•	•	•	•	•	٠	*	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
For	Ant	oni	o's k	oirth	day	•	*	٠	•	٠	٠	٠	٠	٠	*	٠	٠	٠	٠	•
٠	٠	•	٠	٠	٠	•	•	٠	•	٠	•	٠	•	٠	٠	٠	٠	٠	•	٠
•	•	٠	٠	٠	٠	٠	•	•	٠	•	•	•	•	•	٠	•	t	•	٠	•
		-			-		onn													
							al s													
		-					cal						•							
							٠													
Chr	istia	an R	leto	ré (L	.IRN	MM U	Jniv	Мо	ntp	ellie	r) .	•	•	٠	٠	٠	٠	•		٠
•	•	•	•	•	•	•	٠	•	•		•	•	•	•	٠	•	•	•	•	•
٠	٠	٠	٠	٠	٠	•	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
٠	•		•		•	٠	٠	٠	•	٠	•	•	•	٠	٠	٠	٠	•		٠
							٠													
							٠													
							٠													
٠	•				•	•	•	٠	•	•	•	•	•	٠	٠	٠	٠	•		•

A non commutative extension of classical linear logic with a sequentiality operator 1 before, sequential,... précède (> formal grammus)

Coherence Spaces

Definition 15. A coherence space *A* is a set |A| (possibly infinite) called the web of *A* whose elements are called tokens, endowed with a binary reflexive and symmetric relation called coherence on $|A| \times |A|$ noted $\alpha \subset \alpha'[A]$ or simply $\alpha \subset \alpha'$ when *A* is clear.

The following notations are common and useful: $\alpha \sim \alpha'[A]$ iff $\alpha \simeq \alpha'[A]$ and $\alpha \neq \alpha'$ Strictly coherent $\alpha \simeq \alpha'[A]$ iff $\alpha \not\simeq \alpha'[A]$ or $\alpha = \alpha'$

$$\alpha \sim \alpha'[A]$$
 iff $\alpha \not\simeq \alpha'[A]$ and $\alpha \neq \alpha$

objects: cliques set of pairwise coherent tokens

Linear morphisms

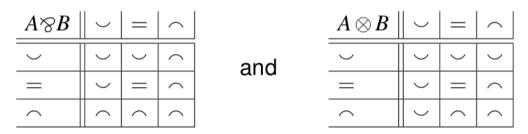
Definition 16. A linear morphism *F* from *A* to *B* is a morphism mapping cliques of *A* to cliques of *B* such that:

- For all $x \in A$ if $(x' \subset x)$ then $F(x') \subset F(x)$
- For every family $(x_i)_{i \in I}$ of pairwise compatible cliques that is to say $(x_i \cup x_j) \in A$ holds for all $i, j \in I F(\cup_{i \in I} x_i) = \bigcup_{i \in I} F(x_i)$.⁷
- For all $x, x' \in A$ if $(x \cup x') \in A$ then $F(x \cap x') = F(x) \cap F(x')$ the last condition is called stability.

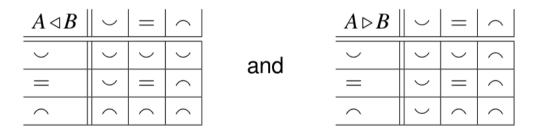
Negatim 3 max diques cliques 2 max Negation is a unary connective which is both multiplicative and additive: $|A^{\perp}| = |A|$ and $\alpha \simeq' \alpha [A^{\perp}]$ iff $\alpha \asymp \alpha' [A]$ $A * B = |A| \times B$ Multiplicatives The covariant A * BConnectives: NE? other Wise sw?

Covariant bimary compectives

If one wants * to be commutative, there are only two possibilities, namely $NE = SW = \frown$ (\otimes) and $NE = SW = \smile$ (\otimes).



However if we do not ask for the connective * to be commutative we have a third connective $A \triangleleft B$ and a fourth connective $A \triangleright B$ which is simply $B \triangleleft A$.



Properties Selfdual (AQB) = AAB No SWAP Associative (AAB) 4 C = AA (BAC) tative \neq (B(A)) (AZB

Coherence wit a partial order $(\alpha_1, \ldots, \alpha_n) \frown (\alpha'_1, \ldots, \alpha'_n)[T[A_1, \ldots, A_n]$ are strictly coherent whenever: there exist *i* such that $\alpha_i \frown \alpha'_i$ and for every j > i one has $\alpha_j = \alpha'_i$. When the other is Series Purallel TA. An Con be Written with

The design of n appropriate syntax

Semantical guidelines — Interpretable ;) - Extends MLL I mple ments - Cut chimination FTBST'THEN[TT]=[T]

A simplesequent calculusSequents<:Series
$$Friends$$
 $Friends$ $Friends$

Figure 7: Sequent calculus on SP pomset or formulas; called SP-pomset sequent calculus

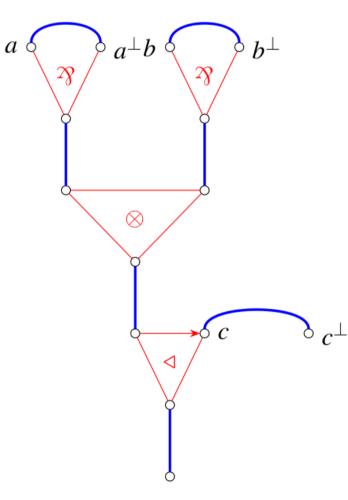
An example of a $\vdash \{b, b^{\perp}\}$ $\vdash \{a, a^{\perp}\}$ $\vdash b \otimes b^{\perp}$ $\vdash a \otimes a$ $\vdash (a \otimes a^{\perp}) \otimes (b \otimes b^{\perp})$ $\vdash \langle (a \otimes a^{\perp}) \otimes (b \otimes b^{\perp}); \{c, c^{\perp}\} \rangle$ entropy $\overline{\vdash \{\langle (a \otimes a^{\perp}) \otimes (b \otimes b^{\perp}); c \rangle, c^{\perp}\}}$

Prod net (with links)

	Axiom	Par 🗞	Before ⊲	Times ⊗	Cut
Premisses	None	A and B	A and B	A and B	K and K^{\perp}
RnB link	$ \bigcirc a \\ a \\ a^{\perp} $	$\begin{array}{c} A \circ \circ B \\ \circ B \\ \circ A \otimes B \\ \circ A \otimes B \end{array}$	$A \bigcirc B \\ \bigcirc A \triangleleft B$	$A \circ O B$	$A \circ \circ A^{\perp}$
Conclusion(s)	$a ext{ and } a^{\perp}$	$A \otimes B$	$A \triangleleft B$	$A \otimes B$	None

The previous Sequent calculus proof

.



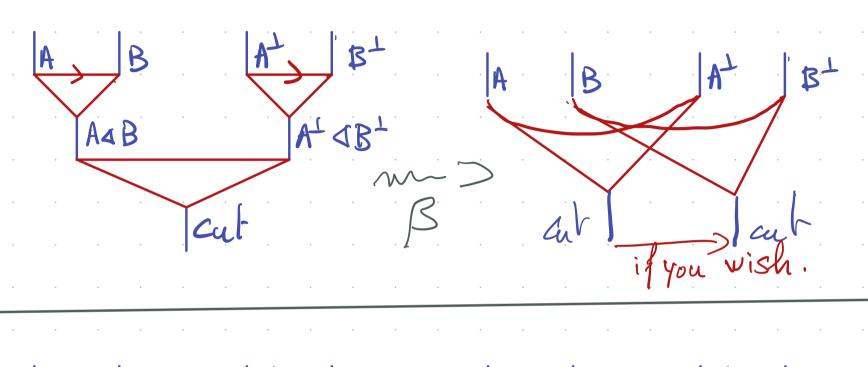
Correctness criterion Alternate circuit (= directed) Flomentary No Elomentary because of the shape of the links Every Alternate Elementary Cycle contains a chord

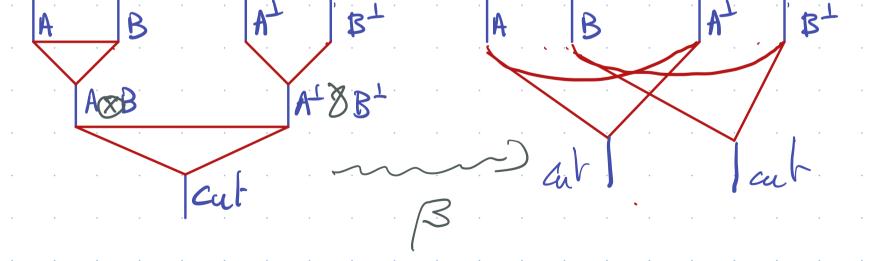
CORRECT:

 $A = B = A^{\dagger} = B^{-1} = B^{$

NOT CORRECT

Cut - élimination ja and a al a d a Cri





Semantics: experiments

 $a \diamond$

23

the results of all experiments

ye B XEA $a^{\perp}b$ $\stackrel{{\scriptscriptstyle \mathsf{c}}}{\leftarrow}$ ZZ \otimes ZEC \triangleleft $(x, y, z) \in (A \otimes B) \land C$

SEMANTICS whenever IT conect con dusion C results of experiments clique of the corresponding coherence space

Il's better than that: syntactic criterion (no AEgde) semantic aiteria ITT I is a cliqueofc

withCuts TI = repults of all SUCCEEDING experiments Sicceedings(A4(BOC))bD = K $= (A (B + 8 \tilde{c}))$ (x'(y'z))u'((x, (y, 2)), u)some tuples on Kano $\gamma = \gamma^{\dagger}$ 2=21

DENOTATIONAL Semantics whenever TT is TT (the results of the succeeding experiments are preserved under cer climination

Folding / unfolding Generalised proof net Proof net: 17 17 To conclusion Generalised peoplet direct coppaph [Conclasion $C_1 \otimes (C_2 \triangleleft C_3)$

Directed coopaphs = inductive class of directed grap. hs

Characterisation SP order Directed part. (N free) Symmetric par Coopaph (P4 free) + Weak transitivity:

From Proof Nets with links Handsome proof nets Fold / Unfold peserve the criterion; every AE cinculture actor

axion Can a ~ Paths A F Sar

(nothing) . ••••

8 Candunian $) \otimes (\gamma \otimes \gamma \perp))$ (28 383

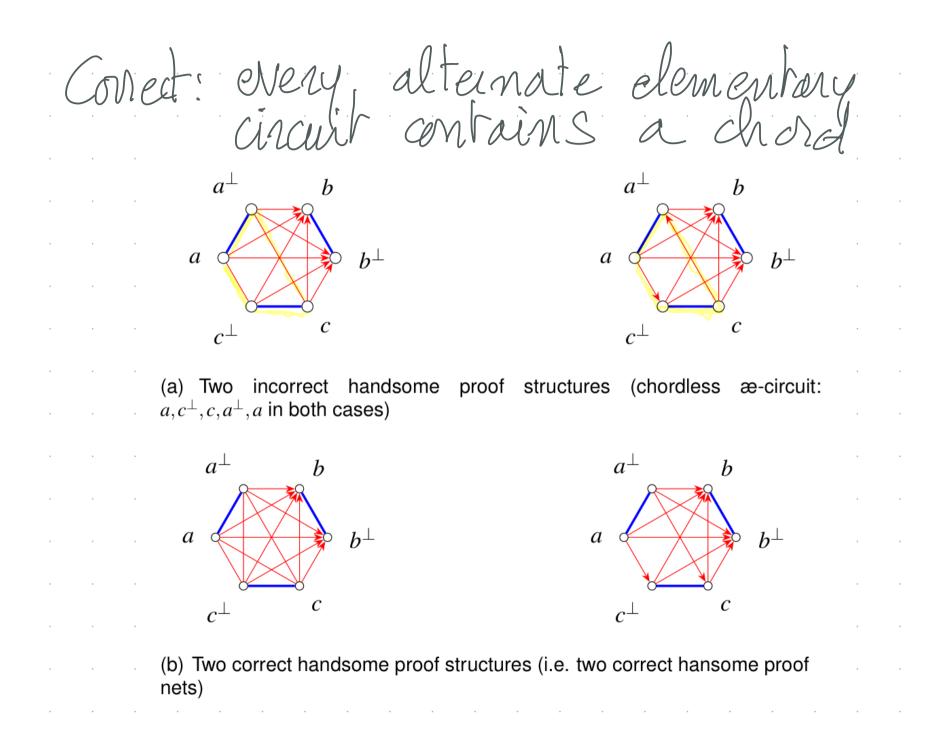
u 3 conclusions β γ^{\perp} B^{\perp} γ 28 γ⊥ lpha 28 $lpha^{\perp}$ γ^{\perp} β $lpha^{\perp}$ α β^{\perp} 5 conclusions γ β 28 Β $lpha^{\perp}$ α eta^\perp γ^{\perp} β GMU

 γ

α

 $lpha^{\perp}$

Handsome prophets. No link(S) Atoms: a, at, B, Bt, vertices Axims: blue edges. Formula = directed cograph



 $C_{8}((a_{8}a_{4})_{0}(b_{8}b_{4})_{1}c)$ b^{\perp} Fine for -semantics - cut elimination (girand's turbo aut elimination)

TM chord (() Ves sei conectmess. every Æcyde contrains he uwritings to prove this) [] define

Proof met calculus: perfect (matches semantics) Sequent calculus! - simple mes connect not complete - Slavnov 2013? very complicated, correct

A conect pomset product without any conesponding sequent calculus $a^{\perp} a^{\perp} b$ proof. (Straßbruge)

 $\begin{array}{c}
b^{\perp} & b \\
a^{\perp} & a \\
c & c^{\perp} \\
c & c^{\perp} \\
d & d^{\perp} \\
f & f^{\perp} \\
e^{\perp} \\
e^{\mu} \\
\end{array}$

ProvebeimBV

.

.

REWRITING For BU														
· · · · · · · · · · · · · · · · · · ·	ule name		dicograph				$\sim \rightarrow$			dicograph'				
	$\widehat{\otimes} \widehat{\otimes} 4$ (X	ŝ	Y)	$\hat{\otimes}$	(U	ŝ	$V) \rightsquigarrow$	(X	$\widehat{\otimes}$	U)	ŝ	(Y	$\hat{\otimes}$	V)
	\otimes \otimes 3 (X	$\widehat{\Diamond}$	Y)	$\widehat{\otimes}$	U		$\sim \rightarrow$	(X	$\widehat{\otimes}$	U)	Ŕ	Y		
	\otimes \otimes 2		Y	$\hat{\otimes}$	U		$\sim \rightarrow$			U	ŝ	Y		
$(X \circ Y) \square (Y \circ V)$	$\otimes \triangleleft 4$ (X	Ś	Y)	$\hat{\otimes}$	(U	Ś	$V) \rightsquigarrow$	(X	$\widehat{\otimes}$	U)	$\widehat{\diamond}$	(Y	$\hat{\otimes}$	V)
	$\otimes \triangleleft 3l$ (X	\Diamond	Y)	$\widehat{\otimes}$	U		\rightsquigarrow	(X	$\widehat{\otimes}$	U)	$\widehat{\diamond}$	Y		
	$\otimes \triangleleft 3r$		Y	$\widehat{\otimes}$	(U	$\widehat{\diamond}$	$V) \rightsquigarrow$			U	$\widehat{\diamond}$	(Y	$\widehat{\otimes}$	V)
$\left(\times \left(\right) \right)$	$\otimes \triangleleft 2$		Y	$\hat{\otimes}$	U		$\sim \rightarrow$			U	\Diamond	Y		
$(\square U) \circ (\square V)$	ଏଡ୍ଟ 4 (X	$\langle \rangle$	Y)	\Diamond	(U	$\langle \rangle$	$V) \rightsquigarrow$	(X	\Diamond	U)	$\langle \rangle$	(Y	$\langle \nabla$	V)
	$\triangleleft \otimes 3l$ (X	Ŕ	Y)	\Diamond	U		$\sim \rightarrow$	(X	$\widehat{\triangleleft}$	U)	ŝ	Y		
	$\triangleleft \otimes 3r$		Y	\Diamond	(U	$\hat{\otimes}$	$V) \rightsquigarrow$			U	$\hat{\otimes}$	(Y	\Diamond	V)
	⊲%2		Y	\Diamond	U		$\sim \rightarrow$			U	$\hat{\otimes}$	Y		

.

Axioms d a $(a8a^{\perp}) \otimes (b8b^{\perp}) \otimes (c8c^{\perp})$

axioms + all conect revultings

Pomset Handsome BoofNets + rewriting (S|R1/> proof of a A admissibility (kind of cut-dimination)

(S) BV derivation Example $(\alpha \otimes \alpha^{\perp})$ Axiom $\rightarrow 1$ $a \downarrow \rightsquigarrow (e^{\perp} \otimes e)$ agal. $1a\downarrow \rightsquigarrow (e^{\perp} \otimes e) \otimes (b^{\perp} \otimes b)$ $\otimes \triangleleft 2 \rightsquigarrow (e^{\perp} \otimes e) \triangleleft (b^{\perp} \otimes b)$ $\triangleleft \otimes 4 \rightsquigarrow (e^{\perp} \triangleleft b^{\perp}) \otimes (e \triangleleft b)$ $(\mathbf{1}a\downarrow) \times 2 \rightsquigarrow ((c \otimes c^{\perp}) \otimes (e^{\perp} \otimes b^{\perp}) \otimes (f \otimes f^{\perp})) \otimes (e \triangleleft b)$ $\otimes \triangleleft 2x2 \rightsquigarrow ((c \otimes c^{\perp}) \triangleleft (e^{\perp} \otimes b^{\perp}) \triangleleft (f \otimes f^{\perp})) \otimes (e \triangleleft b)$ $\triangleleft \otimes 4x2 \rightsquigarrow (c \triangleleft b^{\perp} \triangleleft f) \otimes (c^{\perp} \triangleleft e^{\perp} \triangleleft f^{\perp}) \otimes (e \triangleleft b)$ $1a \downarrow \rightsquigarrow (((c \triangleleft b^{\perp}) \otimes (a \otimes a^{\perp})) \triangleleft f) \otimes (c^{\perp} \triangleleft e^{\perp} \triangleleft f^{\perp}) \otimes (e \triangleleft b)$ $\otimes \otimes 3 \rightsquigarrow (((c \triangleleft b^{\perp}) \otimes a) \otimes a^{\perp}) \triangleleft f) \otimes (c^{\perp} \triangleleft e^{\perp} \triangleleft f^{\perp}) \otimes (e \triangleleft b)$ $\triangleleft \mathfrak{S}3 \rightsquigarrow ((c \triangleleft b^{\perp}) \otimes a) \mathfrak{S}(a^{\perp} \triangleleft f) \mathfrak{S}(c^{\perp} \triangleleft e^{\perp} \triangleleft f^{\perp}) \mathfrak{S}(e \triangleleft b)$ $\mathbf{1} a \downarrow \rightsquigarrow ((c \triangleleft b^{\perp}) \otimes a) \otimes (a^{\perp} \triangleleft f) \otimes (c^{\perp} \triangleleft ((e^{\perp} \triangleleft f^{\perp}) \otimes (d^{\otimes} d^{\perp})) \otimes (e \triangleleft b)$ $\otimes \Im 3 \rightsquigarrow ((c \triangleleft b^{\perp}) \otimes a) \Im (a^{\perp} \triangleleft f) \Im \{c^{\perp} \triangleleft [((e^{\perp} \triangleleft f^{\perp}) \otimes d) \Im d^{\perp}] \} \Im (e \triangleleft b)$ $\triangleleft \otimes 3 \rightsquigarrow ((c \triangleleft b^{\perp}) \otimes a) \otimes (a^{\perp} \triangleleft f) \otimes (((e^{\perp} \triangleleft f^{\perp}) \otimes d) \otimes (c \triangleleft d^{\perp}) \otimes (e \triangleleft b)$

Waking with graphs (notterms) much easier proof of 1 removi (kind of cut elimination) a

What is known; standard (S) BV pomset sequent 7 moofs 7 moofnets calculi Starmor sequent colulus? good idea (AAB) = A B pomset: (In the rest too conglicated-: t conclusions (In the rest too conglicated-: t conclusions R, Rt relation on taples of conclusions

N Guyen Straßbunger2021 Some pourset prognets have no proof in (S)BV

A self Anal modality 1 4A joo JAZ4A · · · · · · · · · ·

continuous functions 2 -> (A)

AZ.

In f(w)~g(w)

a for general

f(w) > w f(w) = 1

'(W -

No syntax So far. Some ideas by Englishmi

Happy birthday Antonio (I leave the my anecdote(s) tknow for tonight)

٠	٠		•	٠	٠	٠		٠	٠	٠	٠	٠	•	•				•		•
							•							٠	•	٠	٠		•	
•	•			•	•			•	•	•	•	•	•	٠				•		
٠	٠		٠	٠	٠	٠		٠	٠	٠	•	•	•	٠				٠	•	•
٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	٠	٠	٠	٠	٠	•		٠	٠	٠
•	٠		•	•	•	•	•	٠	•	٠	٠	٠	٠	•	•	٠	•	•	•	
							•	•			٠	٠	•	٠	•	٠	•	•		
							•		•				•	٠			٠	•		
							•		•				•	٠			٠	•		
				٠	•			•	•				•					•		•
•	•	•		٠	٠			٠	٠	•	•	•	•	٠				•		•
•	•	٠	•	٠	٠	•		٠	٠	•	•	•	•	•	•	•		•	•	٠
•	•	٠	•	٠	٠	•		٠	٠	•	•	•	٠	•	٠	•		•	•	٠
٠	٠	•	٠	٠	٠	٠		٠	•	٠	•	•	•	٠	•	•		٠	٠	·
٠	٠	•	•	٠	٠	•	•	٠	٠	٠	٠	٠	٠	٠	٠	•		٠	•	٠
٠	٠		٠	٠	٠	•		•	•	•	•	•	•	•	•			•	٠	•