
Handling logical polysemy
within simple type theory

Christian Bassac, BRUNO MERY, Christian Retoré

November, 1st 2007

Prélude in Pauillac

INRIA Bordeaux Sud-Ouest, Signes
LaBRI (CNRS et Université de Bordeaux)

ERSS (CNRS et Universités de Toulouse et de Bordeaux)

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[1]

Tentative outline after merging slide series at night

• Generative Lexical Semantics

• Linking Lexical Data to Montague Semantics

• Model Outline and examples

• Tightening optional terms and type structure

• Beyond the Lexicon

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[2]

Computational Semantics

• Computing the meaning of sentences via the composition of the meaning of
each lexical item.

• Classical Montague semantics uses straightforward λ -calculus, yet

• Phenomena such as logical polysemy are not so easy to account for:

• While the compositional model is sufficient, the lexical information is not.

• Our goal : to smoothly integrate lexically-induced morphisms within the
Montagovian Framework

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[3]

Pustejovsky’s Generative Lexicon

• In Pustejovky GL book, the lexicon contains enough information to derive the
related senses of a word. For that purpose, lexical entries provide :

1. The item’s argument structure in the form of a typed λ -term.
2. The associated event structure, when needed.
3. Various references to related concepts are included in the qualia structure,

namely a formal quale referring to the properties of the item, a constitutive
quale referring to parts and components, an agentive quale referring to its
origin, and a telic quale referring to its use or purpose.

4. An inheritance structure that places the entry in a hierarchy of types.

• Various elements enable the derivation of related senses and speech figures
such as metonymy.

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[4]

An ontology-based hierarchy of types

>

��
��

�
��
�
��

�
��

�
��

�
��

�
��
�

HH
HH

H
HH

H
HH

H
HH

H
HH

HH
HH

H
HH

Entity

��
�
��

�
��

HH
HH

HH
HH

Natural

��
�

HH
H

River Stone

Artifact

�
��

��

H
HH

HH

Construction

House

Vehicle

��
�

HH
H

Car

Honda

Bus

Event

��
��

HH
HH

Natural

To Fall

Artifact

To Build

Property

�
��
�

H
HH

H

Natural

Heavy

Artifact

Delicate

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[5]

Composition via type coercion

The exploitation of the rich lexical data is made through additional mechanisms
in compositional semantics such as type coercion, which professes that, when an
argument of type α is applied to a predicate expecting to receive one of type β ,
instead of resulting in a type error, the application is valid in the following cases :

1. One of α and β is a subtype of the other: type accommodation, and allows
to consider a Honda as a Vehicle.

2. One of the qualia of β is of type α: qualia-exploitation. A 2 GHz computer.

3. β is actually a compound type with α as one of its aspects. This is
•-exploitation (items that present this behaviour are called “dot objects”)

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[6]

Typical examples of dot objects

• The book was a huge pain to lug home and turned out to be very
uninteresting.

• The lunch was delicious but took for ever.

• ?? The tuna we had yesterday night was lightning fast and delicious

• Dublin is a coastal and mostly Catholic city.

• Bordeaux is willing a new bridge, despite the opposition of the major.

• Mary read the tube’s wall / Cherokee. (dot-introduction)

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[7]

Current Formalizations

• The original Generative Lexicon is detailed but not really formalized.

• Subsequent works by Asher and Pustejovsky, propose type-theoretical
formalisms that model the theory.

• Those models have stumbled upon the peculiar properties of multi-aspectual
items, “dot objects”, and have lead to introduce many complex rules to the
foundations of the logical systems involved.

• Thus, to this day, they remain quite complicated for formal and
computational applications both.

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[8]

Arguments against coercion – Transfers of Meaning

• As Nunberg (and many others) pointed out, simple coercion (i.e. considering
that the term as having changed types) is unsatisfactory.

• Blindly applying coercion rules makes the relation between the original and
final term disappear.

• In some cases, the denotation is strange, as in A is parked out back, or
multi-aspectual words.

• Quantificational and individuation problems also apply.

• Some more complex logical system is needed.

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[9]

Integrating lexically induced references to composition

• The problem is to link references induced by GL, in a meaningful manner, to
logical forms.

• The resulting system should behave like standard logics of composition.

• Pustejovsky builds a type composition logic that ressembles Montague, and
introduces additional variables in parallel to the computing of lexical
inferences, using axiomatic rules.

• Our principle is to keep as close to Montague computational semantics as
possible, and to deduce the links induced from the lexicon on a case-by-case
basis.

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[10]

Adding Lexical Information to Montague Semantics

• Contrary to the previous approaches, we tried to keep the actual semantics of
composition as close to current Montague-standard frameworks as possible.

• Our goal, rather than identifying canonical morphisms such as the “dot” type
construction, is to enable the system to use specific morphisms as provided by
lexically-derived information.

• Thus, to each λ -term as provided by a lexical entry, we add additional,
optional terms representing those morphisms. Each of these terms might then
be employed to change the behaviour and typing of the core term.

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[11]

A model based on Montague with specific morphisms

• Our base : simply-typed λ -calculus, Montague composition with optional
accomodation according to the ontological hierarchy of types.

• Lexically-induced references are modeled within that calculus as optional
terms, that might be provided together with the main λ -term of a given
lexical entry and be used to modify it.

• Thus, the change of type and nature of the terms is not achieved through
coercion, but through the application of explicitly defined, lexical, specific
morphisms.

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[12]

The Various Aspects of Town

Considering an item, New York, of assumed type Town :

Main λ -term Optional terms
x : Town g1 : Town → Locus

g2 : Town → Institution
g3 : Town → People
. . .

Each of the gs representing the relation that links the concept of Town to its
geographical location, ruling body, inhabitants, or other salient aspects.

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[13]

The various aspect of books Book

Thus, an item book could be conceivably of two types, PhysBook or In f oBook
(the physical object and informational content that can both be denoted using
that term). They would convey the following additional terms :

x:PhysBook g1:PhysBook→ In f oBook, fT :PhysBook→ Event
y:In f oBook g2:In f oBook→ Entity, fA:PhysBook→ Agent

Variant: non book type.

Here, g1 is an anchor to the informational content of a (physical) book, while g2

leads to an entity instancing the (conceptual) book. fT refers to the telic (i.e.,
the event of reading the physical book) while fA refers to the agentive (i.e., the
author of the book as information).

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[14]

Two modes of applying optional terms

• There are (at least) two ways of applying optional terms.

• The semantic changes induced by the lexicon might affect every occurrence of
the item (self-adaptation). . .

• . . . Or only the occurrence selected by a predicate (selection-projection).

• The motivation of that distinction is linguistic data pointing out that some
constructs allow co-predication over distinct aspects of a term, while some do
not.

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[15]

Transfer Modes

• A term might be applied lexical morphisms in two fashions :

1. Self-adaptation, a “destructive” operation that changes every reference in
the local context (discounting anaphora).

2. Change after selection, that only affect a particular occurrence and allows
co-predicative sentences.

• Accordingly, we decompose a term T of type α into three parts :

1. The main term T0 : α, that must be consumed.
2. The operators F = { fi : τi→ α} that might be used for self-adaptation.
3. The operators G = {gi : σi→ α} that might be used to change the item

after its selection.

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[16]

Adaptation Terms

Self-adaptation amounts to reducing an expression such as

λx : α.(P x) (y : β)

into
λx : α.(P x) ((fi y))

provided there exists some fi : β → α ∈ Fy.

Several options might be available.

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[17]

Adaptation Example

For a x : Car, the constitutive quale provides a term f : Car→ Engine, f ∈ Fx.
Supposing that Power f ul applies to objects of type Engine :

A powerful car
λy : Engine . (Power f ul y) (x : Car)
λy : Engine . (Power f ul y) ((f x) : Engine)

(Power f ul (f x))

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[18]

Qualia-exploitation

Supposing objects of type Computer have CPU-type objects included in their
constitutive quale, with an adaptation term f :Computer→CPU to access such
processing units. If clock-related predicates only apply to objects of type CPU ,
the following derivation is available :

A 2-GHz computer
∃x:Computer / (λy:CPU.(Clock y)) (x)
∃x:Computer / (λy:CPU.(Clock y)) (f x)

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[19]

Grinding

As well as generic qualia exploitation, adaptation can be used to represent lexical
rules such as grinding. Supposing we have an operator f : Herb→ Food
modeling the use of herbs in cooking, we would have :

Freshly prepared lemongrass
∃x:Herb / (λy:Food.(Fresh y)) (x)
∃x:Herb / (λy:Food.(Fresh y)) (f x)

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[20]

Adaptation is destructive

The point of using adaptation terms is that the operation considered is
destructive, and that every occurrence of the item (modulo anaphoric references)
is changed. Thus, the sentence below is generally unfelicitous :

?? The tuna we had yesterday night was lightning fast and delicious

This is because we attempted to use adaptation with two different, incompatible
types, upon a single variable.

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[21]

Changing Types after Selection

• The operation is to allow some predicates to select arguments of any type,
and, afterwards, to try and obtain a specific type, using optional terms if
necessary.

• Thus, a problematic expression such as :

λx : >.(P (Πα x)) (y : β)

would be reduced into :
(P (gi y))

provided there exists some gi : β → α ∈ GP∪Gy.

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[22]

Projection after selection

• Each term T can also convey a number of distinct terms gi, such that

the expression (λx:>.(P (Πα x)) (y:β)

can be reduced into (P (gi y))

if there is some gi with type β → α available to y or P.

• (λx:>.(P (Πα x)) expresses the fact that the predicate P selects for some x of
any type, and attempts afterwards to enforce the type α, by means of an
additional term if necessary.

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[23]

Co-predication with projection

Conversely, applying terms after the selection of the variable allows constructions
such as co-predication.

Supposing objects of type Town have available, as an alternative aspect, objects
of type People, we can have an operator g:Town→ People representing the link
between a city and its inhabitants. Then the following derivation is available :

Boston is a large city that mostly votes Democrat
∃x:Town / ((λy:Town.(City y))∧ (λ z:>.(Vote (ΠPeople z) (x)
∃x:Town / ((City x)∧ (Vote (ΠPeople x)))
∃x:Town / ((City x)∧ (Vote (g x)))

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[24]

Variants

There are two variants in the type encoding:

• In f oO f Book 7→ PhysO f Book (PhysO f Book 7→ In f oO f Book)

• Book 7→ PhysBook (In f oBook 7→ Book) Book 7→ PhysBook
(In f oBook 7→ Book)

Still these two approaches do not provide a structure for the types of the
so-called dot-types.

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[25]

Differences of Approach

Asher & Pustejovsky Our model
Canonical Morphisms Specific Morphisms

Additional Rules Additional Terms
Conjunctive •-types Single types

Uniform collection of aspects Hierarchical aspects
Type enumeration in the lexicon Morphisms detailed in the lexicon

We will examine some classical examples...

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[26]

Case 1 : Books

A book consists of two immediate aspects, the physical object and the
informational content.

The book was a huge pain to lug home and turned out to be very uninteresting.

book : Book, g1 : Book→ PhysBook,g2 : Book→ In f oBook ∈ Gbook

λx : Book.(T hisBook x),(λy :>.(Huge (ΠPhysical y)))(x)∧

(λ z :>.(Uninteresting (ΠIn f o z)))(x)

which is derived as

λx : Book.(T hisBook x),(Huge (g1 x)∧ (Uninteresting (g2 x))

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[27]

Case 2 : Meals

Lunch was delicious but took forever.

Asher and Pustejovsky use Event •Food for meals.

Our opinion is that meals are primarily of type Event, with some degree of access
to other aspects (including food as a whole and specific parts of the experience).

Supposing we refer to food, we use g : Event→ Food and get, after derivation :

λx : Event. (Lunch x),(Delicious(g x))∧ (Forever x)

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[28]

Case 3 : Readings

In the previous cases, the aspects are intrinsic to the argument. The predicate
might also provide some additional terms, accounting for the phenomenon Asher
and Pustejovsky named •-type introduction occurring in :

Mary read the subway wall

We take read to be λx : A, y : >(Read x (ΠIn f o y)).
The term making “readings” from any suitable objects is

g : Entity.Arti f act→ In f o

.

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[29]

Type internal structure and terms

• So far the types of a polysemic item are unrelated, say Phys,Info,book.

• Possibly the type changes are not as canonical as Asher says,
... but there are neither as unrelated as we say.

• Product works fine but conceptually we do NOT want: 〈π1(u),π2(u)〉= u
A logical individual is not the sum of its components.

• The projection only exists in some cases (lexical property).

• What about A⊗B, with projections provided by the lexicon — only when
they are possible?

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[30]

Exploring ⊗ for lexical polysemy

• This would leads us to something like Book: Info⊗Phys.

• The type change functions would turn out to be projection like:

g : Info⊗Phys 7→ Phys

(a constant g : Info⊥, would do as well with CUT instead of functional
application)

• This complex type opens the door to verbs introducing a new aspect of a
current object such as read: I read the tube’s wall / her hand // Goodbye
Colombus / Meng-Tseu / the history of scholastics /

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[31]

• Reads introduces the other component: I read Small World when I started my
PhD. I wanted to lend it to Pierre, but I’ve lost it.

• Reads really needs an argument having both facets: Info⊗Phys and if one is
missing then some is assumed.

• Lexical function provided by the lexicon g : Info 7→ Info⊗Phys but what does
it do on terms? Introduce an existential quantifier but we prefer a Skolem
function gι of type Info 7→ Phys: g(x) = 〈x,gι(x)〉, and each time this function
is used, a new Skolem symbol is used.

• The freedom in interpreting the Skolem funciton is attested in by discourse
mismatch The opinions on the cover where excessive.

• Semantics of first order linear logic?

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[32]

Beyond lexical data

• We covered so far some intuitions in converting GL-induced data into the
compositional semantics.

• Here, we would expand on additional uses for the general mechanism
introduced here. . .

– Implementation and efficiency of such a framework
– Interpretation and inferences
– Integration of non-lexical data

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[33]

Towards a functional implementation

• The implementation in functional, symbolic programming is straightforward
as application is the only operation needed, Lisp or CaML are well-suited for
the task.

• The specific morphisms can be thought of as methods attached to the class
that models a type in an object-oriented formalism (such as CLOS or
OCaML).

• The difference between adaptation and projection after selection, as well, can
be modeled directly with the difference between passing a variable by
reference and passing a variable by value.

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[34]

Scope and complexity

• The grammatical generative power of the formalism used (e.g., context-free
grammars or MCFG) is not changed.

• However, the semantic generative power will be greater than the canon
simply-typed λ -calculus.

• The precise generative power and increase in computing complexity depends
upon the number of choices made available through additional terms.

• Thus, an efficient implementation of the model would have to severely limit
the number of operators available for any term and of arguments for any
predicate, and probably to use heuristics.

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[35]

Interpretation choice and scoring

• In the course of the derivation, several interpretation might become available
as several operators might be used.

• We might envision a module that scores the interpretation according to the
sum of a semantic distance value contained by each operator, and optionally
that uses pragmatic inference to reject impossible interpretations, considering
the sentence :

Philadelphia wants a new bridge but the mayor is opposing it

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[36]

Adjustments from multiple theoretical sources

• We focused on GL, but the framework is pretty generic by itself.

• If we separate the compositional part and translator modules that integrate
specific morphisms as optional terms, we might model :

– discursive data (as modeled by λ - or S-DRT),
– situational data (such as non-verbal signs),
– cultural assumptions (is a village likely to contain churches or communal

grounds ?),
– additional pragmatic reasoning.

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[37]

Expressing idioms

• Data studied so far are mostly language-independant.

• We envision two ways of dealing with language-specific metaphors and idioms:

1. Listing every expression and use thereof, and defining optional terms that
yield the intended meaning as a logical form : costly and difficult, but
needed for precise understanding and translation.

2. Assuming that each syntactically valid sentence is semantically correct, and
generating underspecified operators to deal with unresolved type clashes :
economical and obviously over-generative.

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

[38]

In conclusion. . .

• We hope to currently have a promising model outline.

• We hope that its simplicity and generality will make it easy for a formalisation
and automated computation of logical forms.

• Specific problems remains : quantification, individuation and counting are
prominent.

• Use and interpretation of linear logic with first order.

Handling logical polysemy within simple type theory — Christian Bassac, BRUNO MERY, Christian Retoré

