
June 27, 2007

FG 2007:
The 12th conference on

Formal Grammar
Dublin, Ireland

August 4-5, 2007

Organizing Committee:
Laura Kallmeyer Paola Monachesi

Gerald Penn Giorgio Satta

CENTER FOR THE STUDY
OF LANGUAGE
AND INFORMATION



June 27, 2007



June 27, 2007

1

A Montagovian Generative Lexicon
Bruno Mery, Christian Bassac and Christian
Retoré †

Abstract
Generative Lexical Semantics aims, among other things, to model co-

compositional meanings that classical Montague semantics is unable to ex-
press. This paper outlines a simple extension of Montague semantics which
amends the standard compositional mechanisms for the use of specific terms
provided by the lexicon, in order to account for this theory. We hope that
such a logical system would prove both simpler and easier to implement than
the formulations currently used.

Keywords Computational Semantics, Montague Semantics,

Type Theory, Lexical Semantics, Generative Lexicon

Montague semantics forms a simple type logic which is often used
in computational semantics to express meaning. While this process is
well known, and has recently been formalised in type theory by Ranta
(2004), polysemous words (i.e., identical lexical items with different
yet related semantics) can be difficult to represent. Moreover, recent
developments in linguistics lead to think that meaning can be co-
compositional, in that the same lexical items often convey different
senses depending on what other terms they are applied, or apply to – a
phenomenon which classical Montague semantics is unable to express.

†In the ESSLLI 2007 NDTTG workshop, we present a related work in which we
also use terms of the standard Montague semantics to encode dot objects. Apart
from the general presentation of the model which cannot be avoided, the two papers
explore two different ways it operates: here, we use one entry per word with some
kind of projection onto the various aspects, whereas, in the solution proposed in the
NDTTG workshop, we use several entries per word with translator terms between
any two of them. The linguistic examples also differ in the two articles.

1

FG-2007.
Organizing Committee:, Laura Kallmeyer, Paola Monachesi, Gerald Penn, Giorgio Satta.
Copyright c© 2007, CSLI Publications.



June 27, 2007

2 / Bruno Mery, Christian Bassac and Christian Retoré

Thus, theories have been proposed to express this particular form
of polysemy, such as transfers of meaning, by Nunberg (1993), or a
generative lexicon, by Pustejovsky (1995).

1.1 Background
1.1.1 The Generative Lexicon
Pustejovsky’s Generative Lexicon Theory (or GL) gives a strongly-
motivated model for many cases of lexical polysemy, together with a
rich structuration of the meaning of concepts. It uses an inheritance-
based hierarchy of types, each corresponding to a lexical concept, de-
rived from an ontological knowledge base. Each lexical entry also in-
cludes the number and types of arguments needed (for a predicate), the
characterization of the event structure associated with the concept, if
any, and the associated qualia, or modes of explanation of the concept:
what its distinguishing characteristics are (formal), what it is made of
/ part of (constitutive), what it can be used for (telic), what can cause
it to come into being (agentive). . . the idea being that a word can, un-
der certain conditions, refer to any of its qualia role (e.g., “ship” can
be derived from “sail” from a reference to its “constitutive” quale).
In addition, some lexical entries are of a complex (or dot) type, ex-
pressing two (or more) aspects of different types. For instance, if one
supposes that there are physical objects of type P and informational
contents of type I, then the lexical item book would be of type I • P .

1.1.2 Licensing type changes
The semantics supposed by GL is rather intuitive: each predicate con-
tains, in its argument structure, the number and type of arguments
needed. If each argument is present with the correct type, then a λ-
term is formed by application, like in classical Montague semantics.
In addition, the theory licenses certain cases of application (fα→τ xβ)
with α != β via various type coercions: if one of α or β is a subtype of
the other, then the application is valid and is called a subtype coercion;
if α is part of a certain quale of β, even with α and β disjunct, then
the application is valid and is called a true complement coercion; if β
is a complex type α • γ for some γ, then the application is valid by
•-exploitation.

1.1.3 Current Formalizations
The formalization of the structures and compositions of these semantics
is, however, far from trivial. The original theory, as well as more recent
formalisms such as Asher and Pustejovsky (2005), Pustejovsky (2006),
or Asher (2007) seem unsatisfactory and remain open for improvement.



Montagovian GL / 3

June 27, 2007

In particular, the semantics of complex (dot) types has been the
subject of many successive formalizations. It looks like this phenomenon
(in which a single lexical item seems to have two or more aspects of
different, incompatible types) cannot be expressed by straightforward
rules because its representations are manifold, and each case is subtly
different from any other.

For instance, the term “book” can be thought of a compound con-
taining two different aspects (informational content and physical ob-
ject) which are easily accessible, but are not equal: to speak of a book
as a physical item always assumes there is an information contained1,
whereas some uses of the term (e.g., a book in preparation) do not sup-
pose any physical representation. That use of a complex type is logically
different from compounds such as Event•Information (which is used in
Pustejovsky (2005) for lectures, lessons and the like), where the event
is always present and its informational content is in the background,
as many other associated aspects such as audience, date, location. . .

1.2 Our proposal
1.2.1 Basic assumptions
We are strongly inclined to think that most of the additions to GL
can accurately be modeled without the addition of new logical rules
to classical Montague semantics. In particular, we contend that the
phenomenon named “dot object” by GL can be accounted for without
loss as a collection of given phenomena, which can each be treated
without resorting to some special set of rules. We believe that using
the standard Montague mechanisms with specific additional terms can
prove a better approach.

1.2.2 Logical Foundations
Thus, our model is based upon classical Montague semantics, simply-
typed λ-calculus, and a hierarchical typing system such as detailed in
Pustejovsky (2006) : " is the universal type with three main subtypes,
Entity, Event, Property, the various subtypes of which form the com-
plete type lattice. We also have two additional mechanisms, supported
by the lexicon:
. self-adaptation: a lexical item has access to a number of optional

terms that allow it to change types when the classical application
would yield a type error in some context, and

1With the exception of blank notebooks, which are usually specified to be so.



June 27, 2007

4 / Bruno Mery, Christian Bassac and Christian Retoré

. selection-projection: a predicate may select for an argument of any
type and, afterwards, attempt to enforce a certain type upon it,
using additional terms for this purpose.

This system is compatible with the ideas from both Nunberg (1993) and
Pustejovsky (1995) that the lexicon licenses, for each entry, some type-
shifting or type-coercing operations. It does not change the general rules
for Montague semantics, and thus complexity, soundness or correctness
do not change either. The difference is that each lexical item contributes
at least a term, which must be used exactly once (as per usual), plus
a (finite) number of optional terms which might be used, if necessary,
to change the type of the first term. To illustrate this point, the lexical
entry for “town” could provide the following terms (supposing that
items such as New York have the type Town):

Main λ-term Optional terms
x : Town g1 : Town → Locus

g2 : Town → Institution
g3 : Town → People
. . .

In a GL framework, those terms would appear within the argument
structure of the lexical entry concerned. Here, the gs are selection-
projection operators that provide access to the multiple aspects a town
might be predicated of: thus, (g1 x) would reduce to the actual physical
location y of the town, (g2 x) to a representing institution z such as
the city council, (g3 x) to a set of people p such as its inhabitants, etc.

1.2.3 Complex types equivalents
First of all, the formalization we use is more restricted than the one as-
sumed in Pustejovsky (2005). Thus, many phenomena (such as grinding
or complex events) are not considered to be “dot objects” at all, only
the most canonical examples (i.e., “book”) remain quite comparable.

Then, in our formalism, a “dot object” would simply be a lexical
term with its rich structure, its associated λ-term and type, but con-
taining additional terms that might be used after the selection of the
argument in order to refer to one of its aspects. Within each of the as-
pects, such terms might be provided for reference to different aspects,
or the original item.

1.3 A modular system
1.3.1 Logical and structural levels of interpretation
The model supposes at least two different parts : a logical system, using
λ-calculus and type-coercing operators to provide logical forms akin to



Montagovian GL / 5

June 27, 2007

Montague semantics, and a rich structure of information, containing
lexical data. For instance, Gupta and Aha (2003) present a formalism
which can adequately represent this structure.

Specifically, when a certain type-coercing term is used to compute
the logical form of the sentence, the following operations might be per-
formed:
. a minima, the type of the target term is changed;. the λ-term itself might be modified (i.e., the number and types of a

predicate’s arguments);. the data structure associated with the item (i.e., its qualia) might
be changed.

1.3.2 Discourse integration
In addition, the use of type-changing term licenses later reference to the
derived object further along in the discourse. Thus, the system is easy
to interface with discourse-oriented formalisms such as DRT, at least
with respect to one of the main issues of discourse analysis: determining
which objects are available for reference in, e.g., anaphora resolution.
This is a major concern of Asher’s analysis of GL.

1.4 Transfer modes
In this section, we present the two possible ways of applying type-
coercing operators in our model, and the fundamental differences they
lead to.

In order to formalize the two possible ways of applying type-coercing
operators, we shall amend λ-calculus such that any term T : α stands
for a triplet (T0 : α, F, G) where T0 is the “main” λ-term, F is a finite
set of terms fi : τi → α for some types τi and G distinct, finite set of
terms gi : σi → α for some types σi. We shall access those sets using
FT and GT , respectively. Then, application is redefined for two minimal
cases :

1.4.1 Adaptation
An expression such as:

λx : α.(P x) (y : β)

might be reduced into:
. λx : α.(P0 x) (y0 : β), if α and β are equal or compatible (classical

application with optional accommodation);. λx : α.(P0 x) ((fi y0)), if there exists some fi : β → α ∈ Fy (self-
adaptation of the argument by the means of an optional constant).



June 27, 2007

6 / Bruno Mery, Christian Bassac and Christian Retoré

The reduction might prove non-deterministic at this point, if there
are several rewritings available.

Note that, for α and β identical or compatible, λx : α.(P0 x)(y0 : β)
reduces, as is standard, to (P0 y0). The system is thus equivalent to
classical single-typed λ-calculus with accommodation when
FT = GT = ∅ ∀T .

For example, consider an object x of type Car. Supposing its consti-
tutive quale includes an object of type Engine, we would have a term
f : Car → Engine, f ∈ Fx. Supposing that some use of “powerful”
can apply to objects of type Engine, we could have a derivation:

(1) A powerful car
λy : Engine . (Powerful y) (x : Car)
λy : Engine . (Powerful y) ((f x) : Engine)

That mechanism suffices to licence most cases of qualia-exploitation,
as well as type accommodation and some particular lexical rules such
as grinding, where an object is subject to an irrevocable change, such
as Herb → Drink, which is modeled by a type-coercing operator, as in
the following phrase (we consider that Bitter is of type Drink → t):

(2) Some bitter tea
λy : Drink . (Bitter y) (x : Herb)
λy : Drink . (Bitter y) ((f x) : Drink)

1.4.2 Type changes after selection
An expression such as:

λx : ".(P (Πα x)) (y : β)

might be reduced into:
. λx : ".(P0 (Πα x)) (y0 : β), if α and β are equal or compatible;. λx : ".(P0 (Πα x)) ((fi y0)), if there exists some fi : β → α ∈ Fy;. (P0 (gi y0)), if there exists some gi : β → α ∈ GP ∪Gy.

The last possibility is “change after selection”: the constant type-
coercing term is applied only to the local copy of the argument as
selected by the predicate. It is still possible that reduction might prove
non-deterministic, as many distinct rewritings could be available.

This mechanism can express the construct known as co-predication:
if two or more predicates select the same lexical item, they may force
different types upon it . When self-adaptation is required, conversely,
the item changes its type for every reference used, and co-predication
is impossible and sentences such as (3) are usually unfelicitous:

(3) ?? This angora fits neatly on your shoulders and died of old age



Montagovian GL / 7

June 27, 2007

As an example of selection and type change, we might have the types
Town (T ), People (P ) and Locus (L), with terms g1 : Town → Locus
and g3 : Town → People which, as illustrated earlier, establish the rela-
tionship between a town, its geographical situation and its inhabitants.
Then we could have:

(4) Dublin is a coastal and mostly Catholic city
(λy : ".(Coast (ΠL y)) ∧ λz : ".(Catholic (ΠP z))) (x : T )
(Coast (ΠL x)) ∧ (Catholic (ΠP x))
(Coast (g1 x) ∧ (Catholic (g3 x)))

This change of type after selection, which enables to reference the
newly selected aspect, can be used to analyze some of the most complex
puzzles involving co-predicative sentences.

1.4.3 Choosing the right transfer mode
The difference between the two transfer modes is that applying the
change after selection licences full co-predication. Thus, the definition
of the lexically-induced operators will have to take at least two things
into account: whether multiple aspects of the argument can coexist
in a predication, and whether a predicate needs type change after or
before selection. In GL, co-predication is mostly used with complex
types and a number of well-identified phenomena, and the difference is
quite straightforward.

1.5 Comparison with the current approach
After this brief outline of our methods, let us review the differences
with such formalizations as Asher and Pustejovsky (2005). Our goal is
to show that the complex rules used in those formalizations to solve
co-predication and quantificational puzzles are not so strictly neces-
sary. The chief difference between the methods lies with coordinate
co-predications over “dot objects”, which we express using our “type
change after selection”.

1.5.1 Selection, transfer, and coercion
The principles behind our approach of those phenomena go back to
Nunberg (1993), who had already suggested that the meaning of the
selected argument in itself does not change. Rather, it is the predi-
cate that could select any argument and will use one of its properties.
Pustejovsky and Asher’s opposition to this analysis is based on over-
generation: if the predicate can coerce its argument, then phrases such
as “to read a flower” would be valid.

Their formalization, then, uses dot objects and additions to the logi-



June 27, 2007

8 / Bruno Mery, Christian Bassac and Christian Retoré

cal system, with elementary rules that modify the application of a term
to another. Apart from the notational problems of these rules, the fact
that elementary rules contain predicates such as “the smallest subfor-
mula within a term φ which was responsible for the original meaning
of a variable x”, and for which, unfortunately, no algorithm is provided
(we are inclined to think that the complexity analysis of such an algo-
rithm would not necessarily be trivial), or the fact that these rules need
external inference modules in order to work, does not look so good for
the overall efficiency of Pustejovsky and Asher’s solution.

So, admitting that transfers of meaning can over-generate sentences,
and that the current dot object formalization is not so adequate, why
should our approach prove any better ?

From our point of view, a meaning transfer makes more sense than
a type change for co-predicative uses. Indeed, when Pustejovsky and
Asher use dot objects together with a predicate, they need to introduce
a variable corresponding to the selected aspect, and to leave the original
object intact in order to make other predications – which only differs
from the transfer approach in that the selected property, in the latter,
is supposedly known. Of course, a predicate cannot turn any argument
into any type, so as to avoid over-generation. This is why, in our meth-
ods, the type forcing by the predicates after selection of an argument is
effective only when the argument licenses the operation: informally, this
really would be equivalent to the complex types as they are outlined
in Pustejovsky (1995), but this use of type-coercing operators does not
change the basic rules of the logic system.

The main difference between the two methods is thus that the type
coercion is enabled by generic terms through the addition of specific
type construction rules into the system in the first case, and by specific
terms through the usual compositional rules in our case. The interpreta-
tion of the applied type-coercing term will provide the specific relation
between the aspects referred to, rather than the generic (and thus very
underspecified) link that exists in the case of a compound type. On the
other hand, we lose quite a convenient product construction.

The expressive power of our formalism depends on the operators
licensed for each type. If one simply allows as many self-adaptation
terms as there can be valid instances of qualia exploitation, type ac-
commodation or grinding rules for the lexical item concerned, and as
many selection-coercion terms as there are different types in a “dot
object” (none if the concerned item is not a “dot”), then our system
is fully equivalent to Pustejovsky and Asher’s, and in particular does
not over-generate sentences. With some adjustments, it might express
slightly more about the trickiest co-composition phenomena, though.



Montagovian GL / 9

June 27, 2007

1.5.2 Examples
Finally, let us present the way that examples from Asher and Puste-
jovsky (2005) could be treated using our system.

Informational content, physical instances
(5) The book was a huge pain to lug home and turned out to be very

uninteresting.

Several treatments are possible. An easy way to envision this case is
to have a term “book” of type Book which could then be derived into
a term of type PhysBook which would represent an underspecified,
individual, artifactual object with a cover, a set of pages, etc. . . and
into a term representing the informational content, of type InfoBook.
We then have type-coercing operators g1 : Book → PhysBook and
g2 : Book → InfoBook.

For the target sentence, we have

λx : Book.(ThisBook x), (λy : ".(Huge (ΠPhysical y)))(x)∧

(λz : ".(Uninteresting (ΠInfo z)))(x)
which is derived as

λx : Book.(ThisBook x), (Huge (g1x) ∧ (Uninteresting (g2 x))

Complex event types
(6) Lunch was delicious but took forever.

This sentence has prompted Pustejovsky and Asher to use the type
Event • Food for meals. The problem with this interpretation is that
there are many other aspects than these two which can be referenced
– e.g., some would say that “delicious” does not correspond to food as
such, but rather to the perception by the speaker of a sub-event of the
lunch, the act of eating (compare “Lunch was great. . . ”).

In addition, a “lunch” is a scenario comprising several aspect which
cannot be directly referenced (in a co-predicative phrase such as
“lunch’s dessert was delicious but took forever”): the different parts of
the lunch, the settings, the cook, etc. The fact that these aspects can
be present contextually (as in “in yesterday’s dinner, the lighting was
perfect”), and not directly, hints that the aspectual structure is nested :
the lunch takes place at a certain location, which has a certain set-
ting, comprising some kind of lighting, and we can only directly access
foremost elements of such a hierarchy (i.e., the intrinsic components of
lunch itself).

So, we assume that the main entry for lunch is a subtype of Event,
as it is the one aspect of the term which can always be referred to, and



June 27, 2007

10 / Bruno Mery, Christian Bassac and Christian Retoré

a certain number of operators are available, allowing for reference to
sub-events, food as a whole, date and time, etc.. . .

For this sentence, we could use either g1 : Event → Event (a type ac-
commodation term linking “lunch” with the sub-event “eating lunch”),
or g2 : Event → Food, to keep the interpretation assumed by the
original article. Anyway, after derivation, we shall have

λx : Evt. (Lunch x), (Delicious(g x)) ∧ (Forever x)

Complex type introduction
(7) Mary read the subway wall
Examples like this one induced the inclusion of •-Introduction

mechanisms into the theory. The idea is that “read” selects Physi-
cal•Information arguments, and thus that an object subtype of Physical
would be coerced into this complex type. But this also generates incor-
rect phrases such as “read a river”, which (generally) have no coherent
meaning ; Pustejovsky and Asher then use an inference mechanism to
determine whether this •-Introduction rule can be applied or not. The
whole mechanism seems inadequate, since a transfer of meaning could
also be limited by an inference module, but also because “read” is the
only convincing example of •-Introducing predicate.

Our idea here is that, while “read” does indeed select a physical ob-
ject with an informational content, the determining property is that this
information has always the possibility to be instanciated into an entity.
Thus, if we view “read” as a predicate λx : Ay : "(Read x (ΠInfo y))
(the agent x being the reader), we have at our disposal a type-coercing
term, g : Info → Entity.Artifact2, which does not come from the
operators of y, but rather is contributed by the lexical definition of the
type Information. The use of that operator in “read” allows to attach
an (underspecified) informational content to any artifactual entity, and
to read this information. The entity must, in general, be artifactual,
for the information must have been inserted here in order to be ex-
tracted. Thus, “read a flower/river” is incorrect, whereas the uses with
artifactual entities abound: one might “read”. . .

(8) a. a binary file
b. the mayor’s expression
c. the opponent’s strategy

In each case, an informational content is supposed and attached to the
entity. Typically, a specification of the information would follow in the
discourse.

2The subtype of Entity denoting artifacts, i.e. lexical entries that have a specified
telic or agentive quale.



Montagovian GL / 11

June 27, 2007

Of course, in some contexts, a limited number of natural entities
might be “read”. In that case, it is one of the arguments, as usual,
which contributes the corresponding term – a “shaman” agent might
thus provide some specific terms in order to read a “flock of birds” or
a “riverstream”, for instance.

1.6 Beyond lexical meaning
1.6.1 Interpretation choice and scoring
When several terms fi, gi are available for use, several defeasible inter-
pretations might be possible, and another module might have to choose
between the possibilities, resolving logical constraints (as in “The din-
ner was lousy but the food was all right”).

Alternatively, several interpretations might remain possible after all
constraints have been resolved. In that case, a notion of “score”, as-
sociated to the likeliness of using any operator, might help establish
which interpretations are most natural or feel more “forced”. For ex-
ample, “an amazing book” might indicate that the book as information
(writing, plot. . . ) or as an object (in the case of precious, rare items)
is considered to be amazing – both interpretations can certainly be de-
rived, and they are non-contradictory, yet it might be wished to focus
on the first one as being more usual.

1.6.2 Integrating more than the Generative Lexicon
While our system is intended to integrate the compositional mecha-
nisms introduced by GL, it is not dependant upon it, as it is formally
but an extension to λ-calculus with simple types and accommodation.
It could thus be used to model other theories of lexical meaning. More
importantly, it could also be used to add to GL some sense of discourse
semantics, pragmatics or, for instance, cultural variants of a concept.

If one supposes a generic implementation of our system (which would
be straightforward enough using functional and symbolic program-
ming), then the integration of various layers of meaning would be
achieved using modules that translate constraints into optional terms
for GL or, for example, λ-DRT. The generative power of the resulting
implementation could thus cover many aspects.

1.7 Conclusion
In the course of this work, we have proposed a solution for compo-
sitional semantics involving lexically specified rather that canonical
morphisms. It is our hope that this approach will prove both simpler
to formalize and easier to implement than the current formulations



June 27, 2007

12 / Bruno Mery, Christian Bassac and Christian Retoré

used, and will be worth investigating. The use of additional terms for
multi-aspectual objects could thus help highlighting a hierarchy of the
aspects, and a more precise definition of such type compounds in type
theory would also be interesting to pursue.

We hope, with the improvements to generality obtained, to express
more precisely some of the most difficult semantic phenomena.

Acknowledgements
The work presented here is part of the preliminaries of a doctorate thesis
in computer science funded by the French Minister of National Educa-
tion, Higher Teaching and Research (MENSR), conducted in the Uni-
versity of Bordeaux, at the LaBRI. We are indebted to Nicolas Asher
(IRIT – Toulouse) and the people at Signes, as well as the original re-
viewers, for their many helpful remarks, comments and co-concommital
work.

References
Asher, Nicholas. 2007. A type driven theory of predication with complex

types. Fundamenta Informaticæ To appear.

Asher, Nicolas and James Pustejovsky. 2005. Word Meaning and Common-
sense Metaphysics. Semantics Archive.

Gupta, Kalyan Moy and David M. Aha. 2003. Nominal Concept Represen-
tation in Sublanguage Ontologies. In Second International Workshop on
Generative Approaches to the Lexicon.

Marlet, Renaud. 2007. When the Generative Lexicon meets Computational
Semantics. In Fourth International Workshop on Generative Approaches
to the Lexicon.

Nunberg, Geoffrey. 1993. Transfers of meaning. In Proceedings of the 31st
annual meeting on Association for Computational Linguistics, pages 191–
192. Morristown, NJ, USA: Association for Computational Linguistics.

Pustejovsky, James. 1995. The Generative Lexicon. MIT Press.

Pustejovsky, James. 2005. A Survey of Dot Objects. Author’s weblog.

Pustejovsky, James. 2006. Type Theory and Lexical Decomposition. Seman-
tics Archive.

Ranta, Aarne. 2004. Computational semantics in type theory. Mathématiques
et Sciences Sociales 165:31–57.

Vanier, Jules, Christian Bassac, Patrick Henry, Renaud Marlet, and Christian
Retoré. 2006. Toward a knowledge representation model dedicated to the
semantic analysis of the sentence. Tech. rep., INRIA.


