
Genomic Distances under Deletions and Insertions

Mark Marron, Krister M. Swenson, and Bernard M. E. Moret

Department of Computer Science
University of New Mexico

Albuquerque, NM 87131, USA
ma luen@eece.unm.edu

{kswenson,moret}@cs.unm.edu

Abstract. As more and more genomes are sequenced, evolutionary biologists
are becoming increasingly interested in evolution at the level of whole genomes,
in scenarios in which the genome evolves through insertions, deletions, and
movements of genes along its chromosomes. In the mathematical model pioneered
by Sankoff and others, a unichromosomal genome is represented by a signed
permutation of a multi-set of genes; Hannenhalli and Pevzner showed that the
edit distance between two signed permutations of the same set can be computed
in polynomial time when all operations are inversions. El-Mabrouk extended
that result to allow deletions and a limited form of insertions (which forbids
duplications). In this paper we extend El-Mabrouk’s work to handle duplications
as well as insertions and present an alternate framework for computing (near)
minimal edit sequences involving insertions, deletions, and inversions. We derive
an error bound for our polynomial-time distance computation under various
assumptions and present preliminary experimental results that suggest that
performance in practice may be excellent, within a few percent of the actual
distance.

Keywords: inversion distance, reversal distance, genomic distance, Hannenhalli-
Pevzner

1 Introduction

Biologists can infer the ordering and strandedness of genes on a chromosome, and thus
represent each chromosome by an ordering of signed genes (where the sign indicates the
strand). These gene orders can be rearranged by evolutionary events such as inversions
(also called reversals) and transpositions and, because they evolve slowly, give biologists
an important new source of data for phylogeny reconstruction (see, e.g., [7,11,12,14]).
Appropriate tools for analyzing such data may help resolve some difficult phylogenetic
reconstruction problems. Developing such tools is thus an important area of research–
indeed, the recent DCAF symposium [6] was devoted to this topic.

A natural optimization problem for phylogeny reconstruction from gene-order data
is to reconstruct an evolutionary scenario with a minimum number of the permitted
evolutionary events on the tree. This problem is NP-hard for most criteria–even the
very simple problem of computing the median1 of three genomes with identical gene

1 The median of k genomes is a genome that minimizes the sum of the pairwise distances between
itself and each of the k given genomes.

T. Warnow and B. Zhu (Eds.): COCOON 2003, LNCS 2697, pp. 537–547, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

538 M. Marron, K.M. Swenson, and B.M.E. Moret

content under such models is NP-hard [4,13]. The problem of computing the edit distance
between two genomes is difficult; for instance, even with equal gene content and with
only inversions allowed, the problem is NP-hard for unsigned permutations [3].

Hannenhalli and Pevzner [9] made a fundamental breakthrough by developing an
elegant theory for signed permutations and providing a polynomial-time algorithm to
compute the edit distance (and the corresponding shortest edit sequence) between two
signed permutations under inversions; Bader et al. [1] later showed that this edit distance
is computable in linear time. El-Mabrouk [8] extended the results of Hannenhalli and
Pevzner to the computation of edit distances for inversions and deletions and also for
inversions and non-duplicating insertions; she also gave an approximation algorithm
with bounded error for computing edit distances in the presence of all three operations
(inversions, deletions, and non-duplicating insertion).

In this paper, we extend El-Mabrouk’s work by providing a polynomial-time ap-
proximation algorithm with bounded error to compute edit distances under unrestricted
inversions, deletions, and insertions (including duplications). Our basic approach is based
on a new canonical form for edit sequences along with the notion of a cover to deal with
duplicates. We show that shortest edit sequences can be transformed into equivalent
sequences of equal length in which all insertions are performed first, followed by all
inversions, and then by all deletions. This canonical form allows us to take advantage
of El-Mabrouk’s exact algorithm for inversions and deletions, which we then extend by
finding the best possible prefix of inversions, producing an approximate solution with
bounded error.

Section 2 introduces some notation and definitions. Section 3 gives two key theorems
that enable us to reduce edit sequences to a canonical form. Section 4 outlines our
method for handling unrestricted insertions. Section 5 outlines our alternate method for
analyzing the general case of insertion, deletion, and inversion along with an analysis
of our algorithm’s error bounds. Finally, Section 6 shows some preliminary empirical
results.

2 Notation and Definitions

We denote a particular edit sequence with a Greek letter, π, its operations by subscripted
letters, oi, and its contents enclosed in angle brackets: π = 〈o1, o2, . . . , on〉. We assume
that the desired (optimal) edit sequence is that which uses the fewest operations, with
all operations counted equally. As in the standard statement of the equal gene content
problem, we move from a perfectly sorted sequence S to the given target sequence T .

We say that substring si is adjacent to substring sj whenever they occupy sequential
indices in the string under study. Let signmin(sl) be the sign of the element of smallest
index in sl and signmax(sl) be the sign of the element of largest index in sl; we define
the parity of a pair of ordered strings (si, sj) as signmin(si) · signmax(sj).

When two strings si and sj each contain a single character, si = ei and sj = ej ,
define their ordering ζ = ei − ej . Two substrings of a subject sequence, si and sj , are
correctly oriented relative to each other if and only if:

Genomic Distances under Deletions and Insertions 539

1. si or sj is empty.
2. si and sj are both of unit length and, whenever si is adjacent to sj with ordering ζ

in the target sequence, then si is also adjacent to sj with ordering ζ in the subject
sequence.

3. All substrings in si are correctly oriented relative to each other, all substrings in sj
are correctly oriented relative to each other and, whenever si is adjacent to sj with
parity ξ in the target sequence, then also si is adjacent to sj with parity ξ in the
subject sequence.

We say that an operation splits si and sj if the two sequences are correctly oriented
before the operation, but not after it.

3 Canonical Forms

In this section, we prove several useful results about shortest edit sequences, results that
will enable us to obtain a “canonical form” into which any shortest edit sequence can
always be transformed without losing optimality.

We make use throughout our derivation of reindexing; this reindexing provides a
pliability to the indices that operations act upon which enables us to manipulate the order
in which these operations appear. For example, take the string 1, 2, 3,−5,−4, 6, 7, 11, 12
and suppose that the next operation to perform is an inversion starting at index 4 and
going to index 7 (inclusive). The result is the new string 1, 2, 3,−7,−6, 4, 5, 11, 12. Now,
suppose that, in order to achieve some desired form, we need to insert the element 10 at
index 4 before the application of this inversion. The goal is to maintain the indices of the
inversion so that it continues to act on the substring −5,−4, 6, 7. After the application
of the insertion associated with index 4, we are left with 1, 2, 3, 10,−5,−4, 6, 7, 11, 12.
In order to maintain the integrity of the inversion, we now adjust the start index of the
inversion to be at 5 and the end index to be at 8, upon which application of the inversion
correctly yields 1, 2, 3, 10,−7,−6, 4, 5, 11, 12. The other types of reindexing that we
use for inversions and deletions follow a similar pattern.

Our first theorem extends an earlier result of Hannenhalli and Pevzner (who proved
that a sorted substring need not be split in an inversion-only edit sequence [9]) by showing
that, whenever two substrings are correctly oriented, there is always a minimum edit
sequence that does not split them. The idea is to rewrite the optimal edit sequence to keep
the substrings together. First define move(sx, sy, ξ) to move sx to the immediate left of
sy with parity ξ. Given an edit sequence 〈o1, o2, . . . , ok, . . . , om, . . . 〉 where operation
ok is responsible for splitting the substrings si and sj and operation om returns them to
their correctly oriented state; we rewrite the operations between ok and om to keep the
substrings together. To accomplish this each ox is expanded into a tuple of operations
〈fx, ôx, tx〉x. This tuple is constructed so that the xth tuple is functionally equivalent to
ox and that tx is the inverse of fx+1. Further, the leading and trailing tuples are designed
such that fk and tm are identity operations.

For example, suppose we have the sequence 14, 15, 11, 12, 13, 16 and the operation
sequence is inv(2, 5), inv(1, 4), inv(4, 4), inv(4, 5). The first operation in this sequence
splits the substring 14, 15 and the fourth restores it. In this case we relocate 14 and 15
together by constructing the tuples as follows:

540 M. Marron, K.M. Swenson, and B.M.E. Moret

1. inv(2, 5)→ 〈move(14, 15, 1), inv(1, 5),move(−14,−13,−1)〉
2. inv(1, 4)→ 〈move(−14, 16,−1), inv(1, 3),move(−14,−15, 1)〉
3. inv(4, 4)→ 〈move(−14, 16,−1), inv(ε),move(−14,−15, 1)〉
4. inv(5, 5)→ 〈move(−14, 16,−1), inv(4, 5),move(14, 15, 1)〉

The original operation sequence produces:

– 14, 15, 11, 12, 13, 16⇒ 14,−13,−12,−11,−15, 16⇒
11, 12, 13,−14,−15, 16⇒ 11, 12, 13, 14,−15, 16⇒ 11, 12, 13, 14, 15, 16

The new operation sequence produces:
14, 15, 11, 12, 13, 16

1. ⇒ 14, 15, 11, 12, 13, 16⇒ −13,−12,−11,−15,−14, 16⇒
14,−13,−12,−11,−15, 16

2. ⇒ −13,−12,−11,−15,−14, 16⇒ 11, 12, 13,−15,−14, 16⇒
11, 12, 13,−14,−15, 16

3. ⇒ 11, 12, 13,−15,−14, 16⇒ 11, 12, 13,−15,−14, 16⇒
11, 12, 13,−14,−15, 16

4. ⇒ 11, 12, 13,−15,−14, 16⇒ 11, 12, 13, 14, 15, 16⇒ 11, 12, 13, 14, 15, 16

We have demonstrated how the construction of the tuples can create an operation se-
quence where each tuple has the same effect as its corresponding operation in the original
sequence and the opposing move operations cancel one another’s effect (and can thus
be discarded), thereby providing the intuition behind a proof of the following theorem.

Theorem 1. If subsequences si and sj are correctly oriented relative to each other at
some step during the execution of the minimum edit sequence π, say at the kth step, then
there is another minimum edit sequence, call it π′, that has the same first k steps as π,
and never splits si and sj .

Our next theorem shows that it is always possible to take any minimum edit sequence
and transform it into a form where all of the insertions come first, followed by all of the
inversions and then all of the deletions. The proof is based on the idea of rewriting each
operation preceding the first insert such that, at the beginning and end of each operation
rewrite group(tuple), the sequence is the same as at each step in the original sequence,
but when the terms are regrouped and cancellation occurs, the insert is pushed to the
front of the operator sequence. Since each step produces the same sequence we know that
the resulting edit sequence is correct and the cancellation maintains the same number of
operations in the new sequence as in the old one.

Theorem 2. Given a minimal edit sequence π = 〈o1, o2 . . . ok−1, ins1, ok+1 . . . om〉
there is a π′ such that π′ ≡ π and π′ = 〈ins1 . . . insp, inv1 . . . invq, del1 . . . delr〉.
Proof. Reminiscent of our previous tuple expansion, for each oj s.t. j ≤ k−1 we create
ôj = (ins′j , o

′
j , del

′
j), where

del′j =
{
ins′−1

j+1 1 ≤ j ≤ k − 2
ins−1

1 j = k − 1
,

Genomic Distances under Deletions and Insertions 541

ins′j is the inverse of del′j , and o′j is oj reindexed to compensate for the insertion. Thus
del′j deletes whatever was inserted by ins′j when o′j is applied and the construction of
each tuple ensures oj ≡ ôj .

Write π′ = 〈ô1 . . . , ˆok−1, ins1, ok+1 . . . , om〉; expanding each term ôj , we get
π′ = 〈(ins′1, o′1, del′1), (ins′2, o

′
2, del

′
2), . . . , (ins′k−1, o

′
k−1, del

′
k−1), ins1, . . . , om〉;

since del′j and ins′j+1 cancel, the expression reduces to 〈ins′1, o′1, o′2, . . . ,
o′k−1, ok+1, . . . , om〉. The construction for o′j ensures that each ôj sequence is equivalent
to oj and the cancellation of the ins and del operators in ôj results in |π| = |π′|.

This reasoning shows how to move the first insertion to the front of the sequence;
further insertion operations can be moved similarly.

These two theorems allow us to define a canonical form for edit sequences. That canon-
ical form includes only inversions and deletions in its second and third parts, which is
one of the cases for which El-Mabrouk gave an exact polynomial-time algorithm. We
can use her algorithm to find the minimal edit sequence of inversions and deletions,
then reconstruct the preceding sequence of insertions. Because this approach fixes the
sequence of inversions and deletions without taking insertions into account, then only
addresses insertions, it is an approximation, not an exact algorithm. We shall prove that
the error is bounded and also give evidence that, in practice, the error is in fact very
small.

4 Unrestricted Insertions

4.1 The Problem

The presence of duplicates in the sequence makes the analysis much more difficult; in
particular, it prevents a direct application of the method of Hannenhalli and Pevzner’s and
thus also of that of El-Mabrouk’s. We can solve this problem by assigning distinct names
to each copy, but this approach begs the question of how to assign such names. Sankoff
proposed the exemplar strategy [15], which attempts to identify, for each family of gene
copies, the “original” gene (as distinct from its copies) and then discards all copies,
thereby reducing a multi-set problem to the simpler set version. However, identifying
exemplars is itself NP-hard [2]—and much potentially useful information is lost by
discarding copies. Fortunately, we found a simple selection method, based on substring
pairing, that retains a constant error bound.

4.2 Sequence Covers

Our job is to pick a group of substrings from the target such that every element in the
source appears in one of those substrings. To formalize and use this property, we need
a few definitions. Call a substring e1e2 . . . en contiguous if we have ∀j, ej+1 = ej + 1.
Given a contiguous substring si, define the normalized version of si to be si itself if the
first element in si is positive and inv(si) otherwise; thus the normalized version of si
is a substring of the identity. A maximal subsequence Snd of the source string S is the
non-deleted portion of S if Snd, viewed as a set, is the largest subset of elements in S
that is also contained in the target string T , also viewed as a set. (Note that Snd is not

542 M. Marron, K.M. Swenson, and B.M.E. Moret

a substring, but a subsequence; that is, it may consist of several disjoint pieces of S.)
Given a setC of normalized strings which are maximal inC under the substring relation,
define �C to be the string produced as follows; order the strings of C lexicographically
and concatenate them in that order, removing any overlap. We will say that a set C of
contiguous substrings from T is a cover for S if Snd is �C. Note that a cover must
contain only contiguous strings.

Suppose we have S = 1, 2, 3, 4, 5, 6, 7 and T = 3, 4, 5,−4,−3, 5, 6, 7, 8;
then the set of normalized contiguous strings is {(3, 4, 5), (3, 4), (5, 6, 7, 8)}, Snd is
(3, 4, 5, 6, 7, 8), a possible cover for S is Cp = {(3, 4, 5), (5, 6, 7, 8)}, and we have
�Cp = (3, 4, 5, 6, 7, 8).

Let n be the size of (number of operations in) the minimal edit sequence.

Theorem 3. There exists a cover for S of size 2n+ 1.

Proof. By induction onn. Forn = 0,S itself forms its own cover, since it is a contiguous
sequence; hence the cover has size 1, obeying the bound. For the inductive step, note
that deletions are irrelevant, since the cover only deals with the non-deleted portion; thus
we need only verify that insertions and inversions obey the bound. An insertion between
two contiguous sequences simply adds another piece. While one inside a contiguous
sequence splits it and adds itself, for an increase of two pieces. Similarly, an inversion
within a contiguous sequence cuts it into at most three pieces, for a net increase by two
pieces, and an inversion across two or more contiguous sequences at worst cuts each of
the two end sequences into two pieces, leaving the intervening sequences contiguous,
also for a net increase by two pieces. Since we have (2(n− 1) + 1) + 2 = 2n+ 1, the
bound is obeyed in all cases.

4.3 Building a Minimum Cover

Let C(T) be the set of all (normalized versions of) contiguous substrings of T that are
maximal (none is a substring of any other). We will build our cover greedily from left to
right with this simple idea: if, at some stage, we have a collection of strings in the current
cover that, when run through the � operator, produces a string that is a prefix of length
i of our target T , we consider all remaining strings in C(T) that begin at or to the left
of position i—that can extend the current cover—and select that which extends farthest
to the right of position i. Although this is a simple (and efficient) greedy construction, it
actually returns a minimum cover, as we can easily show by contradiction. (The proof
follows standard lines: use contradiction, assume a first point of disagreement between
an optimal cover and the greedy cover, and verify that we can exchange cover elements
to move the disagreement farther down the index chain.) However, it should be noted
that, in our sorting algorithm, the best choice of cover need not be a minimum cover—a
minimum cover simply allows us to bound the error.

5 Our Algorithm

Now that we have a method to construct a minimal cover, we can assign unique labels
to all duplicates which in turn enables the use of El-Mabrouk’s approximation method.

Genomic Distances under Deletions and Insertions 543

However, for greater control of the error and to cast the problem into a more easily
analyzed form, we choose to use El-Mabrouk’s exact method for deletions only, and
then to extend the resulting solution to handle the needed insertions.

To do this we will need to look at the target sequence T with all the elements that
do not appear in S removed, call this new sequence Tir to denote that all the inserted
elements have been removed.

Theorem 4. Let π be the minimal edit sequence from S to T , using l insertions and m
inversions. Let π′ be the minimal edit sequence of just inversions and deletions from S
to Tir. If the extension π̂ is obtained by adding an insertion operation to π′ for each of
the inserted strings in T then π̂ has at most l +m insertions.

Proof. Clearly, our method will do at least as well as looking at each inserted string in T
and taking that as an insertion for π̂. Now, looking at the possible effect of each type of
operation on splitting a previous insertion, we have 3 cases (in all cases v is an inserted
substring and x another):

1. Inserting another substring cannot split an inserted substring—it just creates a longer
string of inserted elements: if x is inserted within v, then uvw = uv1v2w becomes
uv1xv2w = uv′w.

2. Deletion of a substring cannot split an inserted substring—it just shortens it, even
perhaps to the point of eliminating it and thus potentially merging two neighboring
strings: if part of v is deleted, then uvw = uv1v2v3w becomes uv1v3w = uv′w.

3. An inversion may split an inserted substring into two separate strings, thus increasing
the number of inserted substrings by one. It cannot split a pair of inserted substrings
because the inversion only rearranges the inserted substrings; it does not create new
contiguous substrings. For instance, given uvw = u1u2v1v2w, an inversion that
acts on u2v1 yields the string u1v1u2v2w = u1v

′u2v
′′w.

Thus, if we have l insertions andm inversions in π, there can be at most l+m ≤ |π| = n
inserted substrings in T and l +m ≤ n insertions in π̂.

Now, the optimal edit sequence defines a corresponding optimal cover C0 of S; if the
cover we obtain,C, is in fact the optimal cover, then our algorithm produces the optimal
edit sequence. In order to bound the error of our algorithm, then, we look at the differences
between the unknown optimal cover C0 and our constructed cover C.

The proof is constructive and rather laborious due to the multiple cases, so we restrict
ourselves to an illustration of one of the cases. Let sa, sx, su, sy, sz be substrings of S;
we use a prime accent (′) to denote that a particular substring was marked as a copy
by a given cover. Let πtail be the inversion and deletion portion of π and set S =
sa . . . sxsusy . . . sz , T = sa . . . sxsusy . . . su . . . sz , Topt = sa . . . sxs

′
usy . . . su . . . sz

(this Topt is T renamed according to the optimal cover C0), and
Tchosen = sa . . . sxsusy . . . s

′
u . . . sz (this Tchosen is T renamed according to the chosen

covering). Further, suppose that su is at index I1 in S and that s′u (according to Topt)
is inserted at index I2. The construction proceeds by moving su to the location of the
insertion of s′u, then inserting s′u in the location that su previously occupied. Thus, for
each wrong choice in the cover, we need 3 inversions to move and 1 to insert. In the

544 M. Marron, K.M. Swenson, and B.M.E. Moret

given example su should be moved to I2 and s′u should be inserted at index I1; now
πtail can be applied to this modified sequence to produce Tchosen.

If the minimal edit sequence contains n operations, then we have |C| ≤ 2n + 1.
Assuming that each of the selections inC is in error and taking the results from above, the
worst-case sequence that can be constructed fromC is bounded by 4(2n+1)+n = 9n+4
operations. Finally, the extension of the edit sequence to include the insertions adds at
most n insertions. Thus, the edit sequence produced by the proposed method has at
most 10n + 4 operations. While this error bound is large, it is a constant and it is also
unrealistically large—the assumptions used are not truly realizable. Furthermore, the
bounds can be easily computed on a case-by-case basis in order to provide information
on the accuracy of the results for each run. Thus, we expect the error encountered in
practice to be much lower and that further refinements in the algorithm and error analysis
should bring the bound to a more reasonable level.

20

40

60

80

100

120

20 30 40 50 60 70 80 90 100

C
al

cu
la

te
d

E
di

t L
en

gt
hs

Generated Edit Lengths

Average Edit Length

Min Edit Length

Max Edit Length

 0

 0.5

 1

 1.5

 2

 2.5

 20 30 40 50 60 70 80 90 100

C
al

cu
la

te
d/

G
en

er
at

ed
 E

di
t L

en
gt

hs

Generated Edits Lengths

Fig. 1. Experimental results for 200 genes: (a) generated edit length vs. reconstructed length; (b)
the ratio of the two.

6 Experimental Results

To test our algorithm and get an estimate of its performance in practice, we ran
simulations. We generated pairs of sequences, one the sequence 1, 2, 3, . . . , n (for
n = 200, 400, 800) and the other derived from the first through an edit sequences.
Our edit sequences, of various length, include 80% of randomly generated inversions
(the two boundaries of each inversions are uniformly distributed through the array), 10%
of deletions (the left end of the deleted string is selected uniformly at random, the length
of the deleted string is given by a Gaussian distribution of mean 20 and deviation 7),
and 10% insertions (the locus of insertion is uniformly distributed at random and the
length of the inserted string is as for deletion), with half of the insertions consisting of
new elements and the other half repeating a substring of the current sequence (with the
initial position of the substring selected uniformly at random). Thus, in particular, the

Genomic Distances under Deletions and Insertions 545

40

60

80

100

120

140

160

180

200

220

20 40 60 80 100 120 140 160 180 200

C
al

cu
la

te
d

E
di

t L
en

gt
hs

Generated Edit Lengths

Average Edit Length

Min Edit Length

Max Edit Length

 0

 0.5

 1

 1.5

 2

 2.5

 40 60 80 100 120 140 160 180 200

C
al

cu
la

te
d/

G
en

er
at

ed
 E

di
t L

en
gt

hs

Generated Edits Lengths

Fig. 2. Experimental results for 400 genes: (a) generated edit length vs. reconstructed length; (b)
the ratio of the two.

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400

C
al

cu
la

te
d

E
di

t L
en

gt
hs

Generated Edit Lengths

Average Edit Length

Min Edit Length

Max Edit Length

 0

 0.5

 1

 1.5

 2

 2.5

 50 100 150 200 250 300 350 400

C
al

cu
la

te
d/

G
en

er
at

ed
 E

di
t L

en
gt

hs

Generated Edits Lengths

Fig. 3. Experimental results for 800 genes: (a) generated edit length vs. reconstructed length; (b)
the ratio of the two.

expected total number of duplicates in the target sequence equals the generated number
of edit operations—up to 400 in the case of 800-gene sequences. We ran 10 instances for
each combination of parameters (the figures show the average, minimum, and maximum
values over the 10 instances).

The results are very gratifying: the error is consistently very low, with the com-
puted edit distance staying below 3% of the length of the generated edit sequence in
the linear part of the curve—that is, below saturation. (Of course, when the generated
edit sequence gets long, we move into a regime of saturation where the minimum edit
sequence becomes arbitrarily shorter than the generated one; our estimated length shows
this phenomenon very clearly.) Figures 1, 2, and 3 show our results for sequences of
200, 400, and 800 genes, respectively.

546 M. Marron, K.M. Swenson, and B.M.E. Moret

7 Conclusion and Future Directions

An exact polynomial-time algorithm for the computation of genomic distances under
insertions, deletions, and inversions remains to be found, but our work takes us a step
closer in that direction. More thorough experimental testing will determine how well our
algorithm does in practice under different regimes of insertion, deletion, and duplication,
but our preliminary results are extremely encouraging. In order to be usable in many
reconstruction algorithms, however, a further, and much more complex, computation
is required: the median of three genomes. This computation is NP-hard even under
inversions only [4,13]—although the algorithms of Caprara [5] and of Siepel and Moret
[16] have done well in practice (see, e.g., [10]). Good bounding is the key to such
computations; our covering technique may be extendible to median computations.

Acknowledgments. This work is supported by the National Science Foundation under
grantsACI 00-81404, DEB 01-20709, EIA 01-13095, EIA 01-21377, and EIA 02-03584.

References

1. D.A. Bader, B.M.E. Moret, and M. Yan. A fast linear-time algorithm for inversion distance
with an experimental comparison. J. Comput. Biol., 8(5):483–491, 2001.

2. D. Bryant. The complexity of calculating exemplar distances. In D. Sankoff and J. Nadeau,
editors, Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynam-
ics, Map Alignment, and the Evolution of Gene Families, pages 207–212. Kluwer Academic
Pubs., Dordrecht, Netherlands, 2000.

3. A. Caprara. Sorting by reversals is difficult. In Proc. 1st Int’l Conf. on Comput. Mol. Biol.
RECOMB97, pages 75–83. ACM Press, 1997.

4. A. Caprara. Formulations and hardness of multiple sorting by reversals. In Proc. 3rd Int’l
Conf. on Comput. Mol. Biol. RECOMB99, pages 84–93. ACM Press, 1999.

5. A. Caprara. On the practical solution of the reversal median problem. In Proc. 1st Workshop
on Algs. in Bioinformatics WABI 2001, volume 2149 of Lecture Notes in Computer Science,
pages 238–251. Springer-Verlag, 2001.

6. M. Cosner, R. Jansen, B.M.E. Moret, L. Raubeson, L. Wang, T. Warnow, and S. Wyman. An
empirical comparison of phylogenetic methods on chloroplast gene order data in Campanu-
laceae. In D. Sankoff and J. Nadeau, editors, Comparative Genomics, pages 99–122. Kluwer
Acad. Pubs., 2000.

7. S. Downie and J. Palmer. Use of chloroplast DNA rearrangements in reconstructing plant
phylogeny. In P. Soltis, D. Soltis, and J. Doyle, editors, Plant Molecular Systematics, pages
14–35. Chapman and Hall, 1992.

8. N. El-Mabrouk. Genome rearrangement by reversals and insertions/deletions of contiguous
segments. In Proc. 11th Ann. Symp. Combin. Pattern Matching CPM 00, volume 1848 of
Lecture Notes in Computer Science, pages 222–234. Springer-Verlag, 2000.

9. S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip (polynomial algorithm for
sorting signed permutations by reversals). In Proc. 27th Ann. Symp. Theory of Computing
STOC 95, pages 178–189. ACM Press, 1995.

10. B.M.E. Moret, A.C. Siepel, J. Tang, and T. Liu. Inversion medians outperform breakpoint
medians in phylogeny reconstruction from gene-order data. In R. Guigo and D. Gusfield,
editors, Proc. 2nd Int’l Workshop Algorithms in Bioinformatics (WABI’02), volume 2452 of
Lecture Notes in Computer Science, pages 521–536. Springer-Verlag, 2002.

Genomic Distances under Deletions and Insertions 547

11. R. Olmstead and J. Palmer. Chloroplast DNA systematics: a review of methods and data
analysis. Amer. J. Bot., 81:1205–1224, 1994.

12. J. Palmer. Chloroplast and mitochondrial genome evolution in land plants. In R. Herrmann,
editor, Cell Organelles, pages 99–133. Springer Verlag, 1992.

13. I. Pe’er and R. Shamir. The median problems for breakpoints are NP-complete. Elec. Colloq.
on Comput. Complexity, 71, 1998.

14. L. Raubeson and R. Jansen. Chloroplast DNA evidence on the ancient evolutionary split in
vascular land plants. Science, 255:1697–1699, 1992.

15. D. Sankoff. Genome rearrangement with gene families. Bioinformatics, 15(11):909–917,
1999.

16. A.C. Siepel and B.M.E. Moret. Finding an optimal inversion median: Experimental results. In
O. Gascuel and B.M.E. Moret, editors, Proc. 1st Int’l Workshop Algorithms in Bioinformatics
(WABI’01), volume 2149 of Lecture Notes in Computer Science, pages 189–203. Springer-
Verlag, 2001.

	Introduction
	Notation and Definitions
	Canonical Forms
	Unrestricted Insertions
	The Problem
	Sequence Covers
	Building a Minimum Cover

	Our Algorithm
	Experimental Results
	Conclusion and Future Directions

