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Warning

This lecture is intended to be nothing more than a lecture:

I assume that the prototypic attendant is a student possibly interested
in mathematical logic.

Colleagues will be left wanting for more, sorry.

Objective: provide a rather detailed example of relevant use of
mathematical logic in formal or computational linguistics by a study of
the simplest deductive system handling both syntax and the
convergence with semantics: AB grammars, Lambek grammars.

2



Introduction: the mathematics of
computational linguistics
1. Statistics and probability
I if plain statistics, linguistically frustrating,
I needs to combine with symbolic methods
I only makes use of mathematically closed questions (afaik)

2. Formal Language theory, logic (model theory) (Stabler’s lecture)
I slightly beyond context free languages
I polynomial parsing
I learnable from positive examples (often left out)

3. Logic, proof theory and (typed) lambda calculus
I for semantics as expected
I but also for syntax (intriguing connections with 2)
I for the correspondence between syntax and semantics
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Guidelines

Can some fine mathematics be relevant to formal linguistics?

Can linguistics raise some fruitful motivations to logic?

If language is a computation of some kind can it be depicted by
computational logic?
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Principles of categorial grammars
(CG)

1. Lexical items are mapped into complex categories
(lexicon, a.k.a. dictionnary).

2. Universal rules regulate how categories combine.

3. Rules are deductive rules.

1,2: lexicalised grammars

3: logical CG (Lambek, Moortgat) 6= combinatory CG (Steedman).
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Standard history

Rather issued from the logical, philosophical side:

Aristotle, Husserl, ....

Ajdukiewicz (1931) fractions, type checking for formula
wellformedness

Bar-Hillel (1953): AB grammars, directionality for depicting word order

Lambek (1958, happy birthday): rules completed into a logical system

van Benthem, Moortgat (1986): models and modal extensions
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Subjective history

I would add:

Montague (1970): although he thought that intermediate structures,
CG analyses, should disappear (syntax→ CG analyses→ truth
valued models)

Girard (1987), Abrusci (1991): non commutative linear logic, relation
to intuitonistic logic, proof nets
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Outcomes of categorial grammars

In this order:

I Relation to semantics (in between syntax and semantics)

I Learning algorithms (Buszkowski, Penn, Kanazawa)

More anecdotic, but interesting: Proof nets and human processing
(Johnson, Morrill)
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Some beautiful results about
categorial grammars

1992 Pentus Lambek grammars are context free

1994 Kanazawa convergence of the learning algorithm for AB
categorial grammars

2003 Pentus Lambek calculus is NP complete

2007 Salvati Lambek analyses are an Hyper Egde replacement graph
language
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Current issues in categorial
grammars

Extending CG syntax beyond context-freeness, according to linguistic
theory e.g. categorial minimalist grammars. (Lecomte, Retoré,
Amblard,..),

Practical development of CG for Natural language Processing.
(Moortgat, Moot, Steedman, Hockenmaier,..)

Learning classes of categorial grammars from structured data (Tellier,
Foret, Bechet,...) or from corpora (Hockenmaier, Moot, ...)
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Current issues in categorial
grammars Cont’ed
Formal grammar in a type theoretical frame work with a mapping to
semantics: abstract categorial grammars (de Groote, Pogodalla,
Salvati,...)

Deductions as trees of formal language theory (Tiede, Retoré,
Salvati,..)

Various kinds of non commutative or partially commutative linear
logic. (Abrusci, Retoré, Ruet,...)

Lexical semantics in a compositional framework

Move from sentence semantics to (short) discourses, compositional
DRT (Muskens, de Groote)
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Technical contents
I AB grammars

� definition, examples

� relation to CFG

� learnability

I Lambek calculus

� (without product) definition, examples, properties

� relation to Montague semantics

� (with product) definition, properties

� equivalence with CFG
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Classical categorial grammars:
AB grammars
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Categories a.k.a. types a.k.a
fractions:

L ::= P | L \ L | L / L

P base categories

S (for sentences)

np (for noun phrases)

n (for nouns),

if you wish pp (for prepositional phrase), vp (for verb phrase)
etc.
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Lexicon/grammar
generated language

Lex : m: word /terminal 7−→ Lex(m) finite subset of T .

w1 · · ·wn, is of type u whenever there exists for each wi a type ti in
Lex(wi) such that t1 · · · tn −→ u with the following reduction
patterns:

∀u, v ∈ L
u(u \ v) −→ v (\e)
(v / u)u −→ v (/e)

The set of sentences or the language generated by the grammar is
the set of word sequences of type S.
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Lexicalised grammar with structured non-terminals
(coherent with modern linguistic theories)

The universal rules are called residuation laws, or simplifications, or
elimination rules modus ponens. What do they do?

I If y : A \B then adding any expression a : A on its left yields an
expression ay : B.

I Symmetrically, if z : B / A and a : A then za : B;

The derivation tree is simply a binary tree whose leaves are the ti
and whose nodes are labeled by rules /e and \e.
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Reduced form for AB grammars

Proposition 1 (Gaifman) Every AB grammar is equivalent to an AB
grammar containing only types of the form

p (p / q) ((p / q) / r)

where p, q, r stand for primitive types.

PROOF : This theorem is an immediate consequence of propositions
3 and 2 to be proved below using Greibach normal form theorem
that is now famous. This enables a simpler proof. �

17



Example: a tiny AB grammar

Word Type(s)
cosa (S / (S / np))

guarda (S / vp)
passare (vp / np)

il (np / n)
treno n

guarda passare il treno : S indeed:

(S / vp) (vp / np) (np / n) n
−→ (S / vp) (vp / np) np
−→ (S / vp) vp
−→ S
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The derivation tree for this analysis can be written as:

[/e
(S / vp) [/e

(vp / np) [/e
(np / n) n]]]

cosa guarda passare not ok, since no rule can reduce the sequence

(S / (S / np))(S / vp)(vp / np)
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From CFG to AB grammars
Proposition 2 Every ε-free Context-Free Grammar in Greibach
normal form is strongly equivalent to an AB categorial grammar. Thus
every ε-free Context-Free grammar is weakly equivalent to an AB
categorial grammar.

PROOF : Let us consider the following AB grammar:

I Its words are the terminals of the CFG.

I Its primitive types are the non terminals of the CFG.

I Lex(a), the finite set of types associated with a terminal a
contains the formulae ((· · · ((X /Xn)/Xn−1)/ · · · )/X2)/X1

such that there are non terminals X,X1, . . . , Xn such that
X −→ aX1 · · ·Xn is a production rule.

It is then easily observed that the derivation trees of both
grammars are isomorphic. �
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From AB grammars to CFG

Proposition 3 Every AB grammar is strongly equivalent to a CFG in
Chomsky normal form.
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PROOF : Let G be the CFG defined by:

I Terminals T are the words of the AB grammar.

I Non Terminals NT are all the subtypes of the types appearing
in the lexicon of the AB grammar — a type is considered to be a
subtype of itself.

I The production rules are of two kinds:

�X −→ a whenever X ∈ Lex(a)

�X −→ (X / Z)Z and X −→ Z(Z \X) for all X,Z ∈ NT
— beware that from the CFG viewpoint (Z \X) or (X / Z)
is a single non terminal.

�
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Learnability of rigid AB grammars

Rigid: one type per word. Contains non regular languages, but does
not contain all of them. Some context free languages, but not even all
regular languages.

Rigid AB grammars are learnable from structures from positive
examples in Gold sense.

Buskowski & Penn algorithm 1990

Proof of convergence (in Gold sense) by Kanazawa 1994
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A learning function maps finite sets of examples to a grammar which
generates the examples in the set. Here examples are parse tree as
the one produced by an AB, grammar with rules but no type
associated with words.

Given any tree language T generated by an AB grammar and any
enumeration of it t1, t2, ..., there exists an integer N such that for all
n > N , the language generated by the AB grammar
φ({t1, . . . , tN , . . . , tn}) is L.

Here language are parse trees, hence examples are trees as well.

I Assign types to the leaves of the examples {t1, . . . , tn}
I Unify them (make the several types per word one).

I The resulting grammar if any is φ({t1, . . . , tn})

If the examples are from an AB tree language, φ of a finite set of
examples always exists and can be easily computed.

φ converges in the aforementioned sense.
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Learning example

(1) [\e[/e
a man ] swims ]

(2) [\e[/e
a fish ][\e swims fast ]]

Typing:

(3) [S/e
[x2
\e a:(x2 / x1) man:x1] swims:(x2 \ S)]

(4) [S\e[
y2
/e

a:(y2 / y3) fish:y3][
(y2\S)
\e swims:y1 fast:(y1 \ (y2 \ S))]]
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We end up from the previous steps with several types per word. For
instance the examples above yields:

(5)
word type1 type2

a: x2 / x1 y2 / y3

fast: y1 \ (y2 \ S)
man: x1

fish: y3

swims: x2 \ S y1

Unification:

(6)
σu(x1) = z1

σu(x2) = z2

σu(y1) = z2 \ S
σu(y2) = z2

σu(y3) = z1
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which yields the rigid grammar/lexicon:

(7)
a: z2 / z1

fast: (z2 \ S) \ (z2 \ S)
man: z1

fish: z1

swims: z2 \ S
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Key idea for the convergence

Define G @ G′ as the reflexive relation bewteen G and G′ which
holds when there exists a substitution σ such that σ(G) ⊂ G′ which
dos not identify different types of a given word, but this is always the
case when the grammar is rigid — σ(G) ⊂ G′ is a reflexive relation
bewteen G and G′ which holds whenever every assignment a : T in
G is in G′ as well — in particular when G′ is rigid, so is G, and they
are equal. @ is an order between grammars.

If the examples arise from a language, unification never fails, but
increase the size of the grammar, and there are finitely many
grammars below the one to reach.

As opposed to human learning, the language increases instead of
specialising to the target language (except using semantics, variant
by Tellier).
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Limitations of AB-grammars

(t / u) and (u / v) does not yield (t / v)

Cosa guarda passare?.

(S / (S / np)) (S / vp) (vp / np)
(trans.)−→ (S / (S / np)) (S / np)
−→ S

that/whom, should be (n \ n) / (S / np) hence we would need a
verb np \ (S / np), unnatural

Maths question: categories = subsets of a free monoid, could there
be completeness? (No, see later)
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Product free Lambek grammars
and calculus
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Grammar

With the same notion of lexicon and of grammar,

w1 · · ·wn, is of type u whenever there exists for each wi a type ti in
Lex(wi) such that t1 · · · tn −→ u

t1 · · · tn −→ u will be defined by adding extra rules and will be
denoted by t1 · · · tn ` u
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Rules

We have two more rules:

this rule requires at least two free hyp.

A left most free hyp.
. . . [A] . . . . . .

···
B \i binding A

A \B

∆···
A

Γ···
A \B \eB
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this rule requires at least two free hyp.

A right most free hyp.
. . . . . . [A] . . .

···
B /i binding A

B / A

Γ···
B / A

∆···
A /eB
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Natural deduction in Gentzen style
6= sequent calculus

Γ ` A ∆ ` A \B \e
Γ,∆ ` B

A,Γ ` C \i Γ 6= ε
Γ ` A \ C

∆ ` B / A Γ ` A /e
∆,Γ ` B

Γ, A ` C /i Γ 6= ε
Γ ` C / A

axiom
A ` A
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An example

Here we take up again our small example of an Italian lexicon:

Word Type(s)
cosa (S / (S / np))

guarda (S / vp)
passare (vp / np)

il (np / n)
treno n

Transitivity of /, Cosa guarda passare with the Lambek calculus (we
use Natural Deduction in Gentzen style):
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(S / (S / np)) ` (S / (S / np))

(S / vp) ` (S / vp)

(vp / np) ` (vp / np) np ` np /e
(vp / np), np ` vp /e

(S / vp), (vp / np), np ` S /i
(S / vp), (vp / np) ` S / np /e

(S / (S / np)), (S / vp), (vp / np) ` S

Variables ∼ traces in chomskyan terms?
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Some changes

Allows to reaarrange brackets in the Lambek calculus:
(a \ b) / c ` a \ (b / c), etc.

Fine with object relatives introduced by whom/that having the type
(n \ n) / (S / np) with the unique category (np \ S) / np for a
transitive verb.

x ` (z / x) \ z and x ` z / (x \ z) hold for every categories x and z.

From a semantic viewpoint: an np (an individual) can be viewed as a
(S / np) \ S or S / (np \ S) (a function form one place predicates to
truth values) that is the set of all the properties of this individual.
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The empty sequence
A \B requires an A object before

if ` A then the empty sequence can be provided

a: np / n

rather (n / n) / (n / n) ... rather boring: (n / n)

adj: n / n (provable)

a rather book ???

a :np / n

rather :(n / n) / (n / n)

[n]α /i−α
n / n /e

n / n book :n /en /enp
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Normalization of natural deduction

. . . . . . [A]α . . .··· δ′
B /i−α

B / A

∆··· δ
A/eB

∆··· δ
A

. . . [A]α . . . . . .··· δ′
B \i−α

A \B \eB

Whenever such a configuration appears, it can be reduced as follows:

1. find the hypothesis A which has been cancelled in the proof δ′ of
B under some hypotheses including A

2. replace this hypothesis with the proof δ of A
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So the configurations above reduce to:

∆··· δ
. . . . . . A . . .··· δ′

B

∆··· δ
. . . A . . .··· δ′

B
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Proposition 4 Natural deduction for L without product enjoys strong
normalization, that is there are no infinite reduction sequences. (size
decreases)

Proposition 5 Normalization is a locally confluent process. (they do
not overlap)

A principal branch leading to F a sequence H0, . . . , Hn = F of
formulae of a natural deduction tree such that:

IH0 is a free hypothesis

IHi is the principal premise — the one carrying the eliminated
symbol — of an elimination rule whose conclusion is Hi+1

IHn is F
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Using this notion, by induction, one obtains:

Proposition 6 Let d be a normal natural deduction (without product),
then:

1. if d ends with an elimination then there is a principal branch
leading to its conclusion

2. each formula in d is the sub-formula of a free hypothesis or of the
conclusion
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Here is a proposition of Cohen 1967 needed to prove that every
context free grammar is weakly equivalent to a Lambek grammar. It
can be easily obtained using the normalisation result, and the
subformula property for normal deduction.

Let us call the order o(A) of a formula A the number of alternating
implications:

I o(p) = 0 when p is a primitive type

I o(A \B) = max(o(A) + 1, o(B))

I o(B / A) = max(o(A) + 1, o(B))

Proposition 7 A provable sequent A1, . . . , An ` p of the product
free Lambek calculus with o(Ai) ≤ 1 and p a primitive type is
provable with \e and /e only — in other words AB derivations and L
derivations coincide when types are of order at most one.
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Lambek calculus
and Montague semantics
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Semantic types: e: entities, t: truth values

types ::= e | t | types→types

Constant Type
∃ (e→t)→t
∀ (e→t)→t
∧ t→(t→t)
∨ t→(t→t)
⊃ t→(t→t)

and proper constants for the denotation of the words in the lexicon:
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likes λxλy (likes x) y x : e, y : e, likes : e→(e→t)
<< likes >> is a two-place predicate

Pierre λP (P Pierre) P : e→t, Pierre : e
<< Pierre >> is viewed as

the properties that << Pierre >> holds

Higher order logic in simply typed lambda calculus as Church did.

e→t: e common noun like chair or an intransitive verb like sleep

e→(e→t) a transitive verb like takes
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Morphism from syntactic types to semantic types:

(Syntactic type)∗ = Semantic type
S∗ = t a sentence is a proposition
np∗ = e a noun phrase is an entity
n∗ = e→t a noun is a subset of the set of

entities

(a \ b)∗ = (b / a)∗ = a∗ → b∗ extends ( )∗ to all syntactic types

The lexicon associates to each syntactic type tk ∈ Lex(m) of a word
m a λ-term τk whose type is precisely t∗k, the semantic counter part
of the syntactic type tk.
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Input for the algorithm computing the semantics

I a syntactic analysis of m1 . . .mn in Lambek calculus, that is a
proof D of
t1, . . . , tm ` S and

I the semantics of each word m1,. . . et mn, that are λ-terms
τi : t∗i ,
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The algorithm computing the semantics

1. Replace every syntactic type in D with its semantic counterpart;
since intuitionistic logic extends the Lambek calculus the result D∗
of this operation is a proof in intuitionistic logic of
t∗1, . . . , t

∗
n ` t = S∗.

2. Via the Curry-Howard isomorphism, this proof in intuitionistic logic
can be viewed as a simply typed λ-term D∗λ which contains one
free variable xi of type t∗i per word mi.

3. Replace in D∗λ. each variable xi by the λ-term τi — whose type is
also type t∗i , so this is a correct substitution.

4. Reduce the resulting λ-term: this provides the semantics of the
sentence (another syntactic analysis of the same sentence can
lead to a different semantics).

Every normal λ-term of type t without free variables (with solely
bound variables and constants) correspond to a formula of predicate
calculus.
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The previous algorithm relies on;

I embedding of L in intuitionistic logic,

I normalisation of type lambda terms

I predicate logic in typed lambda calculus

Let us see this at work:
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word syntactic type u
semantic type u∗

semantics : λ-term of type u∗

xv means that the variable or constant x is of type v
some (S / (np \ S)) / n

(e→t)→((e→t)→t)
λPe→t λQe→t (∃(e→t)→t (λxe(∧t→(t→t)(P x)(Q x))))

statements n
e→t
λxe(statemente→t x)

speak about (np \ S) / np
e→(e→t)
λye λxe ((speak aboute→(e→t) x)y)

themselves ((np \ S) / np) \ (np \ S)
(e→(e→t))→(e→t)
λPe→(e→t) λxe ((P x)x)
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Let us first show that Some statements speak about themselves.
belongs to the language generated by this lexicon. So let us prove (in
natural deduction) the following :

(S / (np\S))/n , n , (np\S)/np , ((np\S)/np)\ (np\S) ` S

using the abbreviations So (some) Sta (statements) SpA (speak about)
Refl (themselves) for the syntactic types :

So ` (S/(np\S))/n Sta ` n /e
So, Sta ` (S/(np\S))

SpA ` (np\S)/np Refl ` ((np\S)/np)\(np\S) \e
SpA, Refl ` (np\S) /e

So, Sta, SpA, Refl ` S

52



Using the homomorphism from syntactic types to semantic types we
obtain the following intuitionistic deduction, where So

∗, Sta∗, SpA∗, Refl∗

are abbreviations for the semantic types respectively associated with
the syntactic types: So, Sta, SpA, Refl :

So
∗ ` (e→t)→(e→t)→t Sta

∗ ` e→t→e
So
∗, Sta∗ ` (e→t)→t

SpA
∗ ` e→e→t Refl

∗ ` (e→e→t)→e→t→e
SpA
∗, Refl∗ ` e→t →e

So
∗, Sta∗, SpA∗, Refl∗ ` t

53



The λ-term representing this deduction simply is

((some statements) (themsleves speak about)) of type t

where some,statements,themselves,speak about are variables with
respective types

So
∗, Sta∗, Refl∗, SpA∗

Let us replace these variables with the semantic λ-terms (of the
same type) which are given in the lexicon. We obtain the following
λ-term of type t (written on two lines) that we reduce:
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((
λPe→t λQe→t (∃(e→t)→t (λxe(∧(P x)(Q x))))

)(
λxe(statemente→t x)

))((
λPe→(e→t) λxe ((P x)x)

)(
λye λxe ((speak aboute→(e→t) x)y)

))
↓ β(

λQe→t (∃(e→t)→t (λxe(∧t→(t→t)(statemente→t x)(Q x))))
)(

λxe ((speak aboute→(e→t) x)x)
)

↓ β(
∃(e→t)→t (λxe(∧(statemente→t x)((speak aboute→(e→t) x)x)))

)
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The previous term represent the following formula of predicate
calculus (in a more pleasant format) :

∃x : e (statement(x) ∧ speak about(x, x))

This is the semantics of the analysed sentence.
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Discussion
Fine point: compositionality at work with neat logical tools.

Technical difficulty: how to extend the syntax while keeping this
correspondence? Abstract Categorial Grammars (for tree grammars)
or Categorial Minimalist Grammars.

IMHO Intermediate language (despised by Montague) much more
exciting than models and possible worlds.

What would be a good interpretation?

Discourse and DRT like objections solved by λ DRT or de Groote with
contexts as argument.

IMHO main problem is lexical semantics: how to integrate relation
between the predicates and constants in the model. It is related to a
good interpretation without too much unfolding without too much
knowledge representation.
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Lambek syntactic calculus 2:
with product, sequent calculus
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Also at the end we wont use it, the proof of the context-freeness of
Lambek languages is easier with product and sequent calculus. SO
we have a new connective A •B which means an A followed by a B.

Lp ::= P | Lp \ Lp | Lp / Lp | Lp • Lp
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Sequent calculus
Γ, B,Γ′ ` C ∆ ` A \h
Γ,∆, A \B,Γ′ ` C

A,Γ ` C \i Γ 6= ε
Γ ` A \ C

Γ, B,Γ′ ` C ∆ ` A /h
Γ, B / A,∆,Γ′ ` C

Γ, A ` C /i Γ 6= ε
Γ ` C / A

Γ, A,B,Γ′ ` C •h
Γ, A •B,Γ′ ` C

∆ ` A Γ ` B •i
∆,Γ ` A •B

Γ ` A ∆1, A,∆2 ` B cut
∆1,Γ,∆2 ` B

axiom
A ` A

Here is an obvious proposition, known as η-expansion:
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Proposition 8 Every axiom A ` A can be derived from axioms
p ` p, with p being a primitive type (and the proof does not use the
cut rule).

The polarity of an occurrence of a propositional variable p in a
formula is defined as usual:

I p is positive in p

I if p is positive in A, then

� p is positive in X • A, A •X , X \ A, A / X

� p is negative in A \X , X / A

I if p is negative in A, then

� p is negative in X • A, A •X , X \ A, A / X

� p is positive in A \X , X / A
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The polarity of an occurrence of a propositional variable p in a
sequent Γ ` C is:

I if p is in C, the polarity of p in C

I if p is in a formula G of Γ, the opposite of the polarity of p in G.

One can use only axioms p ` p with p a primitive type.

Proposition 9 Each propositional variable has exactly the same
number of positive and negative occurrences in a provable sequent.

62



An example

Cosa guarda passare : bis repetita placent

S ` S

S ` S vp ` vp /h
S / vp, vp ` S np ` np /h
S / vp, vp / np, np ` S /i
S / vp, vp / np ` S / np /h

(S / (S / np)), S / vp, vp / np ` S
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Cut-elimination for sequent
calculus

Proposition 10 In a cut-free proof of A1, . . . , An ` An+1 every
formula of every sequent is a sub-formula of some formula Ai

(1 ≤ i ≤ n + 1).

PROOF : By case inspection it is easily observed that every rule of the
sequent calculus but the cut rule, satisfies the property that every
formula in its premise sequent(s) is a sub-formula of some formula
in its conclusion sequent. �
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Proposition 11 Every proof of a given sequent Γ ` A can be turned
into a cut free proof of the same sequent — all formulae in the
cut-free proof being sub-formulae of the sequent Γ ` C.

PROOF : Much easier than for classical logic: no contraction, no
weakening. We can permute rules for having dual rules both
creating a cut of maximal degree, and then one of the reduction
patterns applies. �

Proposition 12 There is an algorithm which decides whether a
sequent is derivable in L. This result can be viewed as a converging
parsing algorithm.

PROOF : Assume we want to prove a sequent. Since the cut rule is
not needed, we have finitely many rules to try, each of these rules
leading to prove one or two smaller sequents �
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Tthe interpolation theorem for Lambek calculus which appeared in
the thesis of Roorda . It’s somehow the converse of cut-elimination,
proving by axioms and cuts... as a CFG. It can be proved for product
free Lambek calculus, but it’s more difficult. Here, a boring induction
is enough.

Proposition 13 Let Γ,∆,Θ ` C be a provable sequent in L, with
∆ 6= ε. There exists an interpolant of ∆ that is a formula I such that:

1. ∆ ` I

2. Γ, I,Θ ` C

3. ρp(I) ≤ ρp(∆) for every primitive type p

4. ρp(I) ≤ ρp(Γ,Θ, C) for every primitive type p
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Equivalence of sequent calculus
and natural deduction
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From natural deduction to sequent
calculus

From natural deduction to sequent calculus

(One can do better)
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Replace: with:

∆ ` A Γ ` A \B \e
∆,Γ ` B Γ ` A \B

∆ ` A
ax

B ` B \h
∆, A \B ` B cut

∆,Γ ` B

Γ ` B / A ∆ ` A /e
Γ,∆ ` B Γ ` B / A

∆ ` A
ax

B ` B /h
B / A,∆ ` B cut

Γ,∆ ` B

Γ ` A •B ∆, A,B,Θ ` C •e
∆,Γ,Θ ` C Γ ` A •B

∆, A,B,Θ ` C •h
∆, A •B,Θ ` C cut

∆,Γ,Θ ` C
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From sequent calculus to natural
deduction

From sequent calculus to natural deduction

By induction on the height of a sequent calculus proof, let us see that
it can be turned into a natural deduction. As above, we will not exhibit
a translation from cut free proofs to normal deductions, although it is
possible.

I If the proof consists in an axiom, its translation is obvious.

I If the proof ends with an introduction rule, \i, /i or •i by induction
hypothesis we have a deduction of the premise(s) and as these
rules also exist in natural deduction and the translation is obvious.

70



I If the proof ends with an \h rule:

··· γ
Γ, B,Γ′ ` C

··· δ
∆ ` A\h

Γ,∆, A \B,Γ′ ` C
then by induction hypothesis we have two natural deduction
proofs, γ∗ of Γ, B,Γ′ ` C and δ∗ of ∆ ` A and a translation of
the whole proof is:

Γ

∆··· δ
A A \B \eB Γ′··· γ

C

I If the proof ends with /h we proceed symmetrically.
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I If the proof ends with •h:
··· γ

Γ, A,B,Γ′ ` C•h
Γ, A •B,Γ′ ` C

by induction hypothesis we have a proof γ∗ of Γ, A •B,Γ′ ` C
and a translation is the following:

A •B

Γ A B Γ′··· γ∗
C•eC
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I If the proof ends with a cut:

··· γ
Γ ` X

··· δ
∆, X,∆′ ` CcutC

by induction hypothesis we have two natural deductions γ∗of
Γ ` X and δ∗ of ∆, X,∆′ ` C and a translation is:

Γ··· γ∗
∆ X ∆′··· δ
C
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Models for the Lambek calculus:
soundness and completeness
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Residuated semi-groups and the
free group model

Let us call a residuated semi-group, a structure (M, ◦, \\, //,@)
where

IM is a set.

I ◦ is an associative composition over M — (M, ◦) is a semi-group.

I \\ and // are binary composition law on M .

I @ is an order on M .

Satisfying a the property (RSG) of next slide.
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(RSG) The following order relations are either all true or all false:

a @ (c // b)

(a ◦ b) @ c

b @ (a \\ c)
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Proposition 14 In a residuated semi-group (M, ◦, \\, //,@), for all
a, b, x, y ∈M one has:

1. a @ b ⇒ (a ◦ x) @ (b ◦ x)

2. a @ b ⇒ (x ◦ a) @ (x ◦ b)

3.

 a @ b
and
x @ y

 ⇒ (a ◦ x) @ (b ◦ y)

In other words, a residuated semi-group is in particular an ordered
semi-group.
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Given a residuated semi-group, an interpretation [. . .] is a map from
primitive types to elements in M , which extends to types and
sequences of types in the obvious way:

[A,B] = [A] ◦ [B] [A \B] = [A] \\ [B]

[A •B] = [A] ◦ [B] [B / A] = [B] // [A]

A sequent Γ ` C is said to be valid in a residuated semi-group
whenever [Γ] @ [C].
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The free group model

The free group interpretation for L is

I a particular residuated semi-group where

� (M, ·) is the free group over the propositional variables,

� a \\ b is a−1b

� b // a is ba−1

� a @ b is a = b (the discrete order)

� (RSG) holds: ab = c ≡ a = cb−1 ≡ b = a−1c

I standard interpretation [p] = p
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L sound w.r.t. residuated semi-groups (next proposition) hence
Γ ` C entails one has [Γ] = [C] in the free group.

The free group model is of course not complete: indeed it interprets `
by a symmetrical relation (=) while ` is not symmetrical:
n ` s / (n \ s) is provable but not s / (n \ s) ` n.

This model will be especially important for converting Lambek
grammars into Context-Free Grammars.
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L is sound and complete w.r.t.
residuated semi-groups

An easy induction yields:

Proposition 15 A provable sequent is valid in every residuated
semi-group, for every interpretation of the primitive types.

A standard Lindenbaum algebra construction yields:

Proposition 16 A sequent which is valid in every residuated
semi-group is derivable.
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L is sound and complete w.r.t.
(free) semi-group models

Much ore interesting: a category x is interpreted by the set of strings
whose category is x.

Given a semi-group (W, .) a set W with an associative composition
”.” one defines a residuated semi-group by:

IM = 2W

I A ◦B = {ab | a ∈ A and b ∈ B}

I A \\B = {z | ∀a ∈ A az ∈ B}

I B // A = {z | ∀a ∈ A za ∈ B}

I A @ B whenever A ⊂ B (as sets).
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It is easily seen that this structure really is a residuated semi-group:

I ◦ is associative:

(A◦B)◦C = {abc | a ∈ A and b ∈ B and c ∈ C} = A◦(B◦C)

I ⊂ is an order on 2W

(RSG) The following statements are clearly equivalent:

(A ◦B) ⊂ C : ∀a ∈ A ∀b ∈ B ab ∈ C
A ⊂ (C // B) : ∀a ∈ A a ∈ (C // B)
B ⊂ (A \\ C) : ∀b ∈ B b ∈ (A \\ C)
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What is of special interest are free semi-group models, since there
are no equations between sequences of words. The following result
may be understood as L is the logic of free semi-groups:

Proposition 17 Product free L is complete over free semi-group
models. So is L with product, but it is much more complicated to
establish.

PROOF : Take as semi-group the finite non empty sequences of
formulae F+, endowed with concatenation
(A1, . . . , An) · (B1, . . . , Bp) = A1, . . . , An, B1, . . . , Bp.

For a primitive type p define [p] by {Γ | Γ ` p}.
Let us firstly see that for every formula F , the set of finite
sequences [F ] defined inductively from the [p]’s by the definition of
\\ and // is precisely Ctx(F ) = {∆ | ∆ ` F}.
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We proceed by induction on F . Is F if some primitive type, it is the
definition. Now assume that [G] = Ctx(G) and [H ] = Ctx(H)
and let us see that [G \H ] = Ctx(G \H) — the case H / G
being symmetrical.

Ctx(G \H) ⊂ [G \H ] Let ∆ be a sequence such that
∆ ∈ Ctx(G \H) that is ∆ ` G \H (1) and let us see that for
every Θ ∈ [G] we have Θ,∆ ∈ [H ] — which entails
∆ ∈ [G \H ]. By induction hypothesis we have Ctx(G) = [G]
so Θ ` G (2). From (1) and (2) we obtain Θ,∆ ` H , so
Θ,∆ ∈ Ctx(H). Since by induction hypothesis
Ctx(H) = [H ] we have Θ,∆ ∈ [H ]. As this holds for every Θ
we have ∆ ∈ [G \H ].
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[G \H ] ⊂ Ctx(G \H) Let ∆ be a sequence such that
∆ ∈ [G \H ]. Let us show that ∆ ` G \H . Since G ` G we
have G ∈ Ctx(G) and by induction hypothesis G ∈ [G]. By
definition of [G \H ] we thus have G,∆ ∈ [H ] and, since by
induction hypothesis we have [H ] = Ctx(H) we obtain
G,∆ ` H . Now, by the \i introduction rule we obtain
∆ ` G \H , that is ∆ ∈ Ctx(G \H).

If a sequentA1, . . . , An ` C is valid in this model under this
interpretation, what does it means? We have
[A1] ◦ · · · ◦ [An] ⊂ [C] and as Ai ∈ [Ai] we have
A1, . . . , An ∈ [C] that is A1, . . . , An ` C. �
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Lambek grammars
and context-free grammars:

Pentus’s proof of Chomsky conjecture
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From context-free grammars to
Lambek grammars

Surprisingly not completely straightforward... but not difficult.

We have seen that any AB grammar is weakly equivalent to an AB
grammar only containing types of order at most 1 with categories
p (p / q) ((p / q) / r).

Now, by Cohen’s proposition a sequent A1, . . . , An ` S with
o(Ai) ≤ 1 is provable with AB residuation rules only if and only if it is
provable in L. Consequently the language generated by an AB
grammar with types of order at most 1 coincide with the language
generated by the Lambek grammar with the same lexicon.
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Using the weak equivalence between AB grammars and context-free
grammars (propositions 3 and 2) we have the result of :

Proposition 18 Every ε-free context-free grammar is weakly
equivalent to a Lambek grammar.
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A property of the free group

Let w be an element of the free group; then ‖w‖ stands for the length
of the reduced word corresponding w — e.g. ‖cb−1a−1abc‖ = 2.

Proved by Nivat 1971, Autebert Boasson Sénizergues 1984, Pentus
1992,...

Proposition 19 The two following properties of the free group hold:

1. Let u, v, w be elements of the free group; if ‖u‖ < ‖uv‖ and
‖uv‖ ≥ ‖uvw‖ then ‖vw‖ ≤ max(‖v‖, ‖w‖).

2. Let ui i = 1, . . . , n + 1 be elements of the free group with
u1 · · · · · un+1 = 1. Then there exists k ≤ n such that

‖ukuk+1‖ ≤ max(‖uk‖, ‖uk+1‖)
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Interpolation for thin sequents

A sequent Γ ` C is said to be thin whenever it is provable and
ρp(Γ, C) is at most 2 — where ρp(Θ) is the number of occurrences of
a primitive type p in Θ.

In a thin sequent Γ ` C the number ρp(Γ, C) is either 0 or 2.

Here is a proposition which is very representative of multiplicative
calculi, in which a formula is neither contracted or weakened:

Proposition 20 Each provable sequent may be obtained from a thin
sequent by substituting primitive types with primitive types.
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PROOF : Given a cut free proof d with only primitive axioms of a
sequent Γ ` C, number the axioms and replace each axiom p ` p
by pi ` pi where i is the number of the axiom, and also replace all
the traces of this occurrence of p in the proof with pi. Clearly the
result is itself a proof of a sequent Γ′ ` C ′, which contains exactly
two or zero occurrences of each primitive type, and which gives
back Γ ` C when each pi is substituted with p. �
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Proposition 21 Let Γ,∆,Θ ` C be a thin sequent. Then there exists
a formula B such that:

1. ∆ ` B is thin

2. Γ, B,Θ ` C is thin

3. |B| = ‖[∆]‖— the number of primitive types in B is the size of
the interpretation of ∆ in the free group.
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Proposition 22 Let A1, . . . , An ` An+1 be a thin sequent with
|Ai| ≤ m; then either:

I there exists an index k and a type B with |B| ≤ m such that the
following sequents are thin:

A1, . . . , Ak−1, B,Ak+2, . . . , An ` An+1

Ak, Ak+1 ` B

I there exist a type B with |B| ≤ m such that the following
sequents are thin:

B,An ` An+1

A1, . . . , An−1 ` B
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From Lambek grammars to
context-free grammars

Proposition 23 If a sequent A1, . . . , An ` An+1 with each |Ai| ≤ m
is provable in L, then it is provable from provable sequents U, V ` X
or U ` X with |U |, |V |, |X| ≤ m by means of the cut rule only.
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PROOF : We proceed by induction on n. If n ≤ 2 then there is nothing
to prove. Otherwise, let A′1, . . . , A

′
n ` A′n+1 be a corresponding

thin sequent obtained as in proposition 20 — using a different
primitive type for each axiom in the proof of A1, . . . , An ` An+1.
Thus there exists a substitution σ replacing primitive types with
primitive types and preserving provability such that σ(A′) = A.

As the substitution replaces primitive types with primitive types, we
also have |A′i| ≤ m. By proposition 22 there exists a formula B′

with |B| ≤ m such that either:
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I A′1, . . . , A
′
k−1, B

′, A′k+2, . . . , A
′
n ` A′n+1

A′k, A
′
k+2 ` B′

are thin, and therefore provable. Let B = σ(B′), so B has at
most m primitive types as well; applying the substitution we
obtain two provable sequents
A1, . . . , Ak−1, B,Ak+2, . . . , An ` An+1

Ak, Ak+1 ` B.
By induction hypothesis

A1, . . . , Ak−1, B,Ak+2, . . . , An ` An+1 (∗)
is provable from provable sequents U, V ` X or U ` X with
|U |, |V |, |X| ≤ m by means of the cut rule only.
Notice that Ak, Ak+1 ` B (∗∗) is of the form U, V ` X with
|U |, |V |, |X| ≤ m.
A cut rule between the proof of (∗) and (∗∗) yields a proof of

A1, . . . , An ` An+1

from provable sequents U, V ` X or U ` X with
|U |, |V |, |X| ≤ m by means of the cut rule only.
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I B′, A′n ` A′n+1 and A1, . . . , An−1 ` B are thin and therefore
provable. Let B = σ(B′), so |B| ≤ m; applying the
substitution we obtain two provable sequents
B,An ` An+1

A1, . . . , An−1 ` B.
By induction hypothesis

A1, . . . , An−1, B ` An+1 (+)
is provable from provable sequents U, V ` X or U ` X with
U, V,X having at most m primitive types by means of the cut
rule only. Notice that B,An ` An+1 (++) is of the form
U, V ` X with |U |, |V |, |X| ≤ m.
A cut rule between the proof of (+) and (++) yields a proof of

A1, . . . , An ` An+1

from provable sequents U, V ` X or U ` X with
|U |, |V |, |X| ≤ m by means of the cut rule only.

�
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Theorem 24 Let Lex be the lexicon of a Lambek grammar GL, and
let and let m the maximal number of primitive types in a formula of
the lexicon. Then the language L(GL) generated by GL is the same
as the language L(GC) generated by the following context-free
grammar GC :

I Terminals: terminals (words) of GL

I Non-Terminals: all formulae A with |A| ≤ m

I Start symbol S, the one of GL

IX −→ a whenever X ∈ Lex(a)

IX −→ A whenever A ` X is provable in L

IX −→ AB whenever A,B ` X is provable in L
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Observe that the rules are in finite number, because there are finitely
many sequents U, V ` X or U ` X when U, V,X contains at most
m primitive types — hence there are only finitely many provable such
sequents.

PROOF : Assume a1 · · · an ∈ L(GC). Hence there exist types
Xi ∈ Lex(ai) such that S −→ X1 · · ·Xn. The derivation in the
CFG GC can be turned into a derivation in L using only the cut
rule (reversing −→ and `), therefore a1 · · · an ∈ L(GL).

Assume now that a1 · · · an ∈ L(GL). Hence there exist types
Xi ∈ Lex(ai) such that X1, . . . , Xn ` S. By proposition 23 such
a sequent is provable by means of the sequents corresponding to
production rules, and of the cut rule only.

By induction on the size of the cut-only proof, it is easily seen that
the proof corresponds to a derivation in the CFG GC .
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If the proof is reduced to a proper axiom, than this axiom is itself a
production rule.

If the last rule is a cut, say between Γ, B,Θ ` C and ∆ ` B, then
by induction hypothesis we have B −→ ∆ and C −→ ΓB Θ
hence C −→ Γ ∆ Θ. Thus, if a1 · · · an ∈ L(GL), we have
S −→ X1 · · ·Xn with Xi ∈ Lex(Ai); as Xi ∈ Lex(ai) we have
S −→ a1 · · · an. �
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Comments
Pentus results does not mean that Lambek grammars are useless.

Firstly it is a weak equivalence (yielding different syntactic structures)

Secondly, context-free grammars have a very different structure:

I language specific rules

I non structured (meaningless) categories (non terminals)

I learning complicated (not lexicalized, at least with good linguistic
structures)

I correspondence with semantics more difficult

This result suggests to look for extension beyond context-free ness
which keeps this deductive framework in particular for computing
semantic representation. (e.g. Multi Modal Categorial Grammars,
Categorial Minimalist Grammars)
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Outcomes of this restricted CGs

Here we have only seen the simplest logical system for grammar as a
deductive system, a purely logical one: Lambek calculus and
grammars.

A grammar system quite different from standard formal language
theory. (Evidence for the difference: the proofs are already in HR
graph/tree grammars, incomparable with context free tree languages).

Because of its relation to ordinary logic, in particular intuitionistic
logic, perfect for computing logical semantic representation in a way
that impements compositionality).

Because of the lexicalisation and of the structure of the
deductions/parse structure, easy to learn from structure, with a
convergent algorithm.
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Discussion

Pretty mathematical results from formal linguistics motivation.

Assuming the linguistic relevance of the model, are the mathematical
results used?

I The connection with usual logic is clearly used especially for
computing semantic representations.

I The existence of normal proof is used every where, but not the
process of normalisation.

I Free semi group model is appealing, but not really used.

I Learning technique could be used for grammar construction from
corpora (e.g. also works for Lambek grammars Bonato, Retoré)
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Discussion

Is the linguistic model relevant?

The implicit claim is that deduction in a resource logic is related to
linguistic processing and for some of us that the first includes the
second.

I Orthodox view of deduction as parsing Multi Modal Categorial
Grammars (Moortgat) Various connectives assosciative or not,
commutative or not, modality and postulates for relation among
them.
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I Valency consumption(for semantic applciation) by commutative
linear logic Intermediate out and word order as a separate
process:

� completely separate (IG Perrier, ACG de Groote)

� partially separate, with the connectives commutative and not
commutative à la de Groote Abrusci Ruet (CMG Lecomte,
Retoré)
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