
Bi-grammars :
a logical system for syntax, semantics

and their correspondence
Abstract

After previous proposals concerning a logical account of minimalism, we go deeper into the interface
between syntax and semantics. The main idea is that, according to many observations made for instance
by Ray Jackendoff, the logical form is not a mere result of a derivation, after formal features consumption,
but two tasks are performed on a par : the syntactic analysis on one side and the semantical analysis on
the other side. Both analyses are connected by synchronization links in such a way that a parse can crash
for (at least) two reasons : either because of a mismatch of syntactic features, or because of a failure in
the semantic derivation.

1 Presentation

Ray Jackendoff [2, 3] points out that language is not as syntactocentric as generative grammar often says.
The new architecture of language proposed as an alternative to syntactocentrism, follows the following
guidelines:

”[. . . ] there are three independent sources of discrete infinity : phonology, syntax, and se-
mantics. Each of these components is a generative grammar in the formal sense, and the
structural description of a sentence arises from establishing a correspondance among struc-
tures from each of the three components. Thus the grammar as a whole is to be thought of as
a parallel algorithm.”

We here focus on only two of these three components : syntax and semantics, leaving out to a further work
a complete picture of such an architecture 1 . We shall therefore assume that both syntax and semantics
are global systems, but linked together by means of synchronization-links, in such a way that a failure in
synchronization results in a derivation crash.

For convenience and elegance, it is preferable to make use of the simplest and best mastered formal
systems: we shall therefore take logical ones, which are based on resource-sensitivity. It is no surprise to
handle syntax by means of a logical calculus which is resource sensitive to resources and partially to the
order among features (for depicting word order), and semantics by means of a a commutative calculus,
partially sensitive to the amount of data. The logical system we use for syntax, a slight extension of [1],
is quite similar to the famous Lambek calculus [4], which is known to be a neat logical system. This
logic under consideration is a super-imposition of the Lambek calculus (a non commutative logic) and
of intuitionistic multiplicative logic (also known as Lambek calculus with permutation) and allows for a
categorial presentation of minimalist grammars of [6] as shown in our earlier work. The context, that is
the set of current hypotheses, is endowed with an order, and this order is crucial for obtaining the expected
order on pronounced and interpreted features but it can also be relaxed when necessary: that is when
its effects have already been recorded (in the labels) and the corresponding hypotheses can therefore be
discharged.

In fact, possible proofs are restricted to those which only use three rules: [⊗ E], [/ E] and [\ E] (respec-
tively : tensor elimination, slash elimination and backslash elimination). In earlier versions of our work,
we introduced other limitations on proofs : for instance they had to manage the hypotheses according to
a particular order (first in, first out, and this was needed to express the shortest move constraint.2 In this
earlier work semantic representations à la Montague were obtained by some transformation performed on
the syntactic derivation tree. The semantic-proof-trees so obtained were obviously proof-trees in another
logical system: ILL (Intuitionistic Linear Logic) and they used two rules, both associated with the linear
implication (introduction and elimination).

1For the time being, the phonological part is provided with the syntactic part, as a mere label. Labels are instanciated according
to the rule-labelling which, itself, depends on the characteristic weak or strong of the syntactic feature.

2In some particular cases, this restriction on syntactic proofs/analyses is still needed (but simpler) in the new model that we
propose here; but we hope to replace this limitation by an even closer correspondence between syntax and semantics.

1



We present here another perspective where both derivations are made on a par. We call it bi-grammar
because it amounts two have two grammars (very much looking like categorial ones) working in parallel.
It is worth to note that

• none of the two systems dominates the other (in accordance with Jackendoff’s proposal againts
syntactocentrism),

• one system is only concerned by elimination rules : syntax, and the other, semantics, by the two
kinds of rules introduction and elimination. That relates to claims made by cognicists [5] according
to which introduction rules are rarely used during strongly automatized activities. Assuming they are
only used in semantics (which supposes strong connection with the conceptual system) thus makes
sense, particularly if their use is tightly constrained by strict syntactic laws expresssed in the ”other”
system.

2 The grammatical architecture

The general picture of bi-grammars is as follows. A lexicon maps words (or, more generally, items) onto a
pair of labelled logical formula, where the first component is a labelled syntactic type (a type + a string),
and the second one a labelled semantic type (a type + a λ-term). Syntactic types are defined from syntactic
or formal features P (which are propositional variables from the logical viewpoint):

• categorial features (categories) involved in merge: BASE = {c, t, v, d, n, . . .}

• functional features involved in move:
FUN = {k, K, wh, . . .}

The connectives in the logic for constructing syntactic formulae are the Lambek implications (or
slashes) \, / together with the commutative product of linear logic ⊗. 3 Semantic types are defined from
semantic features t and e, and they are coindexed with the syntactic type of the same pair.

Example:
reads ::= (/reads/ : ((k\t)/vp))i ⊗ (ε : ((d\(k\vp))/d))i;

λN.N(read) : ((e → (e → t)) → t) → ti

Hypotheses are admitted in both systems (for [⊗ E] in the syntactic one, and for [→ I] in the semantical
one), and they correspond one to the other. For instance, an hypothesis corresponding to a categorial
feature is associated with an hypothesis in the semantical system (according to some one-to-one mapping,
for instance d corresponds to e). Hypotheses associated with functional features are not associated with
”semantic” hypotheses: we know that their role is simply to trigger a movement, and thus they have only
an indirect effect on the semantics by triggering an abstraction step. In case of head-movement (a case
which arises when a lexical entry has as its type a product of functorial types, like it happens mainly with
tensed verbs), the first component is associated with a semantic type corresponding to the functorial kind
(for instance if ((d\(k\vp))/d) is the type of the syntactic hypothesis, then e → (e → t) is the semantic
type of the corresponding hypothesis, simply because only d-features indicate true places of arguments,
and the second component may correspond to no type in the semantic counterpart, or to some more or less
complex type and λ-term if we wish to enrich the semantic representation (for instance by inclusion of
properties of aspect, modality and tense).

3 Logico-grammatical rules for merge and phrasal movement

Because of the sub-formula property we need not present all the rules of the system, but only the ones that
can be used according to the types that appear in the lexicon. The rules of the syntactic system in Natural
Deduction style are the following ones:

3The logical system also contains a commutative implication, −◦, and a non commutative product • but they do not appear in the
lexicon, and because of the subformula property, they are not needed for the proofs we use.

2



Γ ` x : A/B ∆ ` y : B
[/E]

Γ; ∆ ` xy : A

∆ ` y : B Γ ` x : B\A
[\E]

∆; Γ ` yx : A

Γ[(∆1; ∆2)] ` A
entropy

Γ[(∆1, ∆2)] ` A

Γ ` α : A⊗ β : B ∆, x : A, y : B, ∆′ ` γ : C
[⊗E]

∆, Γ, ∆′ ` γ[α/x, β/y] : C

This later rule encodes movement. It may be noticed that the premisse Γ ` α : A ⊗ β : B is not
necessarily provided by a lexical entry or by the derivation of some sub-constituant (in which cases, Γ
reduces to the empty set). Indeed it can be provided by some instance of the identity axiom, like z :
A ⊗ B ` z : A ⊗ B. This enables the system to encode cyclic movement. (Such new hypotheses
correspond on the semantic side to identity types A→A and identity functions).

3.1 Derived Rules and Partial Proof Trees

Actually, the syntactic system will use derived rules that are a combination of several rules. All syntactic
derivations can be made by using only these derived rules4. We can represent the derived rule in question
by a simple partial proof tree :

C

z:A⊗B C

x’i:A A\C

xi:B

where moved elements are coindexed.

4 The Semantic System

4.1 Rules

The only rules we have on the semantic side are :

Γ, x : A ` u : B
[→ I ]

Γ ` λx.u : A → B

and
Γ ` u : A → B ∆ ` x : A

[→ E]
Γ, ∆ ` u(x) : B

4From the normalisation theorem for this logical calculus, we know that without lost of generality we can assume that [⊗ E] rules
only occur immediately after the [/ E] or the [\ E]-step which cancels the feature needed for the application of the [⊗ E] rule.

3



4.2 The Syntax-Semantic communication

We assume the following things : each step in the partially commutative calculus MG has a counterpart in
ILL and reciprocally.

The counterpart of any [⊗ E]-step of the following form:

z : A⊗B

[x′ : A]

[x : B]

γ : A\C

x′γ : C

zγ : C

is a composed step of the following form:

z : (T → U) → U

[x : T ]

γ : U

λx.γ : T → U

z(λx.γ) : U

and conversely. The counterpart of any [/ E] or [\ E] step is a [→ E] step, and reciprocally, the counterpart
of any [→ E] step is either a [/ E] or a [\ E] step.

Definition 1 Two proofs, one in the partially commutative calculus MG and the other in ILL, are said to
be synchronized if and only if:

• every leaf in ILL has a coindexed counterpart in MG,

• steps and their counterparts are performed in the same order in the two proofs

4.3 Subject raising

Let us look at the example: mary seems to work From the lexicon in figure 1 we obtain the deduction tree
given in the same figure.

its counterpart is the following semantic tree:

seem(to work(mary))

t

λu.u(mary)

((e → t) → t)

λx.seem(to work(x))

(e → t)
1

t

λv.seem(v)

(t → t)
to work(x)

t

λy.to work(y)

(e → t)
x

e
1

where coindexed nodes are linked by the discharging relation.

5 Conclusion

We present here a parallel architecture for deriving syntactic trees, phonological forms and semantic trees
which shows a reciprocal dependency between syntax and semantics where:

4



Figure 1: Mary seems to work

seems ::= ` seems : ((k\ip)/vp)⊗ (vp/vp)
mary ::= ` mary : d⊗ k

to work ::= ` to work : (d\vp)

ip

mary

k
1

(k\ip)

seems2

((k\ip)/vp) vp

(to seem)

(vp/vp)2 vp

d1

to work

(d\vp)

• syntax drives semantics : it indicates where introduction rules take place (they are associated with
moved constituants),

• semantics drives syntax : it restricts the possible syntactic moves (and thus almost avoids formulating
syntactic constraints like shortest move)

The extensive paper will give precise formulations and more examples, in particular sentences which crash
for semantic reasons.

References

[1] Philippe de Groote. Partially commutative linear logic: sequent calculus and phase semantics. In
Vito Michele Abrusci and Claudia Casadio, editors, Third Roma Workshop: Proofs and Linguistics
Categories – Applications of Logic to the analysis and implementation of Natural Language, pages
199–208. Bologna:CLUEB, 1996.

[2] Ray Jackendoff. The Architecture of the Language Faculty. Number 28 in Linguistic Inquiry Mono-
graphs. M.I.T. Press, Cambridge, Massachusetts, 1995.

[3] Ray Jackendoff. Foundations of Language : Brain, Meaning, Grammar, Evolution. Oxford University
Press, 2002.

[4] Joachim Lambek. The mathematics of sentence structure. American mathematical monthly, pages
154–170, 1958.

[5] Dan Sperber and Deirdre Wilson. Relevance: Communication and cognition. Blackwell, 1995.

[6] Edward Stabler. Derivational minimalism. In Christian Retoré, editor, Logical Aspects of Computa-
tional Linguistics, LACL‘96, volume 1328 of LNCS/LNAI, pages 68–95. Springer-Verlag, 1997.

5


