QUANTIFICATION IN ORDINARY LANGUAGE from a critic of set-theoretic approaches to a proof-theoretic proposal Vito Michele Abrusci (Università di Roma tre) Christian Retoré (Université de Bordeaux, INRIA, LaBRI-CNRS)

CLMPS M. Abrusci (Roma) & Ch. Retoré (Bordeaux)

CONTENTS

• Initially (lexical semantics in type theory)

- *I put all the books in the cellar,* (physical object) *indeed, i already read them all.* (information content)
- There can be several occurrences of the "same" book.
- Standard quantification (history, linguistic data)
- Models, generalized quantifiers
- Second order and individual concepts
- What is a quantifier (in proof theory)?
 - Generic elements (Hilbert)
 - Cut-elimination
- Conclusion

USUAL QUANTIFICATION

Some, a, there is,... All, each, any, every,...

ARISTOTLE, & SCHOLASTICS (AVICENNA, SCOTT, OCKHAM)

 \circ *A* and *B* are terms

(« term » is vague: middle-age distinction bewteen terms, « suppositionnes », eg. Ockham)

- 1. All A are B
- 2. Some A are B
- 3. No A are B
- 4. Not all A are B
- Rules, syllogisms
- Remarks:
 - Little about models or truth condition
 - Always a restriction (sorts, kinds,?)
 - « not all » is not lexicalized and some *A* are not *B* has a different focus.

FREGE AND ANALYTIC PHILOSOPHY

- Attempt of a deductive system
- A single universe where variables « vary »:
 - All A are B
 - $\forall x(A(x) \rightarrow B(x))$
- Deduction, proofs (Hilbert) using a generic element
- Models, truth condition (Tarski)
- Adequation proofs-models: completeness theorem (Gödel, Herbrand, ~1930)
 - Whatever is provable is true in any model.
 - What is true in every model is provable.
- Extensions:
 - Logical extensions are possible (intuitionistic, modal,...)
 - No satisfying extension to higher order
 - No proper deductive system for generalized quantifiers

HOW DOES ONE ASSERT, USE OR REFUTE USUAL QUANTIFIED SENTENCES

- « For all » introduction rule
 - ${\scriptstyle \circ}$ (how to prove \forall as a conclusion)
 - Derive $\forall x P(x)$, from P(a) for an object a without any particular property, i.e. a generic object \underline{a} .
 - If the domain is known,
 - $\forall x P(x)$ can be inferred from a proof of P(a) for each object *a* of the domain.

The domain has to be finite to keep proofs finite. The Omega rule of Gentzen is an exception.

• « For all » elimination rule

- (how to use \forall as an assumption)
- From $\forall x P(x)$, one can conclude P(a) for any object a.

HOW DOES ONE ASSERT , $\underline{\text{USE}}$ OR REFUTE USUAL QUANTIFIED SENTENCES

• « Exists » introduction <u>rule</u>

- (how to prove **∃** as a conclusion)_:
- <u>if</u> for some object a P(a) is proved, then_we may infer $\underline{\exists} x P(x)$
- « Exists » elimination <u>rule</u>
 - (how to use **∃** as an assumption):
 - If C holds under the assumption P(a), with a only appearing in P(a), and if we know that ∃xP(x), we may infer C without the assumption P(a).

REFUTATIONS

- $\exists x P(x)$: little can be done apart from proving that all do not have the property.
- ∀*xP*(*x*): *Any dog may bite*. this can be refuted in at least two ways:
 - Displaying an object not satisfying P *Rex would never bite*.
 - Asserting that a subset does not satisfy P, thus remainig with generic elements: *Basset hounds do not bite.*
- (ideas around Avicenna) a property is always asserted of a term as part of a class (distinction homogenous/heterogenous predicate) different sorts rather than a single Fregean universe

USUAL QUANTIFICATION IN ORDINARY LANGUAGE EXISTENTIALS

- Existential are highly common: they even are used to structure a discourse as in Discourse Representation Theory.
- Generally with restriction, possibly implicit: human beings, things, events, ...
 - There's a tramp sittin' on my doorstep
 - Some girls give me money
 - Something happened to me yesterday
- Focus is difficult to account for:
 - Some politicians are crooks.
 - ? Some crooks are politicians.

USUAL QUANTIFICATION IN ORDINARY LANGUAGE UNIVERSALS

- Less common but present.
- With or without restriction:
 - Everyone, everything, anyone, anything,...
 - Every, all, each,...
- Generic (proofs), distributive (models)
 - Whoever, every,...
 - All, each,...
- Sometimes ranges over potentially infinite sets:
 - Each star in the sky is an enormous glowing ball of gas.
 - All groups of stars are held together by gravitational forces.
 - He believes whatever he is told.
 - Maths

USUAL QUANTIFICATION IN ORDINARY LANGUAGE UNIVERSAL NEGATIVE

- With or without restriction:
 - No one, nothing, not any, ...
 - No,...
- Generic or distributive:
 - Because no planet's orbit is perfectly circular, the distance of each varies over the course of its year.
 - Porterfield went where no colleague had gone previously this season, realising three figures.
 - I got no expectations.
 - Nothing's gonna change my world.

USUAL QUANTIFICATION IN ORDINARY LANGUAGE EXISTENTIAL NEGATIVE

• Not lexicalised (in every human language?):

- Not all, not every, ...
- Alternative formulation (different focus): some ... are not ... / some ... do not ...
- o Harder to grasp (psycholinguistic tests), frequent misunderstandings (→ nothing, no one)

• Rather generic reading:

- Not Every Picture Tells a Story
- Everyone is *entitled* to an opinion, but *not every* opinion is *entitled* to student government funding.
- Alternative formulation (different focus):
 - Some Students Do Not Participate In Group Experiments Or Projects.

INDIVIDUAL CONCEPTS

13

Alternative view of individuals and quantification

MOTIVATION FOR INDIVIDUAL CONCEPTS

 O Usual semantics with possible worlds: It is impossible to believe that Tullius≠Cicero with rigid designators

- To comme back to the notion of TERM
 - Individuals are particular cases of predicates.
- Quantification is a property of predicates.

FIRST ORDER IN SECOND ORDER: PROOFS

• P is an individual concept whenever IC(P):

- $\forall x \forall y (P(x) \land P(y) \rightarrow x=y)$
- Exists x P(x)
- First order quantification from second order quantification:
 - $\Pi P IC(P) \rightarrow X(P)$
 - ΣP IC(P) & X(P)
- As far as proofs are concerned, this is equivalent to first order quantification – if emptyness is allowed implications only (Lacroix & Ciardelli)

CLMPS M. Abrusci (Roma) & Ch. Retoré (Bordeaux)

MODELS?

• Natural (aka principal models): no completeness

• Henkin models:

completeness and compactness but unnatural,

e.g. one satisfies all the following formulae:

- F₀: every injective map is a bijection (Dedekind finite)
- F_n , $n \ge 1$: there are at least n elements

GENERALIZED QUANTIFIERS

17

Quite common in natural language Central topic in analytic philosophy (models) Proofs and refutations?

DEFINITION

- Generalized quantifiers are operators that gives a proposition from two properties (two unary predicates):
 - A restriction
 - A predicate
- Some are definable from usual first order logic:
 - At most two,
 - Exactly three
- And some are not (from compactness):
 - The majority of...
 - Few /a few ...
 - Most of... (strong majority + vague)
- Observe that Frege's reduction cannot apply:
 - Most students go out on Thursday evening.
 - For most people, if they are student then they go out on Thursday evening

MODELS / PROOFS

• There are many studies about the models, the properties of such quantifiers, in particular monotony w.r.t. the restriction or the predicate.

• Formalisation with cardinality are wrong:

- Most of >>> the majority of
- Most numbers are not prime. Can be found in maths textbooks.
- Test on "average" people:
 - most number are prime (no)
 - most number are not prime (yes)
- No cardinality but measure, and what would be the corresponding generic element? An object enjoying most of the properties?
- Little is known about the proofs (tableaux methods without specific rules, but taking the intended model into account).

« THE MAJORITY OF » ATTEMPT (PROOF VS. REFUTATION)

- Two ways of refuting the majority of (meaning at least 50%) the A have the property P:
 - Only a minority (less than) of the A has the property P
 - There is another property Q which holds for the majority of the A with no A satisfying P and Q.
 - What would be a generic majority element?

DEFINE JOINTLY RULES FOR:

1) THE MAJORITY OF

2) A MINORITY OF

- « For all » entails the « majority of »
- If any property Q which is true of the majority of A meets P, then P holds for the majority of the A (impredicative definition, needs further study)
- A minority of A is NOT P should be equivalent to The majority of A is P
- The majority of does not entail a minority of
- Forall => majority of
- Only a minority => Exists
- A linguistic remark why do we say « The majority » but « A minority » ?

WHAT SHOULD BE THE SHAPE OF QUANTIFIER RULES?

22

Proof-theoretical view: to allow cut-elimination.

CLMPS M. Abrusci (Roma) & Ch. Retoré (Bordeaux)

IN PROOFS, FOR ALL IS NOT A LARGE CONJUNCTION

- Existential rule keep the finiteness of proofs: one is enough, from P(b) infer $\exists x P(x)$.
- Universal rule requires either:
 - A known domain D (what is the status of constants)
 Finite
 - Infinite (loss of the finiteness, recursive descriptions,...)
 → infinite sequents if multiplicative conjunctions
 - Infer ∀x P(x) when P(x) is true of all (each) x in D (Gentzen Omega Rule)
 - A generic element (already in Pythagore)

COMMUNICATION (INTERACTION) BETWEEN PROOFS: CUT RULE Out-rule: two proofs п and ρ may communicate

- (interact) by means of a formula A, i.e. when
 - π ends with a formula A and other formulas Γ
 - ρ ends with the negation $\neg A$ and other formulas Λ
- The communication (interaction) between such a pair of proofs produces a proof which ends with the formulas Γ and the formulas Λ
- Cut-elimination procedure is the development of such a communication (interaction)

A SPECIAL CASE OF COMMUNICATION, LEADING TO QUANTIFIERS RULES.

- A proof π of A(b) under assumptions Γ
- A proof ρ of $\sim A(d)$ under assumptions Λ
- These proofs may be composed (cut) when one of the following cases holds:
 - The object b is the same as the object d (indeed, replace b by d in A(b), or replace d by b in ~A(d))
 - The object b is generic in π (i.e. it does not occur in the formulas Γ) (indeed, replace b by d in A(b)
 - The object d is generic in ρ (i.e. it does not occur in the formulas Λ) (indeed, replace d by b in ~A(d))

GENERIC OBJECTS : HILBERT'S APPROACH

• Rules for τx :

- when $\tau x A(x)$ has the property A, every object has.
- From A(b) with b generic, infer $A(\tau x A(x))$ [$\forall x A(x)$]
- From $\sim A(d)$, infer $\sim A(\tau x A(x)) [\sim \forall x A(x)]$
- So, one reduces to general case of cut rule
- The development of cut rule is: replace $\tau x A(x)$ by d
- Rules for εx:
 - when an object has the property A, $\varepsilon x A(x)$ has property A.
 - From A(b) with b generic, infer $A(\varepsilon x A(x))$ [~ $\exists x A(x)$]
 - From $\sim A(d)$, infer $\sim A(\varepsilon x \sim A(x)) [\exists x \sim A(x)]$
 - So, one reduces to general case of cut rule
 - The development of cut rule is: replace $\varepsilon x \sim A(x)$ by d
- $A(\tau x A(x)) \leftrightarrow A(\varepsilon x A(x))$ [$\forall x A(x)$] • $A(\tau x - A(x)) \leftrightarrow A(\varepsilon x A(x))$ [$\exists x A(x)$]

HILBERT FUNCTIONS & USUAL FREGEAN RULES ARE EQUIVALENT

• The following equivalences hold:

- $\forall x A(x) \leftrightarrow A(\tau x A(x))$
- $\forall x A(x) \leftrightarrow A(\varepsilon x \sim A(x))$
- "Universal quantification"
- The following equivalence hold:
 - $\exists x A(x) \leftrightarrow A(\varepsilon x A(x))$
 - $\exists x A(x) \leftrightarrow A(\tau x \sim A(x))$
 - "Existential quantification"

THE TWO DEFINITIONS ARE **NOT** EQUIVALENT FOR GENERALIZED QUANTIFIERS

- Observe that the Fregean definition of quantifiers with a single universe is not possible with generalized quantifiers. Need of quantifiers operating on two predicates:
 - 1. Most student go out on Thursday nights.
 - 2. For most people if they are students then they go out on Thursday nights.
 - $1 \rightarrow 2$
- But still we can ask whether it is possible to introduce other quantifiers, in this proof-theoretical way.

NEW QUANTIFIERS? (IN PROOF-THEORY)

- Introduce a pair of quantifiers, a variant ∀* of ∀, and a variant ∃* of ∃.
- Decide one of the following two possibilities:
 - $\forall *xA(x)$ implies $\forall xA(x)$ and so $\exists xA(x)$ implies $\exists *xA(x)$
 - $\exists *xA(x)$ implies $\exists xA(x)$ and so $\forall xA(x)$ implies $\forall *xA(x)$
 - (the second one is more natural...)
- May we define in this way the quantifiers "the majority of x" or "most *x* have the property *A*" ... in accordance with the "rules" suggested earlier?

CONCLUSION

30

Of this preliminary work

RULES FOR (GENERALIZED) QUANTIFIERS

- Which properties of quantifier rules guarantee that they behave properly in proofs and interaction?
- Is it possible to define a proof system for some generalized quantifiers?
 - Percentage?
 - Vague quantifiers?
 - • •
- What are the corresponding notions of generic elements?

PREDICATION, SORTS AND QUANTIFICATION

- How do we take into account the sorts, what linguists call the restriction of the quantifier (in a typed system, a kind of ontology)?
- To avoid a paradox of the Fregean single sort:
 - Garance is tall (for a two year old girl).
 - Garance is not tall (as a person, e.g. for opening the fridge).
- One quantifier per type or a general quantifier which specializes? In type theory it would be a single constant of the system F:
 - ForAll/Exists: $P X ((X \rightarrow t) \rightarrow t)$

« If all roads lead to Rome, most segments of the transportation system lead to Roma Termini! »

Blog ``Ron in Rome"

