- Hommage à Guy Perrier -

Sur l'injectivité de l'interface syntaxe sémantique dans les grammaires catégorielles

Ch. Retoré

[joint work with D. Catta R. Moot]
LIRMM, Université de Montpellier \& CNRS
Vendredi 24 Novembre 2023

INRIA-Lorraine 1994-1997

- When I met Guy in Nancy, he was preparing this PhD
- Then studying the properties of the categorial analysis of natural language:
- linear logic, Lambek calculus, Montague semantics
- Denis Bechet, Didier Galmiche, Philippe de Groote, Odile Hermann, Jean-Yves Marion, François Lamarche, Sophie Malecki,...
- This talk: recent work in the style of what we were doing

De la construction de preuves à la programmation parallèle en logique linéaire

THÈSE

présentée et soutenue publiquement le mercredi 25 janvier 1995

> pour l'obtention du

Doctorat de l'Université Henri Poincaré - Nancy I (Spécialité Informatique)
par
Guy Perrier

Composition du jury
Président : Jean-Pierre FINANCE
Rapporteurs : Jean GALLIER
Claude KIRCHNER
Jacqueline VAUZEILLES
Examinateurs : Jean-Marc ANDREOLI
Didier GALMICHE
(1) Introducing the problem
(2) Categorial grammars
(3) Some negative results
(4) Dominance: definition and examples
(5) A positive result using dominance

A natural question in categorial grammars

Problem

Imagine that a sentence formed using words $w_{1}, w_{2}, \cdots w_{n}$ has two different syntactic analyses P_{1} and P_{2}. Do those two syntactical analyses yield formally different semantic representations S_{1} and S_{2} ?

- We will show that this question admits several negative answers if formulated in a naive (but natural) way
- We introduce a relation of dominance between head-symbol (variable or constants) in a λ-term and show that this relation is preserved under β reduction for constant symbols
- We conclude showing that under restricted hypotheses on the semantic lambda terms associated with words the result holds.

Categorial Grammars

The Lambek Calculus L

$$
\begin{array}{cc}
& \ldots \ldots .[B]^{j} \\
\frac{A / B \quad B}{A}[/ E] & \frac{\dot{A}}{A / B}\left[/ \Lambda_{j}\right. \\
& {[B]^{j} \cdots \cdots} \\
\vdots \\
& \frac{B \quad B \backslash A}{A}[\backslash E]
\end{array} \frac{\begin{array}{c}
A \\
B \backslash A
\end{array} \backslash I_{j}}{}
$$

Two different syntactic analysis

Derivation of $\exists \forall$ reading

Derivation of $\forall \exists$ reading

From L to MLL

$$
\begin{gathered}
\text { types }::=\mathrm{e}|\mathrm{t}| \text { type } \multimap \text { type } \\
s^{*}=t \\
n p^{*}=e \\
n^{*}=e \multimap t \\
(A / B)^{*}=(A \backslash B)^{*}=B^{*} \multimap A^{*}
\end{gathered}
$$

by applying this translation and the Curry-Howard isomorphism we get the linear λ-terms
(1) $\left.\left(w_{4} w_{5}\right)\left(\lambda y\left(\left(w_{1} w_{2}\right)\left(\lambda x\left(w_{3} y\right) x\right)\right)\right)\right)$ for the $\exists \forall$ reading
(2) $\left(w_{1} w_{2}\right)\left(\lambda x\left(\left(w_{4} w_{5}\right)\left(\lambda y\left(w_{3} y\right) x\right)\right)\right)$) for the $\forall \exists$ reading

From syntax to semantics

- We substitute the lexical meaning for each word. Following Montague, we leave some words analysed, using the constant students as the meaning of the word "students", and similarly for "wrote" and "report".
- Using the constants \forall and \exists, both of type $(e \rightarrow t) \rightarrow t$, to represent the universal and the existential quantifier, and the constants \wedge, \vee and \Rightarrow of type $t \rightarrow(t \rightarrow t)$ to represent the binary logical connectives, we can assign the following lambda term to "all" and to "some":

$$
\begin{equation*}
\text { Qll: } \quad \lambda P \lambda Q \forall(\lambda x \cdot(\Rightarrow(P x))(Q x)) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { Jane: } \quad \lambda P \lambda Q \exists(\lambda x \cdot(\wedge(P x))(Q x)) \tag{2}
\end{equation*}
$$

Semantic lambda terms

$$
\begin{equation*}
(\lambda P \lambda Q \exists(\lambda z .(\wedge(P z))(Q z)) r e p o r t)(\lambda y((\lambda R \lambda S \forall(\lambda v .(\Rightarrow(R v))(S v)) \text { students })(\lambda x((\text { write } y) x)))) \tag{3}
\end{equation*}
$$

$(\lambda R \lambda S \forall(\lambda v .(\Rightarrow(R v))(S v)) s t u d e n t s)(\lambda x((\lambda P \lambda Q \exists(\lambda z .(\wedge(P z))(Q z)) r e p o r t)(\lambda y(($ write $y) x))))$

These terms normalize to:

$$
\begin{align*}
& \exists(\lambda z .(\wedge(\text { report } z))(\forall(\lambda v .(\Rightarrow(\text { students } v)((\text { write } z) v) \tag{5}\\
& \forall(\lambda v .(\Rightarrow(\text { students } v))(\exists(\lambda z .(\wedge(\text { report } z))((\text { write } z) v) \tag{6}
\end{align*}
$$

A reformulation of the problem

Definition (Syntactic λ-term)

A syntactic λ-term is a β-normal, simply-typed linear λ-term with one occurrence of each free variable in w_{1}, \ldots, w_{n} with $n>0$ - those free variables are the words of some analysed sentence.

Definition (Semantic λ-term)

A semantic λ-term is a β-normal, η-long simply-typed lambda term with constants - it is of type u^{*} when it represent the meaning of a word of category u.

Assume that the sentence $w_{1} \cdots w_{n}$ has two syntactic analyses P_{1} and P_{2}, when replacing each w_{i} (a free variable representing m_{i} in the syntactic analysis that is a linear lambda term) by the associated semantic lambda term t_{i} in P_{1} and in P_{2} does beta reduction give different lambda terms, i.e. does one have

$$
P_{1}\left[w_{1}:=t_{1}\right] \cdots\left[w_{n}:=t_{n}\right] \stackrel{\beta}{\neq P_{2}\left[w_{1}:=t_{1}\right] \cdots\left[w_{n}:=t_{n}\right]}
$$

A first negative result

Proposition

There exist P_{1}, P_{2} two syntactic λ-terms both of type σ and having the same free variables $w_{1}, w_{2} \ldots w_{n}$, and and there exist $t_{1}, t_{2} \ldots, t_{n} n$ semantic λ-terms such

$$
P_{1} \stackrel{\beta}{\neq P_{2}} \quad \text { AND } \quad P_{1}\left[w_{1}:=t_{1}\right] \cdots\left[w_{n}:=t_{n}\right] \stackrel{\beta}{=} P_{1}\left[w_{1}:=t_{1}\right] \cdots\left[w_{n}:=t_{n}\right]
$$

Proof.

Take

$$
P_{1} \equiv w_{1}\left(\left(w_{2} w_{3}\right) w_{4}\right) \quad P_{2} \equiv w_{1}\left(\left(w_{2} w_{4}\right) w_{3}\right)
$$

Moreover take

$$
\left.t_{1} \equiv \lambda y . k_{1} \quad t_{2} \equiv \lambda x_{1} \lambda x_{2}\left(\left(k_{2} x_{1}\right) x_{2}\right)\right) \quad t_{3} \equiv k_{3} \quad t_{4} \equiv k_{4}
$$

Make the following substitution.

$$
P_{1}\left[w_{1}:=t_{1}\right]\left[w_{2}:=t_{2}\right]\left[w_{3}:=t_{3}\right]\left[w_{4}:=t_{4}\right] \quad P_{2}\left[w_{1}:=t_{1}\right]\left[w_{2}:=t_{2}\right]\left[w_{3}:=t_{3}\right]\left[w_{4}:=t_{4}\right]
$$

Both terms reduces to k_{1}

Refining the analysis

- We have the above negative result because a λ-term may delete something during β-reduction. Hence we restrict the class of semantic λ-terms to lambda-l terms only, so β-reduction may not delete anything. This restriction is quite natural when lambda terms that express word meaning. Finally, we only consider terms whose head variable is a constant - this technical requirement is admittedly unnatural when dealing with semantics.

Definition (Simple semantic λ-term)

A simple semantic lambda term is a β-normal η-long λ_{l}-term with constants whose head variable is a constant.

Another negative result

Proposition

There exist P_{1}, P_{2} two syntactic λ-terms both of type σ and with the same free variables $w_{1}, w_{2}, \ldots w_{n}$, and and there exist $t_{1}, t_{2} \ldots, t_{n} n$ simple semantic λ-terms such that

$$
P_{1} \stackrel{\beta}{\left.\neq P_{2} \quad \text { AND } \quad P_{1}\left[w_{1}:=t_{1}\right] \cdots\left[w_{n}:=t_{n}\right] \stackrel{\beta}{=} P_{1}\left[w_{1}:=t_{1}\right] \cdots\left[w_{n}:=t_{n}\right] .\right] . ~}
$$

Proof.

take

$$
\begin{array}{ll}
P_{1} \equiv\left(\left(w_{1} w_{2}\right) w_{3}\right) & P_{2} \equiv\left(\left(w_{1} w_{3}\right) w_{2}\right) \\
t_{1} \equiv \lambda x_{1} \lambda x_{2}\left(\left(k_{1} x_{1}\right) x_{2}\right) & t_{2} \equiv k_{2} \quad t_{3} \equiv k_{2}
\end{array}
$$

make the following

$$
P_{1}\left[w_{1}:=t_{1}\right]\left[w_{2}:=t_{2}\right]\left[w_{3}:=t_{3}\right] \quad P_{2}\left[w_{1}:=t_{1}\right]\left[w_{2}:=t_{2}\right]\left[w_{3}:=t_{3}\right]
$$

After β-reduction the two terms become β-equal.

Well, maybe we should change strategy...

Proposition

There exist P_{1}, P_{2} two syntactic terms, both of type σ, with the same free variables w_{1}, \ldots, w_{n} and $t_{1}, t_{2} \ldots, t_{n} n$ simple semantic lambda terms such that $\forall i \forall j 1 \leq i \leq j \leq n$ if $i \neq j$ then the head-constant of t_{i} is different from the head-constant of t_{j}.

$$
P_{1} \stackrel{\beta}{\left.\neq P_{2} \quad \text { AND } \quad P_{1}\left[w_{1}:=t_{1}\right] \cdots\left[w_{n}:=t_{n}\right] \stackrel{\beta}{=} P_{1}\left[w_{1}:=t_{1}\right] \cdots\left[w_{n}:=t_{n}\right] .\right] . ~}
$$

Proof.

take

$$
P_{1} \equiv w_{1}\left(\lambda x \lambda y\left(\left(w_{2} x\right) y\right)\right) \quad P_{2} \equiv w_{1}\left(\lambda y \lambda x\left(\left(w_{2} x\right) y\right)\right)
$$

where $x: e, y: e, w_{2}: e \rightarrow(e \rightarrow t), w_{1}:(e \rightarrow(e \rightarrow t)) \rightarrow t$. Take

$$
t_{1} \equiv \lambda P\left(k_{1}((P x) x)\right) \quad t_{2} \equiv\left(\lambda z \lambda y\left(\left(k_{2} z\right) y\right)\right)
$$

where $P:(e \rightarrow(e \rightarrow t)) \rightarrow t, k_{1}: t \rightarrow t, k_{2}: e \rightarrow(e \rightarrow t)$ and x, z, y are of type e. And make the following substitution

$$
P_{1}\left[w_{1}:=t_{1}\right]\left[w_{2}:=t_{2}\right] \quad P_{2}\left[w_{1}:=t_{1}\right]\left[w_{2}:=t_{2}\right]
$$

Dominance

Definition

In a term M, occurrences of constants and variables are endowed with a dominance relation as follows.

- If the term is a constant or a variable there is no elementary dominance relation.
- If the term M is a sequence of applications $T_{0} T_{1} \cdots T_{n}$ the elementary dominance relations are the union of the ones in each of the T_{i}, as well as the following additional relations: the leftmost innermost normal sub-term's R head-variable (or constant) h of the term T_{0} dominates all head variables (that possibly are constants) of all the leftmost innermost normal sub-terms of the T_{i} 's.
- If the term M is a sequence of abstractions $\lambda \vec{x} . t$ (t is not itself an abstraction) then the dominance relations are the ones in t.
The occurrence of a variable or a constant x elementary dominates the occurrence of variable or constant y is written $x \triangleleft_{1} y$ and \triangleleft stands for the transitive closure of \triangleleft_{1}.

An example

The λ-term

$$
(\lambda P \lambda Q \exists(\lambda z .(\wedge(P z))(Q z)) r e p o r t)(\lambda y((\lambda R \lambda S \forall(\lambda v .(\Rightarrow(R v))(S v)) s t u d e n t s)(\lambda x((\text { write } y) x))))
$$

defines the following dominance relation

Dominance through β-reduction

$(\lambda Q \exists(\lambda z .(\wedge(r e p o r t z))(Q z)))(\lambda y((\lambda R \lambda S \forall(\lambda v .(\Rightarrow(R v))(S v)) s t u d e n t s)(\lambda x(($ write $y) x))))$

Dominance through β-reduction

$(\lambda Q \exists(\lambda z \cdot(\wedge($ report $z))(Q z)))(\lambda y((\lambda S \forall(\lambda v .(\Rightarrow($ students $v))(S v)))(\lambda x(($ writey $) x))))$

Dominance through β-reduction

$(\lambda Q \exists(\lambda z \cdot(\wedge($ report $z))(Q z)))(\lambda y(\forall(\lambda v .(\Rightarrow($ students $v))((\lambda x(($ write $y) x))) v)))$

Dominance through β-reduction

$$
(\lambda Q(\exists(\lambda z .(\wedge(\text { report } z))(Q z)))(\lambda y \forall(\lambda v(\Rightarrow(\text { students } v))((\text { write } y) v)))
$$

Dominance through β-reduction

Dominance through β-reduction

$(\exists(\lambda z \cdot(\wedge($ report $z))((\forall(\lambda v(\Rightarrow(($ students $v))(($ write $z) v))))$

- Remark that on the above term $\exists \triangleleft \forall$ after each step of β-reduction. This is indeed a general property. We first state two easy proposition

Proposition (1)

Let $(\lambda x A) B$ be a redex where $\lambda x A$ is in normal form. Suppose that K is in $\lambda x A$ and k^{\prime} is in $B . k \triangleleft k^{\prime}$ iff k is the head constant of $\lambda x A$

Proposition (2)

Let P be a syntactic lambda term with words w_{1}, \ldots, w_{n}. Let t_{i} be the corresponding simple semantic lambda terms with head constant k_{i}. If $w_{i_{0}} \triangleleft w_{i_{1}}$ in P then $k_{i_{0}} \triangleleft k_{i_{1}}$ in $P[\vec{w}:=\vec{t}]$.

Dominance preservation

Proposition (Dominance preservation)

Let U be a typed lambda I term including two occurrences of constants k and k^{\prime} such that $k \triangleleft k^{\prime}$ in U. Assume $U \xrightarrow{\beta} U^{\prime}$. Then each trace k_{i} of k is associated with a set of occurrences $k_{i}^{\prime j}$ of k^{\prime} in U^{\prime} with $k_{i} \triangleleft k_{i}^{\prime j}$ in U^{\prime} - the sets $K_{i}^{\prime}=\left\{k_{i}^{\prime j}\right\}$ define a partition of the traces of k^{\prime}. In particular there never is a relation the other way round after reduction: $k_{i}^{\prime} \nless k_{i}$ in U^{\prime} for all i.

Proof.

Wog we show that dominance is preserved for one step of innermost β. Consider the redex ($\lambda x . A) B$ in U and suppose that k and k^{\prime} are somewhere in the regex (otherwise the result is trivial). We consider two cases
(1) k is in $\lambda \times A$ and k^{\prime} is in B. We know that $k \triangleleft k^{\prime}$ imply that k is the head-constant of the leftmost innermost normal subterm of A. This imply that $A[x:=B]$ has k still . Consequently the (possibly many) instances of k^{\prime} in $A[x:=B]$ are dominated by k
(2) k, k^{\prime} are both in $\lambda x . A$ and we have that $k \triangleleft_{1} x \triangleleft_{1} k^{\prime}$. Since we are considering innermost reduction $\lambda x A$ and B are normal terms. This imply that B has a head variable or constant h in $A[x:=B]$ and for the definition of the dominance relation $k \triangleleft_{1} h$ moreover $h \triangleleft_{1} k^{\prime}$

Corollary

Assume two syntactic terms P_{1} and P_{2} give opposite dominance relation between free variables, $u \triangleleft u^{\prime}$ in P_{1} and $u^{\prime} \triangleleft u$ in P_{2}. Whatever the semantic lambda terms substituted for u and u^{\prime} with different head constant k and k^{\prime} are, the associated logical forms will be different.

Conclusion

- We have shown that in order to prove our result for linear lambda terms we should take some very strong hypothesis. We however believe that given two different D_{1}, D_{2} normal proof in Lambek containing the same undischarged hypothesis $w_{1} \cdots w_{n}$ they will give us two linear lambda $D_{1} *, D_{2} *$ terms in which $w_{i} \triangleleft w_{j}$ in $D_{1} *$ and $w_{j} \triangleleft w_{i}$ in $D_{2} *$. This is work in progress!

