the probability that the pair (π,r) is unsafe
is O(n−2). However, not every sorting inversion for a permutation without hurdles is
necessarily an oriented inversion; on the other hand, it is necessarily a cycle-splitting
inversion. The result in [3] thus applies only to a small fraction of all sorting inversions.
We now proceed to study all inversions that can increase the cycle count. We show
that, under Sankoff’s randomness hypothesis (stated below), the proportion of these
inversions that are unsafe is O(n−2).
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In [9], Sankoff builds graphs by effectively fixing desire edges, one to each vertex,
and then randomly connecting each vertex to exactly one reality edge. We choose to
equivalently view this process as randomly linking each vertex, with reality edges al-
ready fixed, by exactly one desire edge. It should be noted that the orientation of a
reality edge in the breakpoint graph is not independent of the orientation of the other
reality edges, but for this random generation process where they are independent, we
may generate a graph that does not correspond to a permutation. Sankoff [9] proposed
a Randomness Hypothesis in this regard; it states that the probabilistic structure of the
breakpoint graph is asymptotically independent of whether or not the generated graph
is consistent with a permutation. In the randomly constructed graphs, every reality edge
induces a direction independently and each direction has a probability of 1

2 , so the
expected number of reality edges with one orientation equals that with the other orien-
tation; our own experiments support the randomness hypothesis in this respect, as illus-
trated in Figure 1, which shows the number of edges inducing a clockwise orientation
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Fig. 1. The number of edges inducing a clockwise direction in cycles of length 500, taken from
random permutations. Black dots are the expected values from the binomial distribution while
white bars are experimental values.

on a cycle of length 500 from 2000 random permutations of length 750. Observations
(the vertical bars) match a binomial distribution (the black dots). This match is impor-
tant inasmuch as it is simpler to analyze a random breakpoint graph than a random
signed permutation.

The number of cycle-splitting inversions in a permutation π equals the number of
pairs of divergent same-cycle reality edges in the breakpoint graph for π. Consider
a cycle containing L reality edges and let k of them share the same orientation; the
number of pairs of divergent reality edges in this cycle is then k(L−k). Thus, under the
randomness hypothesis, the expected number of pairs of divergent reality edges for a
cycle containing L reality edges is given by
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L

∑
k=0

(
L
k

)(1
2

)L
k(L− k) =

1
4

L(L−1).

The maximum number of pairs of divergent reality edges for a cycle with L reality
edges is 1

4 L2. Thus at least half the number of cycles with L reality edges have at least
1
4 L2 − 1

2 L pairs of divergent reality edges (for L > 2).
Using the randomness hypothesis, Sankoff et al. [9] have shown that in a random

breakpoint graph (with 2n vertices) the expected number of reality edges in the largest
cycle is 2

3 n. Since the maximum number of reality edges in the largest cycle is n, at
least half the random breakpoint graphs have a cycle with at least 1

3 n reality edges. So,
for all random breakpoint graphs, at least 1

4 of them have at least 1
36 n2 − 1

6 n pairs of
divergent reality edges. Hence, under the randomness hypothesis, the number of pairs
(π,r), where r is a cycle-splitting inversion in π, is Θ(n2)|Σn|.

Let Hn ∈ Σn be the subset of permutations over n elements where each permutation
contains one or more hurdles. Given a permutation h ∈ Hn, at most

(n
2

)
pairs of (π,r)

can yield this specific h. Since |Hn| = Θ( 1
n2 |Σn|), the number of unsafe pairs (π,r) is

O(|Σn|) and thus so is the number of unsafe cycle-splitting pairs. Therefore, under the
randomness hypothesis, for a random permutation π ∈ Σn, if r is a cycle-splitting inver-
sion on π, the probability that r is unsafe is O(n−2). Unlike the result from Bergeron
about oriented inversions, this result is conditioned on Sankoff’s randomness hypothe-
sis, which remains to be proved. All experimental work to date appears to confirm the
correctness of that hypothesis; and under this hypothesis, our result generalizes that of
Bergeron from a small fraction of candidate inversions to all cycle-splitting inversions.

If unsafe inversions are that rare, then a randomized algorithm for sorting by inver-
sions could pick any cycle-splitting inversion (i.e., any pair of divergent reality edges)
and use it as the next step in a sorting sequence; since the probability of failure is
Θ(n−2) at each step (modulo some dependencies as one progresses through the steps),
the overall probability of failure at completion (at most n steps) is O(1/n), which is very
small. This finding is in accord with the experimental results of Kaplan and Verbin [8],
whose algorithm proceeds in just this fashion. Moreover, as the probability of failure
is so small, it may be possible to devise a faster randomized algorithm that does not
maintain an exact record of all reality edges and cycles (the major time expense in the
current algorithms); such an algorithm would suffer from additional errors (e.g., using
a pair of edges that is not divergent), but would remain usable as long as the probability
of error at each step remained O(1/n) and bounded by a fixed constant overall.

5 Conclusions

We have both extended and simplified results of Bergeron and Caprara on the expected
structure of signed permutations and their behavior under inversions. These extensions
demonstrate the mathematical power of the framed common interval framework devel-
oped by Bergeron and the potential uses of the randomness hypothesis proposed by
Sankoff to bind the asymptotic properties of valid and randomized breakpoint graphs.
Our results confirm the evasive nature of hurdles (and, even more strongly, of fortresses);
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indeed, these structures are both so rare and, more importantly, so hard to create acciden-
tally that, as our title suggests, they can be safely ignored. (Of course, if a permutation
does have a hurdle, that hurdle must be handled if we are to sort the permutation; but
handling hurdles takes only linear time—the cost comes when attempting to avoid cre-
ating a new one, i.e., when testing cycle-splitting inversions for safeness.) Moreover,
the possibility of not testing candidate inversions for safeness suggests that further in-
formation could be discarded for the sake of speed without harming the convergence
properties of a randomized algorithm, thereby potentially opening a new path for faster
sorting by inversions.
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