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1. Initial Motivation

Girard (93): — Would you be able to find with ”your before
connective” a self dual modality answering this?

“The obvious candidate for a classical semantics was of course coher-
ence spaces which had already given birth to linear logic; the main rea-
son for choosing them was the presence of the involutive linear negation.
However the difficulty with classical logic is to accommodate structural
rules (weakening and contraction); in linear logic, this is possible by con-
sidering coherent spaces ?X . But since classical logic allows contraction
and weakening both on a formula and its negation, the solution seemed
to require the linear negation of ?X to be of the form ?Y , which is a non-
sense (the negation of ?X is !X⊥ which is by no means of isomorphic
to a space?Y ). Attempts to find a self-dual variant §Y of ?Y (enjoying(§Y)⊥ = §Y

⊥ ) systematically failed. The semantical study of classical
logic stumbled on this problem of self-duality for years.” (J.-Y. Girard A
new constructive logic classical logic, MSCS, 1991)



 

2. Today’s Motivation

Renewed interest in Pomset logic and on the related devel-
opments by Guglielmi and Straßburger Calculus of Structure
(SBV) and Deep Inference, a complete sequent calculus for
pomset logic published by Slavnov.

Further more, e.g. for process calculi it makes sense to re-
peat a sequence of operations.



 

3. The category COH : the privileged categor-
ical interpetation of linear logic

Categorical interpretation:

Formula/type : object

proof p ∶ A � B : morphism JpK ∶ A� B

whenever p � p ′ : JpK = Jp ′K.
Hom(A,B) corresponds to an object BA.

CCC intuitionistic logic

COHerence spaces: intially introduced to interpret second
order intutionistic logic because the endofunctor X �→ T [X]
can be represented as a coherence space.

Linear logic is issued from coherence spaces:

A→ B = (!A)� B



 

4. The category COH. Objects: coherence spaces

A coherence space A= (�A�,˝A) is a simple graph undirected,
without loops nor multiple edges

vertices are called tokens and they constitute the web �A� en-
dowed with a binary symmetric and irreflexive relation called
strict coherence.

The objects under consideration are the cliques of this graph,
i.e. the sets of pairwise related tokens. Cliques interpret
proofs of A up to cut-elimination / normalisation.



 

5. The category COH. Arrows: linear maps

A linear morphism F from A to B is a morphism mapping
cliques of A to cliques of B such that:

• For all x ∈ A if (x′ ⊂ x) then F(x′) ⊂ F(x)
• For every family (xi)i∈I of pairwise compatible cliques

of A — that is to say (xi ∪ x j) ∈ A holds for all i, j ∈ I —
F(∪i∈Ixi) = ∪i∈IF(xi).

• For all x,x′ ∈ A if (x∪x′) ∈ A then F(x∩x′) = F(x)∩F(x′).

Linear functions from A to B identify with cliques in A⊥`B =
A� B.



 

6. Commutative Multiplicative Connectives

a ˇ a ′[A] iff a �̈ a ′[A] and a ≠ a ′

Given two tokens a,a ′ in �A� exactly one of the following re-
lation holds:
a ˇ a ′[A] or a = a ′ or a ˝ a ′[A].
Multiplicative connectives A∗B: �A∗B�= �A�× �B�. Unit =1= {∗}.
We may assume they are covriant in both their arguments.
Commutative multiplicative (binary) connectives, just two of
them:

A`B ˇ = ˝
ˇ ˇ ˇ ˝= ˇ = ˝
˝ ˝ ˝ ˝

A⊗B ˇ = ˝
ˇ ˇ ˇ ˇ= ˇ = ˝
˝ ˇ ˝ ˝



 

7. The category COH. Arrows as cliques of
the linear function space

A linear map F corresponds to

{(a,b) � a ∈ �A�b ∈ �B� b ∈ F({a})}
clique of A⊥`B = A� B.

Linearity → for any clique x of A and any b ∈ F(x) there is a
unique a ∈ x such that b ∈ F({a}).
Conversely, given a clique f of A⊥`B a linear function can
be defined by

F(x) = {b ∈ �B��∃a ∈ x(a,b) ∈ f}
Strict coherence in A⊥`B =A�B is characterised as follows:

(a,b)˝ (a ′,b ′) whenever a ˝ a ′[A] entails b ˝ b ′[B].



 

8. Before / Seq — pomset logic, calculus of
structures, deep inference and other heresies

But, there is another (non commutative) multiplicative con-
nective:

A◁B ˇ = ˝
ˇ ˇ ˇ ˝= ˇ = ˝
˝ ˇ ˝ ˝

A▷B ˇ = ˝
ˇ ˇ ˇ ˇ= ˇ = ˝
˝ ˝ ˝ ˝

(a,b)˝ (a ′,b ′)[A◁B] whenever
���������

a ˝ a ′[A]andb = b ′
or
b ˝ b ′

Associative, self dual (A◁B)⊥ = A⊥◁B⊥ no swap
Generalisation: � finite (partial) order over {1, . . . ,n}, web:�A1�×�× �An� coherence: (a1, . . . ,an)˝ (a ′1, . . . ,a ′n) when
there exists i s.t. ai ˝ a ′

i
and a j = a ′

j
for all j � j′.

Æt



 

9. What we are looking for?

Usual modalities:

!A � (!A⊗!A) ?A � ?A`?A� � � �
1 A 1 A

Self dual contraction/duplication Flag:

<�A� linear iso� (<�A◁ <�A)
Of course there is no relation between <�A and 1, otherwise,
with a self dual modality, the system would collapse.



 

10. Continuous functions from Cantor space
to a discrete topological space

2w , infinite words on 2, with standard order and topology:

• usual total lexicographical order:

w1 <w2 iff ∃m ∈ 2∗ ∃w′1,w′2 ∈ 2w
w1 =m0w

′
1 and w2 =m1w

′
2

• usual product topology generated by clopen sets (Um)m∈2∗
Um = {w ∈ 2w �∃w′ ∈ 2w

w =mw
′}

Continuous function from 2w to a set M (discrete topology)
= finite binary tree with M-labelled leaves without two sister
leaves with the same M-label.
gt

M
generic trees over M = binary tree representing continu-

ous functions 2w �M.
Let f ∈ gt

M
for w ∈ 2w there is a unique prefix of w that is a

root-to -leaf path of f . If the M-label is a then f (w) = a.



 

11. Justification

2w = ∪a∈M f −1({a})
{a} are clopen sets and so is f −1({a}).
Hence one can extract a finite covering of 2w from the f −1({a})
(compacity of 2w ).

So the function has finitely many values.

Each of these f −1({a}) can be written as a finite union of
base clopen sets and a finite union of finite union is a finite
union, and this gives the tree structures. Observe that two
base clopen sets never have a non trivial intersection: their
intersection is either empty of one of the two.



 

12. A generic tree, i.e. continuous function
from 2w to a set M

flots
etc

x BEM



 

13. A remark on continuous functions from
the Cantor space to a discrete topological space

(RkCantor) Let f ,g ∈ gt
M

. If f ≠ g, then there exists w ∈2w such
that

f (w) ≠ g(w) and ∀w
′ >w f (w′) = g(w′)

Consider the maps

w� ( f (w),g(w)) from 2w to M×M endowed with the discrete
topology which is the product of the discrete topology on M

by itself.

D ∶M×M� 2 (discrete topology on 2) with D(x,y) = 1 iff x = y.

The compound of those two continuous functions is continu-
ous, so it is a finite tree of gt2 and it has a maximum w=u(1)∗.
For w the property holds: f (w) ≠ g(w) and f (w′) = g(w′) for
all w′ �w.



 

14. The flag modality

Web of <�A: gt�A�

the continuous functions from 2w to �A� the web of A.

Observe that if �A� is countable so is gt�A�.

Coherence f ˝ g[<�A] with f ,g ∈ �<�A = gt�A� whenever

∃w ∈ 2w
���������

f (w)˝ g(w)[A]
and∀w′ >w f (w′) = g(w′)



 

15. Flag is self dual

The modality <� is self-dual, i.e. (<�A)⊥ ≡ <�(A⊥)
Those two coherence spaces obviously have the same web.

Consider f ≠ g two distinct continuous functions from 2w to�A�.
(RkCantor) There exists w ∈ 2w such that f (w) ≠ g(w) and∀w′ >w. f (w′) = g(w′).
Either f (w)˝ g(w)[A] and f ˝ g[<�A]
or f (w)˝ g(w)[A⊥] and f ˝ g[<�(A⊥)]
Hence for any distinct f ,g either f ˝ g[<�A] or f ˝ g[<�(A⊥)] so<�A⊥ = (<�A)⊥.



 

16. A linear iso between Flag A and Flag A
Before Flag A: definition

C = {(h,(h0,h1)) �∀w ∈ 2w
h(0w) = h0(w) and h(1w) = h1(w)}

defines a linear isomorphism between <�A and <�A < <�A.

It is a bijection between the webs, between pairs of contin-
uous functions from 2w to �A� and continuous functions from
2w to �A�.

hÜÎ



 

17. A linear iso from Flag A to Flag A Before
Flag A

We have to check that given two pairs ( f ,( f0, f1)) and (g,(g0,g1))
in C whenever f ˝ g[<�A] then ( f0, f1)˝ (g0,g1)[<�A◁ <�A]

If f ˝ g[<�A] then there exists w ∈ 2w s.t. f (w)˝ g(w)[A] and
h(w′) = g(w′) for all w′ �w.

if w=0m then f0 ˝g0[<�A] and f1 =g1, therefore ( f0, f1)˝(g0,g1)[<�A◁ <�A]
if w=1m′ then f1 ˝g1, therefore ( f0, f1)˝ (g0,g1)[<�A◁<�A]



 

18. A linear iso from Flag A Before Flag Ato
Flag A

Conversely it is similar.

If ( f0, f1)˝ (g0,g1)[<�A◁ <�A] either

f1 = g1 and f0 ˝ g0[<�A] so there exists a w such that
f0(w) ˝ g0(w)[A] and f0(w′) ˝ g0(w′)[A] for all
w′ �w. If ( f ,( f0, f1) and (g,(g0,g1) are in C then
f (0w)˝ g(0w) and for all u �w if u = 0v then v �w

and f (u) = g(u) and if u = 1m then f (u) = g(u) as
well.

f1 ˝ g1[<�A] so there exists a w such that f1(w) ˝
g1(w)[A] and f1(w′) ˝ g1(w′)[A] for all w′ � w.
COnsequently f (1w)˝ g(1w) and for all w′ � 1w,
we have f (w′) = g(w′) because w′ = 1m and m �
w/



 

19. Explanation

This is because, so to speak, f is f0◁ f1.

I initially defined the web of <�A as◁i∈QA (Q copies of �A�, a to-
ken was a function from Q to A) and Achim young sugqested
to use 2w to get a finite representation of the tokens.

d
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20. A is a retract of Flag A

Consider the {a,a)�a ∈ �A�} where a is the constant continu-
ous function from 2w to �A� mapping every word to a.

It is linear.

One compound is IdA, while the other compound is identity
but only for constant functions.

z



 

21. Flag is functorial

Given ` ∶ A→ B defines <�` ∶ <�A→ <�B by the following linear
map:

<�` = {( f ,g)�∀w ∈ 2w( f (w),g(w)) ∈ `}

makes <� an endo-functor.

This is not difficult but a bit tedious to prove.



 

22. Concluding question: syntax?

Pomset logic is better defined with (handsome) proof nets,

or as a rewriting system like Deep Inference.

The design of a self dual modality should perhaps proceed
with handsome proof nets

whose correction is equivalent to their interpretability in co-
herence spaces.

However modalities are complicated in the the proof net frame-
work

an exception being the essential nets of Lamarche for intu-
itionistic logic.

Guglielmi proposed in the last years several versions of a
self dual modality with deep inference coherence semantics
should be a guideline to find the right one, if any.


