
A Framework for Orthology Assignment
from Gene Rearrangement Data

Krister M. Swenson, Nicholas D. Pattengale, and B.M.E. Moret

Department of Computer Science,
University of New Mexico,

Albuquerque, NM 87131, USA
{kswenson, nickp, moret}@cs.unm.edu

Abstract. Gene rearrangements have been used successfully in phylogenetic re-
construction and comparative genomics, but usually under the assumption that
all genomes have the same gene content and that no gene is duplicated. While
these assumptions allow one to work with organellar genomes, they are too re-
strictive for nuclear genomes. The main challenge in handling more realistic data
is how to deal with gene families, specifically, how to identify orthologs. While
searching for orthologies is a common task in computational biology, it is usually
done using sequence data. Sankoff first addressed the problem in 1999, introduc-
ing the notion of exemplar, but his approach uses an NP-hard optimization step
to discard all but one member (the exemplar) of each gene family, losing much
valuable information in the process. We approach the problem using all available
data in the gene orders and gene families, provide an optimization framework in
which to phrase the problem, and present some preliminary theoretical results.

1 Introduction

Gene rearrangements have been used in phylogenetic reconstruction and comparative
genomics (see, e.g., [17,23]), but usually under the assumption that all genomes have
the same gene content and that no gene is duplicated. These assumptions allow one to
work with organellar genomes [2–5, 9, 10, 15, 21, 26], but are too restrictive for nuclear
genomes [11], where the main challenge is how to deal with gene families, specifically,
how to identify orthologs.

While searching for orthologies is a common task in computational biology, it is
usually done using sequence data; we approach that problem using gene rearrangement
data. Sankoff [19] first addressed this problem, proposing to identify within each gene
family an exemplar (a single gene, presumably the “original” one within that family)
and to discard all other homologs, thereby reducing the problem to one in which no gene
is duplicated. He further proposed that, for a pair of genomes, the exemplars should be
selected so as to minimize the distance (measured in terms of breakpoints or inversions)
between the two reduced genomes. One problem with this approach is that identifying
the exemplars is itself NP-hard, even when one genome contains no duplicate genes
[6]; another is that, by discarding all homologs, much valuable information is lost. (The
different numbers and arrangements of homologs need to be explained with a suitable
sequence of duplications, losses, and inversions, none of which appears in the exemplar

A. McLysaght et al. (Eds.): RECOMB 2005 Ws on Comparative Genomics, LNBI 3678, pp. 153–166, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

154 K.M. Swenson, N.D. Pattengale, and B.M.E. Moret

framework.) Nguyen et al. [18] proposed a divide-and-conquer approach to compute
an exemplar-based distance between two genomes in reasonable time.

Sankoff et al. [22] also proposed a simple heuristic based on breakpoints [20] that
adds new genes incrementally at random; that heuristic performed well on a small
collection of mitochondrial genomes with widely divergent contents. However, that
method cannot handle duplications, only deletions and nonduplicating insertions; it is
thus well suited to organellar genomes, but not to nuclear genomes, where large gene
families are common. El-Mabrouk later gave an exact solution for that problem (but
with respect to inversion distances), as well as a bounded-ratio approximation when
both deletions and non-duplicating insertions are allowed [12]. She also developed an
approach, based on her earlier work with doubled genomes, that uses both inversions
and duplications [13]. Our group provided an alternate approach in which a correspon-
dence is established between gene families on the basis of conserved segments [16,25]
before completing the sequence using El-Mabrouk’s algorithm; our results suggested
that considering all members of a gene family yields better results than keeping only
exemplars, but were limited in that the assignment of orthologs did not take into ac-
count any rearrangement structure beyond conserved segments. Chen et al. [8] gave a
first attempt at using rearrangements and keeping more than just exemplars.

In this paper, we extend these approaches by providing an optimization framework
derived from the breakpoint graph (the structure behind the last decade of work in gene
rearrangements [14]) in which to phrase the problem; we give preliminary theoretical
results in support of our framework.

2 Preliminaries

We are given a set of gene families S (the set of “names” of the gene families) and two
genomes, G1 and G2. Each genome is represented as a (linear or circular) sequence of
elements of S (an element may occur zero, one, or many times within the sequence),
each with an associated sign (which denotes which strand the gene lies on). In this for-
mulation, each genome consists of a single chromosome; however, the unichromoso-
mal version embodies the heart of the orthology assignment problem and, as shown by
Tesler [27] in the context of equal gene contents, a multichromosomal version does not
introduce insurmountable problems. The problem is to find the shortest edit sequence,
that is, the shortest sequence of evolutionary events that transforms one genome into
the other. Permitted evolutionary events in this setting are inversions, which take a sub-
sequence of genes and reverse it in place (in both order and signs), deletions, and inser-
tions (including duplications). These events all operate on consecutive subsequences of
genes: that is, we assume that the cost of deleting, inserting, or making one duplicate of,
one gene is the same as that of deleting or inserting (including duplicating insertions) a
contiguous segment of k genes, for any k ≥ 1.

In absence of other constraints, the edit distance between any two genomes is then
bounded by 2: simply delete the entire genome in one operation of unit cost, then insert
the entire new genome in another operation of unit cost. Since this scenario is patently
absurd in biological terms, we impose a simple parsimony constraint on any editing
scenario: if G1 has a family of k1 genes and G2 a homologous family of k2 genes, with
k1 ≥ k2, then none of the k2 genes in G2’s family may be inserted in the edit sequence

A Framework for Orthology Assignment from Gene Rearrangement Data 155

from G1 to G2: instead, we must identify within G1’s family of k1 genes a distinct or-
tholog for each of the k2 genes in G2’s family. The k1 −k2 unmatched homologs in G1’s
family will then be deleted in the edit sequence. Once that orthology identification has
been made, the algorithms of El-Mabrouk [12] and of our group [11,26] can complete
the work of finding one or more parsimonious edit sequences.

A good choice of orthologies can reduce the required number of deletions and in-
sertions (or duplications) by inserting contiguous segments of many genes rather that
one gene at a time—although care must be taken not to do so at the expense of proper
placement within the ordering, lest many additional inversions be required to move in-
dividual genes to their final destination [16]. It can also reduce the number of required
inversions by grouping genes properly: this is the focus of the cover-based methods
[8,16,25].

We shall rely on the fact that every gene that appears as a singleton in both genomes
has a direct assignment and that these singleton genes must all be sorted through in-
versions: because we know how to sort by inversions [1,14], the presence of singleton
genes creates a structural context in which to study orthology assignment [19].

We assume, without loss of generality, that gene families present in one genome but
not the other have been removed—these families do not affect orthology assignment and
the insertion of the unique genes can easily be handled by El Mabrouk’s algorithm. We
describe the framework for the general case, but, for the sake of clarity in presentation,
we shall frequently restrict genome G2 to contain no duplicate genes, in which case our
framework becomes a special case of the exemplar problem. Finally, when using G2

with no duplicate genes, we assume that the remaining genes have been indexed from
1 to n so as to turn G2 into the identity permutation 12 . . .n. (As is customary, we will
prepend a marker 0+ and append another marker n + 1− to both genomes.)

3 Background and Definitions

3.1 The Breakpoint Graph

The basic structure describing a pair of genomes with no duplicates and equal gene
content is the breakpoint graph (really a multigraph)—for a readable description of its
construction, see [24]. In our case, however, gene families need not be singletons, so
we modify the construction to include only singleton gene families. Let BG1,2 denote
the breakpoint graph for G1 and G2; As in the normal breakpoint graph, each singleton
gene g becomes a pair of vertices, g− and g+ (the “negative” and “positive” terminals);
however, we leave out the gene families with multiple members, since only the single-
tons have a readily usable structure. We need to accommodate gaps left in the sequence
where duplicate genes exist in G1. Call the versions of G1 and G2 without multigene
families G′

1 and G′
2 respectively. We add an edge (a desire edge, in the charming termi-

nology of [24], but also known elsewhere as a gray edge) (a−,b+) for each singleton a
and b, whenever a occurs immediately to the left of b in G′

2. We add a reality edge (also
known elsewhere as a black edge) (ap,bq) if a is the element to the left of b in G′

1 and
we have either p = q if a and b have different parities (in G′

1, naturally) or p �= q if a
and b have the same parity. Thus desire edges trace the (re-)ordering of G1 that we need
to achieve to match G2, while reality edges trace the given ordering of G1. Figure 1
illustrates the construction.

156 K.M. Swenson, N.D. Pattengale, and B.M.E. Moret

G1 = 4 -3 2 3 1 6 9 3 8 -10 -7 9

(a) the genome G1

Cycle A

Component 1

Cycle B

Component 2

Cycle C

= 2 1 84 60 −7 11

= 2 4 71 60 11

−10

108

0+ 1− 1+2− 2+4− 4+ 6− 6+ 7−7+8− 8+ 10+ 10− 11−

G′
1

G′
2

(b) the breakpoint graph BG1,2

Fig. 1. A genome G1 and its associated breakpoint graph BG1,2 (with respect to the identity
permutation G2) after removing gene families with duplicates (3 and 9); desire edges are shown
in gray, reality edges in black

Hannenhalli and Pevzner proved that the inversion distance equals the number of
genes minus the number of cycles in the breakpoint graph, plus some corrective factors
(hurdles and a fortress). Researchers have found that hurdles are very rare in real data
(a finding confirmed in a theorem under some restrictive assumptions [7]), so we focus
on selecting an orthology assignment that maximizes the number of cycles.

3.2 The Consequences of An Assignment

Our job of assigning orthologs may be compared to that of reshelving books in a li-
brary with unlabelled shelves. Each book has a proper location on a shelf and multiple
copies of a book must be shelved together. A librarian can proceed by first removing
misshelved books and then identifying the appropriate location of each book based on
the context of the books that remain in their correct spot.

In our problem each multigene family has been removed from the ordering, leav-
ing a structure of cycles defined by singleton genes. We call each gene in a multigene
family of G2 a candidate, since it is one of the choices for an orthology assignment to a
corresponding gene in G2. Like each book in the library, each candidate has a location
between two remaining elements in G′

2; each family, like each group of book copies,
contains candidates that all share the same location between elements of G′

2. For each
candidate d, denote by β+(d) the positive terminal of the next smaller (in value) ele-
ment in BG1,2 and by β−(d) the negative terminal of the next larger element. We call
these nodes the bookends of d and the cycle on which they reside the shelf of d. For
instance, in Figure 1, the bookends for the family of gene 3 (a family of 3 members) are
2+ and 4− and therefore the shelf for the family of 3s is cycle A. Although the defini-
tion of bookends applies equally well to singletons, we are only interested in bookends
for candidates: bookends are part of the breakpoint graph, but candidates are not, since
multigene families do not appear in the breakpoint graph.

Once we have chosen a candidate, the candidate and its matching gene in G2 effec-
tively form a singleton gene family, so we can add the candidate to the breakpoint graph

A Framework for Orthology Assignment from Gene Rearrangement Data 157

of G1. The consequences of that choice are summarized in the following easy lemma,
which underlies many of our results.

Lemma 1. When a candidate d is chosen, exactly two edges are affected: the reality
edge that spans the location where d is added and the edge between its bookends.

Proof. Refer to Figure 2. Adding d to BG1,2 splits the reality edge that spans the loca-
tion where d is added, creating two new endpoints d+ and d−, as well as splitting the
desire edge that links β+(d) and β−(d) to meet each of d+ and d−.

add d
β+(d) β−(d) d+ d− β+(d) β−(d)

add d
β+(d)β−(d)

d+ d− β+(d)β−(d)

(a) a subgraph of BG1,2 before
adding d; the dashed line is the
desire edge that will be split

(b) the two possibilities after adding d

Fig. 2. Adding an element d to a breakpoint graph

We say that a candidate d is added on-cycle if, once added, it lies on its own shelf;
otherwise it is added off-cycle. The following is an immediate consequence of Lemma 1.

Lemma 2. When a candidate is added off-cycle, two cycles get joined.

3.3 The Cycle Splitting Problem

We can formulate orthology assignment as an optimization problem: choose an assign-
ment of orthologs that maximizes the number of cycles in the resulting breakpoint graph
(i.e. BG1,2, to which the chosen candidates have been added). Note that the order in
which the chosen candidates are added does not affect the structure of the resulting
breakpoint graph.

Consider cycle C in Figure 1. This cycle is associated with the gene segment (6,9,8,
−10,−7,9,11), which contains two occurrences of gene 9; thus we must choose which
of these two occurrences to call the ortholog of gene 9 in G2. Figure 3 shows the aug-
mented breakpoint graphs resulting from each choice of candidate. The graph on the
left, where we chose the candidate between 6 and 8, has one more cycle than the graph
on the right, where we chose the candidate between −7 and 11, and is thus the better
choice.

The choice of a candidate is advantageously viewed on a breakpoint graph inscribed
in a series of circles, one for each cycle in the graph. We embed each cycle of BG1,2 in

158 K.M. Swenson, N.D. Pattengale, and B.M.E. Moret

118 −7−10
10+ 10− 11−

9
8+8−9+9−

6
6+ 7+ 7− 7+ 7− 9− 9+ 11−6+

−10 9−7 116 8
8+8− 10−10+

Fig. 3. The breakpoint graphs for the two candidates for gene 9 on cycle C

0+
4−

2+

1−

2−

1+

4+

6−
8+

11−

8−

7−

7+

6+

10+

10−

Cycle CCycle B

Cycle A

Fig. 4. The breakpoint graph of Figure 1 inscribed in three circles (cycle D is not shown)

7+

8+

11−

7−

8−

7+

11−

6+

10−

10+

9−

6+

9+
8−

9+
9−

7− 10+

8+

10−

7+

11−

8−

7−

6+

10−

10+

8+

(a) the graphs of Figure 3 inscribed in circles (b) the two choices of
part (a) superimposed

Fig. 5. How the cycle splitting problem can be inscribed in a single circle

a circle by choosing any start vertex and then following the cycle. Figure 4 shows three
of the four cycles of Figure 1 inscribed in three circles. Returning to the two possible
orthology assignments shown in Figure 3, we can look at the inscribed versions of
these graphs, as illustrated in Figure 5(a). Choosing candidates adds edges across the
circle, edges that may cross each other, depending on the parity of the candidates and
the locations of their bookends. The effects on the graph can be represented in just one
graphical representation, as shown in Figure 5(b). In this representation, we denote the
two choices by drawing two curved line segments, both originating on the perimeter
between the bookends 10− and 8+ and each ending between the two terminals of the
corresponding candidate. Choosing the candidate between 6+ and 8− gives rise to desire
edges that do not cross in the inscribed representation; we represent such choices with
solid lines. The other candidate, between 7− and 11−, does give rise to crossing desire
edges; we represent such choices with dashed lines.

These curved lines represent assignment operations; we will call an operation rep-
resented by a solid line a straight operation (because it does not introduce crossings)

A Framework for Orthology Assignment from Gene Rearrangement Data 159

and one represented by a dashed line a cross operation. The collection of all operations
that share an endpoint represents all members of a gene family from G1, so we also call
it a family and call its common endpoint (between the bookends and represented by a
large disk in the figures) the family home. We can now state the three constraints for our
optimization problem:

1: Each family home is a distinct point on the circle.
2: The family home is not the endpoint of any operation not in that family.
3: The other endpoint of each operation is unique to that operation.

The objective to be maximized is the number of cycles. Figure 6 shows the operations
for each of the gene families from our running example. Operations that cross cycles
are off-cycle and therefore will join cycles.

0+
4−

2+

1−

2−

1+

4+

6−
8+

11−

8−

7−

7+

6+

10+

10−

3 9

Fig. 6. The operations that represent the gene families for our running example

(a) a many-to-one instance (b) a many-to-many instance

Fig. 7. A single cycle for the simplified case (left) and the general one (right)

Figure 7 shows a single cycle and its operations for the simplified (“many-to-one”)
case where G2 has only singletons and for the general (“many-to-many”) case where
both G1 and G2 have multigene families. (The case where two multigene families have
the same bookends can be handled because the relative location of the bookends does
not change.) In the general case we have multiple homes per family, with one additional
constraint:

4: Each home in the same family must connect to all of the same endpoints.

160 K.M. Swenson, N.D. Pattengale, and B.M.E. Moret

c c
3 4

5 6

1
2

7 8

56
4

7 8
2 1

3

(a) drawn on the
circle as usual

(b) zooming in on
each operation

(c) after applying
cross operation c

(d) result redrawn
on the circle

Fig. 8. Illustration for Theorem 1. Labels for the points along the circle are numbered.

1
���
���
���
���

2
������ 3����

4
��
��
��
��

c

1
����

4
���
���
���
���

2
��
��
��
��3������

(a) before application (b) after application

Fig. 9. Applying cross operation c

The problem thus becomes picking as many operations as there are homes per family
such that the cycle count is maximized. The only additional complication is that apply-
ing an operation removes that operation from consideration in all other homes for its
family (as required by the fourth constraint).

Straight and cross operations display a form of duality that allows us to focus on
straight operations alone.

Theorem 1. Applying a cross operation c converts all operations that intersect c (call
the set of such operations I) to their complement—crosses are replaced by straights and
straights by crosses. Furthermore, for any two operations in I, if they intersected before
applying c, then they no longer do after applying c, and vice versa.

Proof. We sketch the proof graphically, using Figure 8, a typical situation where three
operations, two of which are crosses and one a straight, overlap each other. The cross
operation shown in parts (a) and (b) twists, but does not break the cycle, as shown in
part (c). If we redraw the cycle inscribed neatly in a circle, we find we must reverse the
indices on half of the cycle; Figure 8(d) shows the result after reversing indices on the
bottom half of the cycle. Previously intersecting operations no longer intersect and the
identities of the operations have been inverted.

Figure 9 shows the implications of Theorem 1 in a more complicated setting.

4 Theoretical Results

4.1 Buried Operations

An operation makes no contribution to the cycle count of a complete assignment if
the two new desire edges it creates lie on the same cycle. In Figure 10, the choices of

A Framework for Orthology Assignment from Gene Rearrangement Data 161

candidates for the gene families are indicated in the breakpoint graph on the left and
shown as operations in the inscribed representation on the right.

5−3
5−3−3+ 1− 1+5+

1
2 −4−6

0+ 7−

5−

3−3+

1−

5+

1+

2

−4

7−

0+

−6

(a) the breakpoint graph (b) the inscribed version of BG1,2

Fig. 10. An example with G1 = 2,−3,4,−6,5,−4,−2,6,1. Chosen duplicates are shown in grey.

In Figure 11, we show again the three operations depicted in Figure 10(b), but this
time only the three operations and the resulting two cycles are shown. Note the op-
eration corresponding to gene family 2 (shown as a heavy curve): the curved edge is
bounded on each side by the same cycle; we say that such an operation is buried (for
the given choice of candidates). Since the two desire edges created by this operation lie
on the same cycle, the operation does not increase the number of cycles (in fact, in this
particular example, it reduces the number of cycles, which stood at 3 after operations
−6 and −4).

Fig. 11. The cycle and the operations; operation “2” (the heavy curve) is buried

Theorem 2. If an orthology assignment creates a total of b buried edges, then the num-
ber of cycles is bounded by a− b + 1, where a is the number of cycles present in the
breakpoint graph induced by the shared singleton genes plus the total number of or-
thology assignments to be made.

Proof. The number of cycles cannot exceed a + 1, since each orthology assignment
can give rise to at most one new cycle. Consider the effect on the breakpoint graph
of choosing an operation: a single desire edge d is replaced with two desire edges d′

1
and d′

2, and a single reality edge r is replaced with two reality edges r′1 and r′2. By
construction, d′

1 and d′
2 each inherit one of the original endpoints of d; similarly, r′1

and r′2 each inherit one of the original endpoints of r. By assumption, the chosen edge

162 K.M. Swenson, N.D. Pattengale, and B.M.E. Moret

is buried, so that d′
1 and d′

2 lie on the same cycle; therefore so do all of the original
endpoints of d and r. Thus all of the newly created edges must lie on a cycle that already
existed. Since this is true of any buried operation, every one of the buried operations
decreases by one the maximum number of attainable cycles.

4.2 Chains and Stars

We have discovered two operation patterns that, while they need not contain buried
operations, nevertheless impose sharp bounds on the number of cycles. A k-chain (for
k ≥ 3) is an assignment in which k operations form a chain, that is, each chosen opera-
tion overlaps two of the other k, its predecessor and successor around the circle. Figure
12(a,b) illustrates k-chains. A k-star (for k ≥ 1) is an assignment in which k operations
form a clique (each overlaps every other). Figure 12(c,d) illustrates k-stars.

(a) a 4-chain (b) a 5-chain (c) a 3-star (d) a 4-star

Fig. 12. Some examples of stars and chains

Proposition 1. For any integer k ≥ 1 (but recall that k-chains are only defined for k ≥
3), we have:

1. a k-chain has no buried operations;
2. in a k-chain with k odd, the cycle count is 2;
3. in a k-chain with k even, the cycle count is 3;
4. in a k-star with k even, every operation is buried and the cycle count is 1;
5. in a k-star with k odd, no operation is buried and the cycle count is 2.

We conjecture that these two patterns, along with buried operations, describe all opera-
tions that reduce the upper bounds on the number of cycles.

4.3 Reduced Forms

A serial assignment procedure could reach a state in which no operation remains that
could split a cycle. We call such a state a reduced form of the instance. In a reduced
form, an instance is composed of multiple cycles linked by the operations from the
remaining families. This structure lends itself naturally to a graph representation; an
analysis of this graph reveals conditions under which optimality can be characterized.

Theorem 3. After applying a maximal nonoverlapping set of operations M, remaining
operations can only (by themselves) join two cycles.

A Framework for Orthology Assignment from Gene Rearrangement Data 163

���
���
���
���

��
��
��
��

���
���
���
��� ���

���
���
���

����

��
��
��
��

����

��
��
��
��

������ ��
��
��
��

����

���
���
���
���

1 2 3 5 6 74

1

3

6

��
��
��
��

��
��
��
��

����

���
���
���
���

������

���
���
���
���

72 4

5

(a) operations indicated by heavy lines
(and arrows) are those chosen to
produce the reduced form of part (b)

(b) the resulting reduced instance;
heavy edges will produce an optimal
solution to the reduced instance

Fig. 13. Creating a reduced instance and solving it

�������
���
���
���

����

������

���
���
���
���

����
����

���
���
���
���

������

����
��
��
��
��

���
���
���
���

(a) the effect of applying
an operation between
two circles

(b) a reduced form:
lines trace the cycles
created by the operations

(c) adding a nonplanar
operation to the reduced form
from (b) joins the cycles

Fig. 14. The effect of choosing operations on a reduced form

Proof. Applying a set of k nonoverlapping operations yields k new cycles, each sepa-
rated from the others by two adjacent operations or, in the case of an outermost cycle,
by one operation from all others. Since M is maximal, every remaining operation from
every family overlaps an element of M. Application of any m ∈ M, therefore, must span
two of the new cycles, joining them into one.

Figure 13(b) shows the reduced instance induced by applying each of the (straight)
operations chosen in Figure 13(a). We are left with a reduced form that can be viewed
as a graph on the cycles so far; however, because that graph is embedded in the plane,
the edges incident on a vertex are strictly ordered.

We can now take advantage of graph properties such as planarity, cycles, and con-
nected components. Because of the ordered nature of the edges incident upon a given
vertex, planarity is somewhat specialized in our case: nonplanar edges can occur in sim-
pler situations than in general graphs, as shown in Figure 14(c). Cycles again play a
vital role in these new graphs. If we restrict our attention to planar graphs, we can look
at the elementary cycles (those that delimit an inside face of the planar embedding) and
obtain directly the value of an optimal solution. As shown in Figure 14, each connected
component produces a cycle around its outer hull (one of the cycles for the outer face of
the planar graph). Each elementary cycle yields another cycle to its inside. Figure 14(c)
shows how nonplanar edges can join these two cycles.

164 K.M. Swenson, N.D. Pattengale, and B.M.E. Moret

1

3

6

������

������

����

��
��
��
��

������

��
��
��
��

72 4

5

������

����

��
��
��
�� ��

��
��
��

����

��
��
��
��

1 2 3 5 6 74

(a) the solution embedded through
a reduced form

(b) the solution embedded on the circle

Fig. 15. An optimal solution to the reduced instance in Figure 13

Theorem 4. The number of cycles in a solution S to a planar reduced instance with m
elementary cycles and c connected components is R(S) = m+ c.

Proof. This certainly holds for a reduced instance with no operations. Assume R(S) =
m + c for a current solution and look at the effect of adding another edge. If that edge
links two previously disconnected components, then the cycles around the hulls of these
components will get merged, removing a cycle and a connected component. If that edge
links two connected components, then an elementary cycle will be created. Since the
edge added is planar, we know that the same cycle runs past both endpoints of the
operations and thus the operation will split it.

It remains to relate results on reduced forms back to the original inscribed break-
point graph formulation; we illustrate the process in Figure 15, where the left part shows
the solution obtained on a reduced form and the right part shows the corresponding so-
lution inscribed in the circle.

5 Conclusion

We have described a graph-theoretical framework in which to represent and reason
about orthology assignments and their effect on the number of cycles present in the
resulting breakpoint graph. We have given some foundational results about this frame-
work, including several that point us directly to to algorithmic strategies for optimizing
this assignment. We believe that this framework will lead to a characterization of the
orthology assignment problem as well as to the development of practical algorithmic
solutions.

Note that research in orthology assignment based on rearrangement data does not
aim to replace assignment based on sequence data: instead, the two approaches comple-
ment each other. Biologists are already routinely using the notion of contiguous gene
blocks in their determination of orthology assignments: an assignment based on re-
arrangement data simply formalizes that insight. How to use both sequence data and
gene-rearrangement data within the same framework remains a tantalizing, but for now
elusive goal.

A Framework for Orthology Assignment from Gene Rearrangement Data 165

Acknowledgments

This work is supported by the US National Science Foundation under grants EF 03-
31654, IIS 01-13095, IIS 01-21377, and DEB 01-20709, and by the US National Insti-
tutes of Health under grant 2R01GM056120-05A1.

References
1. D.A. Bader, B.M.E. Moret, and M. Yan. A fast linear-time algorithm for inversion distance

with an experimental comparison. J. Comput. Biol., 8(5):483–491, 2001.
2. M. Blanchette, T. Kunisawa, and D. Sankoff. Gene order breakpoint evidence in animal

mitochondrial phylogeny. J. Mol. Evol., 49:193–203, 1999.
3. J.L. Boore. Phylogenies derived from rearrangements of the mitochondrial genome. In

N. Saitou, editor, Proc. Int’l Inst. for Advanced Studies Symp. on Biodiversity, pages 9–20,
Kyoto, Japan, 1999.

4. J.L. Boore and W.M. Brown. Big trees from little genomes: Mitochondrial gene order as a
phylogenetic tool. Curr. Opinion Genet. Dev., 8(6):668–674, 1998.

5. J.L. Boore, T. Collins, D. Stanton, L. Daehler, and W.M. Brown. Deducing the pattern of
arthropod phylogeny from mitochondrial DNA rearrangements. Nature, 376:163–165, 1995.

6. D. Bryant. The complexity of calculating exemplar distances. In D. Sankoff and J. Nadeau,
editors, Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dy-
namics, Map Alignment, and the Evolution of Gene Families, pages 207–212. Kluwer Aca-
demic Publishers, Dordrecht, NL, 2000.

7. A. Caprara. On the tightness of the alternating-cycle lower bound for sorting by reversals. J.
Combin. Optimization, 3:149–182, 1999.

8. X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. Computing the assign-
ment of orthologous genes via genome rearrangement. In Proc. 3rd Asia Pacific Bioinfor-
matics Conf. (APBC’05), pages 363–378. Imperial College Press, London, 2005.

9. M.E. Cosner, R.K. Jansen, B.M.E. Moret, L.A. Raubeson, L. Wang, T. Warnow, and S.K.
Wyman. An empirical comparison of phylogenetic methods on chloroplast gene order data
in Campanulaceae. In D. Sankoff and J.H. Nadeau, editors, Comparative Genomics, pages
99–122. Kluwer Academic Publishers, Dordrecht, NL, 2000.

10. S.R. Downie and J.D. Palmer. Use of chloroplast DNA rearrangements in reconstructing
plant phylogeny. In D.E. Soltis, P.S. Soltis, and J.J. Doyle, editors, Molecular Systematics of
Plants, pages 14–35. Chapman and Hall, New York, 1992.

11. J. Earnest-DeYoung, E. Lerat, and B.M.E. Moret. Reversing gene erosion: reconstructing
ancestral bacterial genomes from gene-content and gene-order data. In Proc. 4th Int’l Work-
shop Algs. in Bioinformatics (WABI’04), volume 3240 of Lecture Notes in Computer Science,
pages 1–13. Springer Verlag, Berlin, 2004.

12. N. El-Mabrouk. Genome rearrangement by reversals and insertions/deletions of contiguous
segments. In Proc. 11th Ann. Symp. Combin. Pattern Matching (CPM’00), volume 1848 of
Lecture Notes in Computer Science, pages 222–234. Springer Verlag, Berlin, 2000.

13. N. El-Mabrouk. Reconstructing an ancestral genome using minimum segments duplications
and reversals. J. Comput. Syst. Sci., 65:442–464, 2002.

14. S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip (polynomial algorithm
for sorting signed permutations by reversals). In Proc. 27th Ann. ACM Symp. Theory of
Comput. (STOC’95), pages 178–189. ACM Press, New York, 1995.

15. B. Larget, D.L. Simon, and J.B. Kadane. Bayesian phylogenetic inference from animal mi-
tochondrial genome arrangements. J. Royal Stat. Soc. B, 64(4):681–694, 2002.

16. M. Marron, K.M. Swenson, and B.M.E. Moret. Genomic distances under deletions and
insertions. Theor. Computer Science, 325(3):347–360, 2004.

166 K.M. Swenson, N.D. Pattengale, and B.M.E. Moret

17. B.M.E. Moret, J. Tang, and T. Warnow. Reconstructing phylogenies from gene-content and
gene-order data. In O. Gascuel, editor, Mathematics of Evolution and Phylogeny, pages
321–352. Oxford University Press, UK, 2005.

18. C. Thach Nguyen, Y.C. Tay, and L. Zhang. Divide-and-conquer approach for the exemplar
breakpoint distance. Bioinformatics, 21(10):2171–2176, 2005.

19. D. Sankoff. Genome rearrangement with gene families. Bioinformatics, 15(11):990–917,
1999.

20. D. Sankoff and M. Blanchette. The median problem for breakpoints in comparative ge-
nomics. In Proc. 3rd Int’l Conf. Computing and Combinatorics (COCOON’97), volume
1276 of Lecture Notes in Computer Science, pages 251–264. Springer Verlag, Berlin, 1997.

21. D. Sankoff and M. Blanchette. Multiple genome rearrangement and breakpoint phylogeny.
J. Comput. Biol., 5:555–570, 1998.

22. D. Sankoff, D. Bryant, M. Deneault, B.F. Lang, and G. Burger. Early Eukaryote evolution
based on mitochondrial gene order breakpoints. J. Comput. Biol., 7(3):521–536, 2000.

23. D. Sankoff and J. Nadeau, editors. Comparative Genomics: Empirical and Analytical Ap-
proaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families.
Kluwer Academic Publishers, Dordrecht, NL, 2000.

24. J.C. Setubal and J. Meidanis. Introduction to Computational Molecular Biology. PWS Pub-
lishers, Boston, MA, 1997.

25. K.M. Swenson, M. Marron, J.V. Earnest-DeYoung, and B.M.E. Moret. Approximating the
true evolutionary distance between two genomes. In Proc. 7th SIAM Workshop on Algorithm
Engineering & Experiments (ALENEX’05). SIAM Press, Philadelphia, 2005.

26. J. Tang, B.M.E. Moret, L. Cui, and C.W. dePamphilis. Phylogenetic reconstruction from
arbitrary gene-order data. In Proc. 4th IEEE Symp. on Bioinformatics and Bioengineering
BIBE’04, pages 592–599. IEEE Press, Piscataway, NJ, 2004.

27. G. Tesler. Efficient algorithms for multichromosomal genome rearrangements. J. Comput.
Syst. Sci., 65(3):587–609, 2002.

	Introduction
	Preliminaries
	Background and Definitions
	The Breakpoint Graph
	The Consequences of An Assignment
	The Cycle Splitting Problem

	Theoretical Results
	Buried Operations
	Chains and Stars
	Reduced Forms

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

