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true evolutionary distance rather than the edit distance. We present experimental results showing
that our algorithm produces excellent estimates of the true evolutionary distance up to a (high)
threshold of saturation; indeed, the distances thus produced are good enough to enable the simple
neighbor-joining procedure to reconstruct our test trees with high accuracy.
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1. INTRODUCTION

Gene-content and gene-order data are becoming more common and are increas-
ingly used in the study of evolution (see [Moret et al. 2005]) and in comparative
genomics (see [Andelfinger et al. 2004]). We can compare genomes from vari-
ous species under the assumption that certain biologically plausible operations
have, through time, shaped their current conformation from a single common
original genome. Changes to genomic content or to gene order are of particular
interest, as they arise infrequently and so offer the potential for reconstruct-
ing very old evolutionary events as well as computing pairwise evolutionary
distances between distantly related modern genomes (see [Downie and Palmer
1992; Olmstead and Palmer 1994; Palmer 1992; Raubeson and Jansen 1992]).

Biologists can observe the ordering and strandedness of genes on each chro-
mosome, thereby producing a gene order for each chromosome, a sequence of
signed integers in which each integer represents a gene (the same gene may ap-
pear multiple times in the genome) and the sign indicates the strandedness. In
turn, evolutionary events can be couched in terms of operations on such signed
orders: inversions, insertions, duplications, and deletions all have simple rep-
resentations in this model. The model then leads naturally to the problem of
defining the distance between two genomes in terms of these operations. The
distance one would want is simply the actual number of evolutionary events
(from the list of allowed operations) that took place to evolve one genome into
the other—what is known as the true evolutionary distance. Not only is that
distance of biological interest, but knowledge of the pairwise true evolutionary
distances is sufficient to reconstruct the true phylogeny. Since that value cannot
be computed exactly, however, computational biologists have instead developed
algorithms to compute the edit distance, i.e., the smallest number of evolution-
ary events needed to transform one genome into the other. An edit distance has
the advantage of presenting a clearly defined minimization problem, but it also
underestimates the true evolutionary distance. Thus, computational biologists
have developed methods for correcting the edit distance (according to empirical
data) in order to produce an estimate of the true evolutionary distance. Such
correction methods introduce problems of their own, however. In particular,
the variance in the estimator grows as the distance grows, to the point where,
beyond a certain threshold known as the saturation value, the estimate is too
noisy to be useful.

However, even computing an edit distance is a very complex problem
for whole genomes. Simply finding the edit distance between two unsigned
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Fig. 1. A minimal cover.

permutations with only inversions allowed (no change in content and no du-
plicate genes) is NP-hard [Caprara 1997]; the same problem with signed per-
mutations is solvable in polynomial time thanks to the results of Hannenhalli
and Pevzner [1995]—in fact, the edit distance can then be computed in linear
time [Bader et al. 2001]. On the other hand, finding an ancestral permutation
that minimizes the sum of distances over a tree of just three taxa under this
model (the so-called median problem) is NP-hard even for signed permutations
[ Caprara 1999]. Computing the edit distance for genomes with unequal content
is barely touched but known to be NP-hard [Chen et al. 2005], even when one
genome is the identity [Pattengale et al. ]; [EL-Mabrouk] showed how to extend
the theory of Hannenhalli and Pevzner to include deletions, but her results
assume no duplicate genes, obviously a major limitation in practice.

In previous work [Marron et al. 2004], we gave a polynomial-time approxi-
mation algorithm for the (NP-hard) computation of the minimum edit distance
from any genome to the identity permutation 1,2, ...,n. Our method relied
on the construction of a mapping between duplicates in the genomes, yield-
ing a partial map we called a cover. This cover associates substrings of genes
that exist in both subject and target genomes (modulo an inversion); any genes
not included in the cover are then treated as deletions from the subject or
insertions into the target. A minimal cover is one that uses the fewest sub-
strings. While Section 2.2 formally defines the cover, Figure 1 illustrates the
concept: the target is the identity permutation 1, 2, 3, 4, 5, 6, while the subject,
-2,-1,2,3,-6, -5, 3,4, includes duplicates of genes “2” and “3.” The cover
consists of three substrings, namely “1, 2,” “3, 4,” and “5, 6”; concatenated, these
substrings produce the target string, while separately they can be found in the
subject string as “-2, —1,” “3,4,” and “—6, —5.” The third and fourth genes in
the subject string (forming the substring “2, 3”) are then viewed as lost in the
evolution to the target.

Here we generalize this approach to compute the distance between two ar-
bitrary genomes and show through extensive simulations that we reconstruct
a sequence of operations that reflects the true evolutionary distance. Our algo-
rithm computes distances between two genomes in the presence of insertions
(including duplications), deletions, and inversions; in our simulations, the dis-
tance computed very closely approximates the true evolutionary distance up
to a (high) saturation level. The approximation is, in fact, good enough that it
can be used in conjunction with a distance-based phylogenetic reconstruction
method (we used the most common one, neighbor-joining) to reconstruct trees
of reasonable sizes (up to 100 genomes) and very large pairwise distances with
high accuracy.

It is worthwhile to note that although we consider only inversions (aside
from duplicating insertions and deletions), the properties of a minimum cover
discussed in Section 2.2 imply that it would likely perform well with other
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operations such as transpositions: the cover is a model-independent method.
However, because of the fact that transpositions distances are yet to be well
understood we do not consider them in this exposition.

The rest of the paper is organized as follows. Section 2 reviews the problem
and past results and establishes notation. Section 3 discusses the difficulties
faced when using two arbitrary genomes and how we solve them to recover
a solution in the spirit of our earlier results; it outlines our method for pro-
ducing a cover in quadratic time. Finally, Section 4 presents the design of our
two studies while Section 5 shows how our constructed cover performs when
estimating pairwise tree distances and how these distances can be used in tree
reconstruction.

2. BACKGROUND

2.1 The Problem

We consider the problem of approximating the true evolutionary distance (as
determined through simulations) from an arbitrary subject genome to an arbi-
trary target genome. The operations that we consider are inversions, in which
the order of a substring of genes is reversed and the sign of each gene in the
substring flipped; deletions, in which a substring of genes is removed; and inser-
tions (including duplications), in which substrings of genes (including entirely
new genes not found anywhere else) are added. All duplicates of one gene form a
gene family; and all genes bearing the same identifier are known as homologs—
that is, they are considered to have been derived from a common ancestral gene
through various cascades of evolutionary events (which includes both duplica-
tions and nucleotide-level changes).

2.2 The Cover

Our solution attempts to assign each duplicate gene in the subject to a partic-
ular homolog in the target; that is, it creates a maximum matching between
the genes in corresponding gene families of the two genomes. However, some
matchings are clearly preferable to others, because they reduce the number of
insertions, deletions, and rearrangement operations required to transform one
genome into the other. We say that a cover is optimal if the correspondence it es-
tablishes leads to a minimum number of operations (inversions, insertions, and
deletions) in the shortest sequence required to transform the subject into the
target while respecting the map. However, computing such a cover is NP-hard
[Pattengale et al. ], so we define a minimum cover to be a cover that maps the
subject to the target with the fewest common substrings. The effect of renaming
according to a minimal cover is to yield a breakpoint graph [Li and Graur ] with
maximum number of cycles of length 2, minimizing the number of breakpoints
between the renamed genomes.

2.3 Difficulties with an Arbitrary Target

The main difference between our previous work [Marron et al. 2004] and our
new algorithm is the presence of duplicate genes in the target. When building
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the cover with the identity permutation as the target [Marron et al. 2004], all
candidate cover elements from the subject are immediately apparent because
of the unique correlation between their identity and their index in the target
genome. In the case of an arbitrary target, however, this correlation no longer
exists. Moreover, a cover may no longer include all genes from one or the other
genome: clearly, if genome A has more duplicates of gene x than genome B, and
genome B has more duplicates of gene y than genome A, then any matching
between these two genomes must leave some duplicates of gene x unassigned
in A and some duplicates of gene y unassigned in B. For example, with subject
1,2,3, -5, —2 and the identity permutation 1,2, 3,4,5 as target, we have a
cover, using indices in the target, for indices 1 through 3, one for index 5, and
one for index 2; but for the same subject and for target —7, 1,2, 3,5, —3, we
obtain partial covers for indices 2 through 4 or for indices 5 through 6.

3. CONSTRUCTING A (NEARLY) MINIMUM COVER

The algorithm used in [Marron et al. 2004] looks for the longest matching sub-
string. As long as such a longest match is unique, there is no difficulty beyond
identifying such matches as quickly as possible. (A naive cubic-time algorithm
will do, although, as we shall see, the same job can be done in quadratic time.)
When the longest match is not unique, however, finding a minimum cover may
require an exploration of the alternatives and, thus, exponential time. Instead,
we use a greedy heuristic to break ties.

We have tried several tie-breaking heuristics (and randomly compared them
to breaking ties). One heuristic is based on identifying a possible extension of
the match (to one or the other side). If the substring to one side of the match is
the inverse of the substring to the same side of the match in the other genome,
for instance, if we had substrings “1, 2, —4, —2” in the target and “1, 2, 2,4”
in the subject, we may prefer to match these substrings to each other (even
though there may be another “1, 2” elsewhere in both genomes), because they
are only a single inversion from each other. Another heuristic is to minimize the
interaction between matches. The longer the match we make at each iteration,
the fewer potential matches may be needed overall, so we may want to choose
the match with a range of indices that crosses the smallest number of other
match ranges. Section 6 contains some conclusions about the effectiveness of
these heuristics.

To find the longest match, we begin by finding all possible maximal matching
substrings and then repeatedly pick the next largest substring, doing necessary
bookkeeping to reflect our successive choices. Let M be the set of all maxi-
mal matching substrings between the subject and the target that have not yet
been picked. For instance, if we start with target genome 1,2,1,3,4,5,6,7,8
and subject genome 6,7,3,4,5,6,1,2,3,6,7,8, we initially have M = {“6,7,”
“3,4,5,6,” “1,2,” “6,7,8”}. We say that two matches overlap if their indices in
the target intersect. By picking the longest match /, we cover a part of the
target that may overlap with some number s of other matches—call them
01,09, ...,05 € M. In our example, match “3, 4, 5, 6” would be chosen first, cov-
ering the six from matches “6, 7” and “6, 7, 8” and the three from match “1, 2, 3”.
The overlapping portion of each match 0;,1 <i < s is then removed, resulting
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ALcoriTHM COVER:
C=0.

M = {s: sis a maximal substring of the subject and target}.
WHILE C' cannot cover the Target DO:

Add longest | € M to C.

M = M\{l}.

FOREACH o € M that overlaps [ DO:

u = o without the substring common to o and [.
M = M\{o} U {u}.
RETURN C'

Fig. 2. Choosing a nearly minimal cover.

in shorter matches. Thus, two of those matches in our example will be short-
ened by one yielding “7,” “7,8,” and “1,2.” The resulting algorithm is described
in Figure 2.

We proceed to show that COVER can be implemented to run efficiently, first
stating the theorem and then providing the necessary background to prove
it.

TurEOREM 3.1. Algorithm COVER can be implemented to run in quadratic
time.

We represent M by a list arranged by match length. We keep an auxiliary data
structure, the index reference, to maintain the set M through each iteration.
This index reference is an array (0 indexed) of lists, one for each index of the
target; each such list, an index list, contains the matches that have an endpoint
on that target index. For instance, in our example, three such matches would
be “3,4,5,6,” “6,7,” and “6, 7, 8.” These matches are associated with indices 3
through 6, 6 through 7, and 6 through 8 of the target. Thus index 6 of the target
would have three members to its index list, because the matches “3,4, 5,6, ”
“6,7,” and “6, 7, 8” all have “6” as an endpoint. Index 7, however, would have a
single match “6, 7, ” because “6, 7, 8” does not have “7” as an endpoint. A simple
way to find all possible maximal matches in quadratic time is to slide the subject
over the target, comparing all possible combinations of indices between the two.
Each match found is placed in M and the index lists for its endpoints. The key
to this implementation is the efficient update of overlapping matches. With the
index lists, we can find all 0 € M that overlap a given m € M by examining
each list that corresponds to an index that m spans. When the match m that
spans indices i through % is chosen, we can shorten each o; that overlaps from
the left by relocating it from the index list for j,i > j > &, to the index list for
i — 1. Similarly, each o, that overlaps m from the right can be relocated to the
index list for 2 + 1.

LEmMma 3.2. The maximum number of matches that can have an endpoint at
a given index of the target is bounded by 4n, where n is the length of the longer
genome.

Proor. Each index in subject or target can be of two types: a left or right
endpoint of a match. All four combinations of endpoint types can occur for a
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given pair of indices. If there were more than one match per pairing of endpoint
types, then one of them could not be maximal. Therefore, there can be, at most,
four distinct maximal matches associated with every pair of indices. Since there
are n indices in the subject, there can be at most 4n matches associated with a
single index of the target. O

It follows immediately that the number of maximal matches between two
genomes, the larger of which has size n, is O(n?).

Lemma 3.3.  Initialization of M and of the index reference takes quadratic
time.

Proor. We know that the number of maximal matches is O(n?) and that the
length of a match is bounded by the size of the genomes. We can add a match to
a list organized by length in constant time through direct indexing. Likewise,
addition to the end of a given index list can be done in constant time. Since
there are O(n?) matches and placement into the index reference is O(1), we
can build these lists in quadratic time. O

LEMmA 3.4. A match can be relocated between index lists, at most, twice
before being removed from consideration.

Proor. It is sufficient to show that a match e will not be encroached upon
from the same side twice. Assume that e is shortened from one direction by
match m and later from the same direction by match m’ without being covered.
Because m was picked by the algorithm first, m’ must not stretch past the
opposite end of m. Therefore, either m’ covers less than e or e must now be
removed from consideration—a contradiction in either case. O

We are finally ready to prove Theorem 3.1.

Proor or THEOREM 3.1. Initialization takes quadratic time (Lemma 3.3).
Each match in each index list is visited a constant number of times (Lemma
3.4). When visited, each match is shortened, removed from consideration or re-
located to the index list at the edge of the most recently chosen match, and then
relocated in the length list. Since each of these operations runs in constant time,
the running time is bounded by a constant times the total number of matches
visited. Since each index list is visited, at most, once and the length of that list
is, at most, linear (Lemmata 3.2 and 3.4), the running time is O(n?). O

TueoreM 3.5. The distance function can be computed in O(n?) time.

ProoF. The cover can be generated and applied in O(n?) time. The algorithm
then presented in [Marron et al. 2004] or [El-Mabrouk 2000] can be applied.
Both methods run in O(n?) time. O

4. EXPERIMENTAL DESIGN

We used two types of tests to assess the accuracy and utility of our tree-distance
algorithm. The first set of tests were designed to determine if our distance func-
tion accurately modeled the true pairwise tree (true evolutionary) distances.
The second set of tests were used to evaluate the effectiveness of our distance
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function within the most simple distance-based phylogenetic reconstruction
algorithm.

4.1 Pairwise Error

For this experiment, we generated evolutionary trees with known edge lengths
and compared the pairwise distances between the leaves with those computed
by our algorithm. Variance in tree shape does not matter here; in fact, since we
want a large range of pairwise tree distances, a perfectly balanced tree is best.

In the following tests, we used the simplest version of the method described
earlier. The algorithm picks the largest match to make and in the case of ties
picks one of the tied matches at random. Clearly other information is present
in the genomes that could provide a better choice of match and thus lead to
a more accurate distance score. However, all of the heuristic methods that we
used failed to have a noticeable impact on the accuracy of the distance value re-
turned. Furthermore, in experiments with a large number of random restarts,
we found that most of the values clustered around the true value with a small
number of outliers; we also found that averaging over a smaller number of
random restarts and discarding any substantially outlying points provided a
distance estimate that was nearly indistinguishable from the distance estimate
computed with the use of our best heuristics (see Section 6). While the use of
biological information to select the best match could prove effective in generat-
ing more biologically plausible evolutionary paths, the current method seems
to perform quite well in terms of distance computations.

Not enough is known about inversions, deletions, insertions, and duplications
to enable one to set good parameters (such as lengths of inversion, for instance)
a priori, so we chose values so as to ensure that a single operation would not
completely alter the genome. Most of our tests were conducted with a root
genome of 800 genes on a tree of depth 4; such a tree has 16 leaves and, thus, 120
pairs of genomes with paths from 2 to a maximum of 8 edges between genomes.

4.2 Tree Reconstruction

We tested the performance of our distance functions using neighbor-joining, the
standard distance-based tree-reconstruction method. Because of the dearth of
real-world trees reconstructed using biological techniques, we had to generate
model trees that would exercise our algorithm over a wide range of plausible
models of gene-order evolution. (We conducted one study using real data with
very large numbers of insertions and deletions; partial results, to date, show
promise [Earnest-Deyoung et al. 2004].) We generated one thousand trees us-
ing a variation of the birth—death model that produces a larger variation in
tree topologies, especially imbalanced ones that are known to be insufficiently
represented in a pure birth—-death model [Heard 1996]. The only constraint
that was placed on the operations was that the expected number of inserted
elements was equal to the expected number of deleted elements, in order to
keep all genome sizes within a reasonable range. (Cases where certain genomes
are much smaller than others, due, e.g., to symbiosis, certainly exist, but the
variation generated by our mechanism nearly encompasses that case already.)

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 3.5, Publication date: August 2008.



Approximating the True Evolutionary Distance Between Two Genomes . 3.5:9

Three random restarts of our distance algorithm were used for each pair of
nodes to produce the pairwise distance matrix.

Within the thousand trees, the percentage of inversions varied from 50 to
90%. The remaining percentages were split evenly between insertions (dupli-
cating and nonduplicating) and deletions. Nonduplicating insertion and dupli-
cation percentages were varied over three different tests, in which each received
one-quarter, one-half, and three quarters of the percentage. The expected Gaus-
sian distributed length of each operation filled a range of combinations from 5
to 30 operations per operation type. Finally, the expected number of event per
edge was 20 with a Gaussian distributed variance of 10 operations.

To generate a tree, we began with the identity genome on 800 genes and
performed 200 evolutionary operations on it using the same parameters that
are specified for generating the tree. This genome was then used as the root of
the tree. For each node, we checked if it should become a leaf, based on the max-
imum depth allowed and a random choice—if not, we stopped. Otherwise we
created each of the two children by performing the randomly selected operations
(as specified in the previous paragraph) on the parent. Each type of operation
(inversion, nonduplicating insertion, duplication, and deletion) was selected, at
random, according to a fixed distribution. The interval over which an operation
acts is produced with one endpoint selected at random and a length drawn from
a Gaussian distribution. For duplications, the interval to be duplicated is se-
lected and then inserted at an index chosen uniformly at random in the genome.

5. EXPERIMENTAL RESULTS

5.1 Pairwise Error

We present results for one of the many mixes of operations used in our simu-
lations; other mixes gave very similar results. This particular data set used a
mix of 70% inversions, 16% deletions, 7% insertions, and 7% duplications. The
inversions had a mean length of 20 and a standard deviation of 10. The dele-
tions, insertions, and duplications all had a mean length of 10 with a standard
deviation of 5. We used four trees of 16 leaves as described earlier, with 10, 20,
40, and 60 expected operations per tree edge; these choices can result in very
large pairwise distances—up to an expected 480 operations (on just 800 genes)
for the most distant pairs. For these four trees, our algorithm was run with 10
random restarts and simple randomization for the selection of the matchings.

Figures 3—6 show the results (as a scatter plot of the 120 data points for each
experiment) for these four datasets. In each figure, the left-hand plot shows the
estimated tree distance on the ordinate versus the true evolutionary distance
(from the simulation) on the abscissa. A perfect result would simply trace the 1:1
diagonal, which is lightly marked on each plot to aid in evaluating the results.
The right-hand plot displays the deviation from the 1:1 ideal as a function of the
true evolutionary distance, plotting largest and smallest differences between
computed values and the true value, for each true value.

These plots show that our distance estimator tracks the true evolutionary dis-
tance very closely up to a saturation threshold, where it starts lagging seriously
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Fig.7. Experimental results for 1,200 genes with expected edge length 20. Left: generated distance
versus reconstructed distance; right: the variance of computed distances per generated distance.

behind the true value. Such saturation is, of course, expected; what is surpris-
ing is how high that saturation threshold is. On genomes of roughly 800 genes,
saturation appears to occur only around 250 evolutionary events and our es-
timator tracks very accurately to at least 200 events. Moreover, the smaller
plots indicate that the variance is very small up to 200 events and remains
reasonable up to 250 events.

These results are not limited to small trees. We ran another series of tests in-
volving trees of 50 leaves; while the main purpose of these tests was to assess the
quality of tree reconstruction using our distance computations, we checked the
computed distances against the true distances for these trees as well. Figure 7
shows the same two scatter plots (this time on roughly 1250 data points) for
one such tree. For these larger trees, we used a root genome of 1200 genes in
order to prevent early saturation; the example reported in the figure used an ex-
pected edge length of 20 evolutionary events. With the larger number of genes,
saturation now does not occur until we reach at least 350 evolutionary events.
The error plot shows that the error remains sharply bounded throughout the
range of values tested.
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Fig. 8. The histogram of RF error rates for reconstructions based on our distance computation.

5.2 Tree Reconstruction

Since our distance computation tracks tree distances so accurately and since
distance-based methods are guaranteed to do well when given distances that
are close to the true evolutionary distances, we also ran a series of tests de-
signed to ascertain the quality of tree reconstruction obtained with the most
commonly used distance-based reconstruction method, neighbor-joining (NdJ).
The NJ method runs in low cubic time and, thus, is applicable to large datasets,
but, like all distance-based methods, it is known to produce poor results when
the range of tree distances gets large (see, e.g., [Nakhleh et al. 2002].

Recall that we generated a very large number of diverse tree topologies,
producing a population of trees that more closely matches the observed bal-
ance statistics [Heard 1996] than would be the case with a pure birth—death
process. We evaluated results using the standard Robinson-Foulds (RF) dis-
tance [Robinson and Foulds 1981], which is simply (in the case of binary trees,
as in our series of experiments) the number of edges (or bipartitions) present
in one tree, but not in the other. In several cases, we present the RF error rate,
which is the ratio of the RF distance to the number of taxa in the tree. In terms
of the latter measure, most systematists will consider rates above 10% to be
unacceptable and rates below 5% to be very good.

The tree reconstruction performed very well on the generated trees, as shown
in Figure 8. Approximately 65% of the reconstructed trees had a Robinson—
Foulds error rate of less than 5% and only 15% of the trees had an error above
10%. This reconstruction was done without any use of error correction, vari-
ances, or knowledge of the underlying model that generated the trees; it also
used the simplest form of neighbor-joining. Thus, it would be easy to improve
these results by refining the reconstruction method.

As an additional check, we also compared how well our method performs
with respect to simply removing duplicate content and applying El-Mabrouk’s
[2000] exact method. This comparison gives us an indication of how important
it is to handle duplication in estimating true tree distances. We computed a
distance matrix for each tree where a single entry of a matrix was obtained by
pairwise removal of all duplicate content and subsequent computation using
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Fig. 9. The difference in RF distance between our method and the method without duplicates as
a function of the number of duplicates on an edge.

El-Mabrouk’s exact method. The NJ method was applied to each matrix to ob-
tain a tree. Over all thousand trees the reconstruction without duplicates had
a lower RF error rate than ours on only 14% of the trees; furthermore, in three
quarters of those cases, the overall RF error rate for both methods was lower
than 10%—that is, these were relatively easy cases. Thus, our method does
better on the harder cases; the average difference in RF error rate on the trees
where our method did worse on was 1.2, while the average difference in RF error
rate on the trees our method did better on was 3.5. This is strong evidence that
our method makes significant improvements on the state of the art. Further-
more, because of this low error rate in the 14% of cases where our method was
not the best, there is good reason to believe that a slightly better tie breaker (see
Section 6) will yield even more cases where the method presented here wins.

To examine how well our technique handled copies, we compared (for every
test run) the RF distances of our reconstruction with those of the reconstruction
without duplicates as a function of the total number of duplications. Figure 9,
a scatter plot of the differences in RF distance, indicates that, as the number of
duplicates increases, our method does correspondingly better at reconstructing
the tree.

6. IMPROVED HEURISTICS

For distances used in tree reconstruction, the relative ordering of the values
is more important than their absolute magnitude; it is most important to see
computed distances increase as do the simulated distances. Our major goal with
the introduction of more sophisticated heuristics is to reduce the variance of
the scores so that the distance ordering will be more consistent and potentially
result in more accurate trees.

The results presented earlier in the paper used a very simple heuristic; we se-
lected the longest match for a cover element and then chose a match at random
in the cases of ties. We investigate two more promising tie-breaking heuris-
tics (introduced in Section 3): picking a match that has the smallest overlap
with the other cover elements or picking a match by looking at the immediate
context of the cover elements in the source genome. By choosing the match
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Fig. 10. Number of cases with error for each tie-breaker.

that has minimal overlap with all other matches, we maximize the number of
longest-match candidates for the next round. To understand the motivation for
the context-driven heuristic, suppose we are trying to find a cover element for
a subsequence (of genes) s in the target. Suppose also that in the target, the
subsequence to the left of s is 5; and to the right of s is s,. We would then like
to pick a match in the source genome that has the context subsequences s; and
s, that are as similar to s; and s, as possible.

To assess the improvements when using these heuristics, we ran two sets
of pairwise distance comparisons. One set used genomes of length 800 with
200 operations from the identity to the first taxa and 200 operations between
the taxa. The second set used genomes of length 1200 and took 400 opera-
tions between the identity genome and the first and between the first and the
second taxa. In both data sets, the probability of an operation being an inver-
sion was 80%, of being a deletion 10%, of being a duplicating insertion 5%,
and of being a nonduplicating insertion 5%. The distance between each pair
was then computed using three heuristics, first the random selection was run,
then the score was computed using overlap minimization, and finally the score
was computed using the overlap minimization with context. Figure 10 indi-
cates that there is little difference in the error values for the various methods.
More importantly, the more sophisticated heuristics have very little impact on
the variance. All methods resulted in a sample variance of about 22.6 for the
genomes constructed with 400 operations.

7. SATURATION

Unsurprisingly, the high-error trees have arisen from saturation in the pairwise
distance data. To this point, we have referred to saturation as being the point
where the variance grows too large to make the calculated distances useful.
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We now use a numerical definition: saturation occurs whenever the true evo-
lutionary distance exceeds the distance computed under our method (which, it
should be recalled, is not an edit distance).

We compared reconstructed trees with an RF error greater than 10% to trees
with RF errors of less than 5%. In the high RF error category, over 91% of the
distance matrices show saturation, whereas in the low RF error category 75.5%
of the matrices are devoid of any saturation. The distribution of the number
of operations where saturation occurs for the high and low RF error groups
is shown in Figure 11. Further investigation into the properties of the trees
in the high and low RF categories revealed little correlation between factors,
such as tree size, genome size (in genes), or distribution of operations. The
major limiting factor in the accurate reconstruction of trees using this distance
score is thus definitely the onset of saturation. Since the average genome size
in our experiments was approximately 1000 elements, reconstruction is highly
accurate when the computed edit distance does not exceed 10% of the genome
size, and, in general performs well until the number of operations exceeds 25%
of the genome size. Even in these cases, the distance computation performs
quite well up to the saturation point, as illustrated in Figure 12. The vertical
axis is the difference between the actual and computed distances while the
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horizontal axis is the ratio of the computed distance to the genome size. Note
that in a regime of saturation, the computed distance stays the same while the
actual distance is rising, so only the positive points should be considered when
looking for saturation.

8. CONCLUSION AND FUTURE DIRECTIONS

We have outlined a method that accurately computes tree distances (true evolu-
tionary distances) under the full range of evolutionary operations between two
arbitrary genomes. Our experimental results indicate that the accuracy is ex-
cellent up to saturation, which is reached remarkably late—for instance, with
genomes of roughly 800 genes, our distance computation remains highly accu-
rate up to 200-250 evolutionary events. Indeed, these distances are accurate
enough that the simple neighbor-joining method applied to distance matrices
computed with our algorithm reconstructs trees with high accuracy. These find-
ings open up the possibility of reconstructing phylogenies from whole-genome
nuclear data, as opposed to the organellar data that have been used so far.
However, in order to use more sophisticated methods than neighbor-joining
for such reconstructions, the problem of computing good medians must be ad-
dressed. While our experiments show that our distance computation is accurate,
the accompanying sequence of evolutionary events is only one of many possible
sequences (it uses a “canonical form” [Marron et al. 2004]); hence, our level
of confidence in the correctness of reconstructed ancestral genomes is low. In
order to reconstruct good ancestral genomes, we will need additional biological
information, such as boundary constraints (centromere, origin of replication,
etc.), length distributions, and sequence data around each gene.
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