
Reordering a tree according to an order on
its leaves and studying the evolution of the

idiolect of writers

L. Bulteau1, P. Gambette1, O. Seminck2

1 LIGM, CNRS, Université Gustave Eiffel, France
2 Lattice, CNRS & ENS/PSL & Université Sorbonne nouvelle, France

LIGM - 2022-05-17

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Introduction

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Initial Motivation
Studying the evolution of the idiolect of authors

The idiolect according to Dittmar, 1996
“the language of the individual, which because of the acquired
habits and the stylistic features of the personality differs from
that of other individuals and in different life phases shows, as a
rule, different or differently weighted”

The idiolect according to Bloch, 1948
“the totality of the possible utterances of one speaker at one
time in using a language to interact with one other speaker.”

▶ We prefer Bloch’s definition, independent of the notion of
style, which is linked with aesthetic values and judgements.

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Initial Motivation
Studying the evolution of the idiolect of authors

The idiolect according to Dittmar, 1996
“the language of the individual, which because of the acquired
habits and the stylistic features of the personality differs from
that of other individuals and in different life phases shows, as a
rule, different or differently weighted”

The idiolect according to Bloch, 1948
“the totality of the possible utterances of one speaker at one
time in using a language to interact with one other speaker.”

▶ We prefer Bloch’s definition, independent of the notion of
style, which is linked with aesthetic values and judgements.

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Initial Motivation
Studying the evolution of the idiolect of authors

The idiolect according to Dittmar, 1996
“the language of the individual, which because of the acquired
habits and the stylistic features of the personality differs from
that of other individuals and in different life phases shows, as a
rule, different or differently weighted”

The idiolect according to Bloch, 1948
“the totality of the possible utterances of one speaker at one
time in using a language to interact with one other speaker.”

▶ We prefer Bloch’s definition, independent of the notion of
style, which is linked with aesthetic values and judgements.

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Initial Motivation
Studying the evolution of the idiolect of authors

Question
Can we measure and characterise how the idiolect of an author
evolves with time?

Idiolect project

▶ funded by the PR[AI]RIE institute
▶ started by Thierry Poibeau, Dominique Legallois and Olga

Seminck
▶ produced a corpus of novels by 11 prolific 19th century French

authors: The Corpus for Idiolectal Research (CIDRE)
[Seminck, Gambette, Legallois & Poibeau, JOHD 2022]

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Initial Motivation
Studying the evolution of the idiolect of authors

▶ a natural first step:
hierarchical clustering:
▶ compute distances

between all pairs of
novels of an author,
depending on the
contents of the novels
(linguistic parameters)

▶ perform hierarchical
clustering of this
distance matrix to get a
dendrogram (rooted
tree).

▶ does the clustering group
together novels published
in consecutive years?

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Initial Question
How much is the dendrogram consistent with time?

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Initial Question
How much is the dendrogram consistent with time?

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Initial Question
How much is the dendrogram consistent with time?

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Initial Question
How much is the dendrogram consistent with time?

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Initial Question
How much is the dendrogram consistent with time?

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Modelization

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Motivation
Is a clustering consistent with external data?

Input:
▶ Elements

▶ Ordering (time-line, ...)
▶ Clustering

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

Is the clustering consistent
with the ordering?

A C B D F E G H

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Motivation
Is a clustering consistent with external data?

Input:
▶ Elements
▶ Ordering (time-line, ...)

▶ Clustering

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

Is the clustering consistent
with the ordering?

A C B D F E G H

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Motivation
Is a clustering consistent with external data?

Input:
▶ Elements
▶ Ordering (time-line, ...)
▶ Clustering

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

Is the clustering consistent
with the ordering?

A C B D F E G H

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Motivation
Is a clustering consistent with external data?

Input:
▶ Elements
▶ Ordering (time-line, ...)
▶ Clustering

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

Is the clustering consistent
with the ordering?

A C B D F E G H

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Motivation
Is a clustering consistent with external data?

Input:
▶ Elements
▶ Ordering (time-line, ...)
▶ Hierarchical Clustering

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

Is the clustering consistent
with the ordering?

A C B D F E G H

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Motivation
Is a clustering consistent with external data?

Input:
▶ Elements
▶ Ordering (time-line, ...)
▶ Hierarchical Clustering (seen as a tree / dendrogram)

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

Is the clustering consistent
with the ordering?

A C B D F E G H

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Definitions

▶ Tree T with leaf set X , ordering σ: X → N (weak order ≤σ)

▶ Conflict: leaves a, b, c with a<σc<σb and a b c

▶ Ordering of T : strict order σ′ without conflict with T
▶ Crossing between σ and σ′: pair {a, b} with a <σ b and

b <σ′ a

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Definitions

▶ Tree T with leaf set X , ordering σ: X → N (weak order ≤σ)

▶ Conflict: leaves a, b, c with a<σc<σb and a b c

▶ Ordering of T : strict order σ′ without conflict with T
▶ Crossing between σ and σ′: pair {a, b} with a <σ b and

b <σ′ a

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Definitions

▶ Tree T with leaf set X , ordering σ: X → N (weak order ≤σ)

▶ Conflict: leaves a, b, c with a<σc<σb and a b c

▶ Ordering of T : strict order σ′ without conflict with T
▶ Crossing between σ and σ′: pair {a, b} with a <σ b and

b <σ′ a

OTDE One-Tree Drawing by Deleting Edges
Given T , σ, k,
Find X ′ ⊆ X , |X ′| ≥ |X | − k
Such that T [X ′] has no conflict with σ

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Definitions

▶ Tree T with leaf set X , ordering σ: X → N (weak order ≤σ)

▶ Conflict: leaves a, b, c with a<σc<σb and a b c
▶ Ordering of T : strict order σ′ without conflict with T

▶ Crossing between σ and σ′: pair {a, b} with a <σ b and
b <σ′ a

TTDE Two-Tree Drawing by Deleting Edges
Given T1, T2, k,
Find X ′ ⊆ X , |X ′| ≥ |X | − k,
and an ordering σ of both T1[X ′] and T2[X ′]

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Definitions

▶ Tree T with leaf set X , ordering σ: X → N (weak order ≤σ)

▶ Conflict: leaves a, b, c with a<σc<σb and a b c
▶ Ordering of T : strict order σ′ without conflict with T
▶ Crossing between σ and σ′: pair {a, b} with a <σ b and

b <σ′ a

OTCM One-Tree Crossing Minimization
Given T , σ, k,
Find σ′ ordering of T
Such that σ′ has at most k crossings with σ

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Example

Tree T

Order σ

A E C B D

A
1

B
2

C
3

D
4

E
5

Input instance

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Example

Tree T

Order σ

A E C B D

A
1

B
2

C
3

D
4

E
5

✗ ✗

Score for OTDE: k = 2 deletions

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Example

Tree T

Order σ

A E CB D

A
1

B
2

C
3

D
4

E
5

✗ ✗

Another solution with the same score
fun fact: all possible permutations of each node’s children need 2
deletions

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Example

Tree T

Order σ

A E CB D

A
1

B
2

C
3

D
4

E
5

o
o

oo

Score for OTCM: 4 crossings

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Previous Results

OTCM on binary trees
Most studied variant, from phylogenetics
▶ Dwyer, Schreiber ’04: O(n2)
▶ Fernau, Kaufmann, Poths ’05: O(n log2 n)
▶ Bansal et al. ’09: O(n log2 n/ log log n)
▶ Fernau, Kaufmann, Poths. ’10

and Venkatachalam, et al. ’10: O(n log n)

OTDE, TTDE
Introduced by Fernau et al.:
▶ Reduction from OTDE to 3-Hitting Set
▶ NP-hardness still open

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Previous Results

OTCM on binary trees
Most studied variant, from phylogenetics
▶ Dwyer, Schreiber ’04: O(n2)
▶ Fernau, Kaufmann, Poths ’05: O(n log2 n)
▶ Bansal et al. ’09: O(n log2 n/ log log n)
▶ Fernau, Kaufmann, Poths. ’10

and Venkatachalam, et al. ’10: O(n log n)

OTDE, TTDE
Introduced by Fernau et al.:
▶ Reduction from OTDE to 3-Hitting Set
▶ NP-hardness still open

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Our Results

OTCM on arbitrary trees

▶ NP-hardness (from Feedback Arc Set)

OTDE
▶ NP-hardness (from Independent Set)
▶ Parameterized algorithms

▶ (simple) XP for the degree d
▶ (advanced) FPT for the deletion-degree ∂ 1

TTDE
▶ NP-hardness (from OTDE)

1

∂ = degree of T [X \ X ′], ∂ ≤ min{d , k}

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Our Results

OTCM on arbitrary trees

▶ NP-hardness (from Feedback Arc Set)

OTDE
▶ NP-hardness (from Independent Set)
▶ Parameterized algorithms

▶ (simple) XP for the degree d
▶ (advanced) FPT for the deletion-degree ∂ 1

TTDE
▶ NP-hardness (from OTDE)

1∂ = degree of T [X \ X ′], ∂ ≤ min{d , k}
LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Our Results

OTCM on arbitrary trees

▶ NP-hardness (from Feedback Arc Set)

OTDE
▶ NP-hardness (from Independent Set)
▶ Parameterized algorithms

▶ (simple) XP for the degree d
▶ (advanced) FPT for the deletion-degree ∂ 1

TTDE
▶ NP-hardness (from OTDE)

1∂ = degree of T [X \ X ′], ∂ ≤ min{d , k}
LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Algorithms

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

u

A E C F D

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, . . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

u

A E C F D

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗

X (u, 1, 4) = 2

X (u, 4, 7) = 2
X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, . . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

u

A E C FD

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, . . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

v

D’B E’

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1

X (v , 4, 5) = 1
X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, . . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

v

D’ B E’

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, . . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

w

B’ E’’ G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2

X (w , 5, 7) = 1
X (r , 1, 7) = min(5, . . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

w

B’ E’’ G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, . . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

u

A E C FD

v

D’B E’

w

B’ E’’ G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗✗✗ ✗

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, . . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

u

A E C F D

v

D’ B E’

w

B’ E’’ G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗ ✗ ✗

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, 4,. . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

u

A E C F D

v

D’ B E’

w

B’ E’’ G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗ ✗ ✗

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, 4,. . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

u

A E C F D

v

D’ B E’

w

B’ E’’ G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗ ✗ ✗

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, 4,. . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

u

A E C F D

v

D’ B E’

w

B’ E’’ G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗ ✗ ✗

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, 4,. . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree

From XP to FPT
▶ augment the DP table with sets of children,
▶ progress one pivot at a time

u

A E C F D

v

D B E

w

B E G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗ ✗ ✗

X ({r}, 1, 7) = X ({u, v , w}, 1, 7)
= X ({u, v}, 1, 5) + X ({w}, 5, 7)

Table size: 2dn3, each entry in O(dn), overall: O(d2dn4)

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree

From XP to FPT
▶ augment the DP table with sets of children,
▶ progress one pivot at a time

u

A E C F D

v

D B E

w

B E G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗ ✗ ✗

X ({r}, 1, 7) = X ({u, v , w}, 1, 7)
= X ({u, v}, 1, 5) + X ({w}, 5, 7)

Table size: 2dn3, each entry in O(dn), overall: O(d2dn4)

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree

From XP to FPT
▶ augment the DP table with sets of children,
▶ progress one pivot at a time

u

A E C F D

v

D B E

w

B E G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗ ✗ ✗

X ({r}, 1, 7) = X ({u, v , w}, 1, 7)
= X ({u, v}, 1, 5) + X ({w}, 5, 7)

Table size: 2dn3, each entry in O(dn), overall: O(d2dn4)

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree

From XP to FPT
▶ augment the DP table with sets of children,
▶ progress one pivot at a time

u

A E C F D

v

D B E

w

B E G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗ ✗ ✗

X ({r}, 1, 7) = X ({u, v , w}, 1, 7)
= X ({u, v}, 1, 5) + X ({w}, 5, 7)

Table size: 2dn3, each entry in O(dn), overall: O(d2dn4)
LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree

From degree to deletion-degree
▶ only ∂ ≪ d children with a deletion
▶ there exists a large backbone without self-conflict

▶ compute some backbone using Vertex Cover
▶ compute DP entries for each

(prefix of the backbone) ∪ (any vertices out of the backbone)
▶ 2d → d2∂ (+ VC preprocessing in O(1.3∂d + ∂d2))

A B C D E F G H I J K

r

A C

u

B H J

v

C D G

w

E F K

x

I

y

u

v

wx

y

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree

From degree to deletion-degree
▶ only ∂ ≪ d children with a deletion
▶ there exists a large backbone without self-conflict
▶ compute some backbone using Vertex Cover

▶ compute DP entries for each
(prefix of the backbone) ∪ (any vertices out of the backbone)

▶ 2d → d2∂ (+ VC preprocessing in O(1.3∂d + ∂d2))

A B C D E F G H I J K

r

A C

u

B H J

v

C D G

w

E F K

x

I

y
u

v

wx

y

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree

From degree to deletion-degree
▶ only ∂ ≪ d children with a deletion
▶ there exists a large backbone without self-conflict
▶ compute some backbone using Vertex Cover

▶ compute DP entries for each
(prefix of the backbone) ∪ (any vertices out of the backbone)

▶ 2d → d2∂ (+ VC preprocessing in O(1.3∂d + ∂d2))

A B C D E F G H I J K

r

A C

u

B H J

v

C D G

w

E F K

x

I

y
u

v

wx

y

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree

From degree to deletion-degree
▶ only ∂ ≪ d children with a deletion
▶ there exists a large backbone without self-conflict
▶ compute some backbone using Vertex Cover

▶ compute DP entries for each
(prefix of the backbone) ∪ (any vertices out of the backbone)

▶ 2d → d2∂ (+ VC preprocessing in O(1.3∂d + ∂d2))

A B C D E F G H I J K

r

A C

u

B H J

v

C D G

w

E F K

x

I

y
u

v

wx

y

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree

From degree to deletion-degree
▶ only ∂ ≪ d children with a deletion
▶ there exists a large backbone without self-conflict
▶ compute some backbone using Vertex Cover
▶ compute DP entries for each

(prefix of the backbone) ∪ (any vertices out of the backbone)

▶ 2d → d2∂ (+ VC preprocessing in O(1.3∂d + ∂d2))

A B C D E F G H I J K

r

A C

u

B H J

v

C D G

w

E F K

x

I

y
u

v

wx

y

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree

From degree to deletion-degree
▶ only ∂ ≪ d children with a deletion
▶ there exists a large backbone without self-conflict
▶ compute some backbone using Vertex Cover
▶ compute DP entries for each

(prefix of the backbone) ∪ (any vertices out of the backbone)
▶ 2d → d2∂ (+ VC preprocessing in O(1.3∂d + ∂d2))

A B C D E F G H I J K

r

A C

u

B H J

v

C D G

w

E F K

x

I

y
u

v

wx

y

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree

A B C D E F G H I J K

r

A C

u

C D G

w

E F K

x

B H J

v

I

y

✗ ✗ ✗ ✗

A B C D E F G H I J K

r

A C

u

B H J

v

C D G

w

E F K

x

I

y
u

v

wx

y

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Hardness Results

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is NP-hard: reduction from Independent Set

Given a graph G ,

Build tree T (G):
▶ One cherry per vertex (u, u′)
▶ One cherry per edge (e, e′)
▶ Separators

Build order σ(G) (seen as a
string):
▶ Factor ue1e2e3u′ for each

vertex and incident edges
▶ Separators between factors

Wlog, delete ≤ 1 leaf per cherry,
keep both leaves for vertices in
an independent set.

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is NP-hard: reduction from Independent Set

Given a graph G ,
Build tree T (G):
▶ One cherry per vertex (u, u′)
▶ One cherry per edge (e, e′)
▶ Separators

Build order σ(G) (seen as a
string):
▶ Factor ue1e2e3u′ for each

vertex and incident edges
▶ Separators between factors

Wlog, delete ≤ 1 leaf per cherry,
keep both leaves for vertices in
an independent set.

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is NP-hard: reduction from Independent Set

Given a graph G ,
Build tree T (G):
▶ One cherry per vertex (u, u′)
▶ One cherry per edge (e, e′)
▶ Separators

Build order σ(G) (seen as a
string):
▶ Factor ue1e2e3u′ for each

vertex and incident edges
▶ Separators between factors

Wlog, delete ≤ 1 leaf per cherry,
keep both leaves for vertices in
an independent set.

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is NP-hard: reduction from Independent Set

Given a graph G ,
Build tree T (G):
▶ One cherry per vertex (u, u′)
▶ One cherry per edge (e, e′)
▶ Separators

Build order σ(G) (seen as a
string):
▶ Factor ue1e2e3u′ for each

vertex and incident edges
▶ Separators between factors

Wlog, delete ≤ 1 leaf per cherry,

keep both leaves for vertices in
an independent set.

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTDE is NP-hard: reduction from Independent Set

Given a graph G ,
Build tree T (G):
▶ One cherry per vertex (u, u′)
▶ One cherry per edge (e, e′)
▶ Separators

Build order σ(G) (seen as a
string):
▶ Factor ue1e2e3u′ for each

vertex and incident edges
▶ Separators between factors

Wlog, delete ≤ 1 leaf per cherry,
keep both leaves for vertices in
an independent set.

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

TTDE is NP-hard: reduction from OTDE

Given T , σ

Build T1:
▶ Caterpillar following σ

▶ Large subtree ("anchor") at
the bottom

Build T2:
▶ Start with T
▶ Connect anchor to the root

The anchor must be at one end
of T1 ⇒ leaf order is the same as
σ.

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

TTDE is NP-hard: reduction from OTDE

Given T , σ
Build T1:
▶ Caterpillar following σ

▶ Large subtree ("anchor") at
the bottom

Build T2:
▶ Start with T
▶ Connect anchor to the root

The anchor must be at one end
of T1 ⇒ leaf order is the same as
σ.

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

TTDE is NP-hard: reduction from OTDE

Given T , σ
Build T1:
▶ Caterpillar following σ

▶ Large subtree ("anchor") at
the bottom

Build T2:
▶ Start with T
▶ Connect anchor to the root

The anchor must be at one end
of T1 ⇒ leaf order is the same as
σ.

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

TTDE is NP-hard: reduction from OTDE

Given T , σ
Build T1:
▶ Caterpillar following σ

▶ Large subtree ("anchor") at
the bottom

Build T2:
▶ Start with T
▶ Connect anchor to the root

The anchor must be at one end
of T1 ⇒ leaf order is the same as
σ.

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTCM is NP-hard: reduction from Feedback Arc Set

Given G , build T (G) with one large subtree per vertex.

Build σ(G) with one factor per arc:

v1 → v3 =⇒ v1v3v2v4v4v2v1v3

Solution: pick a permutation of the vertices
In the arc gadget:
▶ v1, v3 have 0 crossing if v1 is before v3, 2 otherwise
▶ Each other vi , vj have 1 crossing.

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTCM is NP-hard: reduction from Feedback Arc Set

Given G , build T (G) with one large subtree per vertex.
Build σ(G) with one factor per arc:

v1 → v3 =⇒ v1v3v2v4v4v2v1v3

Solution: pick a permutation of the vertices
In the arc gadget:
▶ v1, v3 have 0 crossing if v1 is before v3, 2 otherwise
▶ Each other vi , vj have 1 crossing.

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTCM is NP-hard: reduction from Feedback Arc Set

Given G , build T (G) with one large subtree per vertex.
Build σ(G) with one factor per arc:

v1 → v3 =⇒ v1v3v2v4v4v2v1v3

Solution: pick a permutation of the vertices

In the arc gadget:
▶ v1, v3 have 0 crossing if v1 is before v3, 2 otherwise
▶ Each other vi , vj have 1 crossing.

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

OTCM is NP-hard: reduction from Feedback Arc Set

Given G , build T (G) with one large subtree per vertex.
Build σ(G) with one factor per arc:

v1 → v3 =⇒ v1v3v2v4v4v2v1v3

Solution: pick a permutation of the vertices
In the arc gadget:
▶ v1, v3 have 0 crossing if v1 is before v3, 2 otherwise
▶ Each other vi , vj have 1 crossing.

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Experiments

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Experiments: data & methods

Data
▶ Dated novels of 11 French 19th century writers
▶ Distance tables of novels using the relative frequencies of the

500 most frequent tokens
▶ Hierarchical clustering based on the distance tables, producing

binary trees

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Experiments: speed

tree #
leaves

OTCM
time (ms)

#
inversions

OTDE
time (ms)

deleted
leaves

Ségur 22 1 40 200 9
Féval 23 2 47 268 8

Aimard 24 1 35 401 8
Zévaco 29 1 42 727 11
Lesueur 31 1 48 676 13

Zola 35 2 60 1203 9
Gréville 36 2 105 2211 18
Ponson 42 3 167 3447 18
Verne 58 3 183 13446 27
Balzac 59 4 248 8292 34
Sand 62 4 283 17557 39

Future work
⇒ Improve the complexity of the dynamic programming algorithm
solving OTDE

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Experiments: presence of chronological signal

tree #
leaves

#
inversions pOTCM

deleted
leaves pOTDE

Ségur 22 40 0.24 9 1
Féval 23 47 0.38 8 0

Aimard 24 35 0 8 0
Zévaco 29 42 0 11 0
Lesueur 31 48 0 13 0

Zola 35 60 0 9 0
Gréville 36 105 0 18 1
Ponson 42 167 2.23 18 0
Verne 58 183 0 27 0
Balzac 59 248 0 34 0
Sand 62 283 0 39 1

pOTCM (resp. pOTDE) = percentage of cases when the best order on the leaves
of the tree has the same number of inversions (resp. deleted leaves), or less
than the chronological order, among 10000 (resp. 100) randomly generated
orders for OTCM (resp. OTDE).

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Experiments: identification of noise

Simulation experiment by adding errors in the leaf order
Repeat 100 times:

1. randomly choose “dates” from the interval [0,999]
2. build a distance matrix of the absolute differences between

“dates” and the corresponding dendrogram
3. insert e artificial errors: pick a new random “date” for e

randomly chosen leaves.

▶ Does OTDE output the set Le of leaves with artificial errors?

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Experiments: identification of noise
n =

leaves
e =

errors
proportion of

cases when L = Le

when
|L − Le | = 1

20 1 0.79 1
20 2 0.62 0.96
20 3 0.39 0.88
20 4 0.33 0.77
20 5 0.27 0.67
50 1 0.93 1
50 2 0.83 0.99
50 3 0.70 0.98
50 4 0.59 0.91
50 5 0.56 0.90

Observations
▶ if at most 2 errors, identified in more than 60% of the

experiments, at least 1 identified in more than 96%.
LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Other Methods to Evaluate the
Chronological Signal

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

What do we want to study/evaluate?
▶ the chronological signal in the clustering? (lots of DH tools

produce clustering)

▶ the chronological signal in the original data? 2 ideas:

▶ how much is the distance matrix Robinsonian?
▶ how successful is supervised machine-learning in capturing the

chronological signal?

▶ which linguistic patterns change with the chronology?

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

What do we want to study/evaluate?
▶ the chronological signal in the clustering? (lots of DH tools

produce clustering)
▶ the chronological signal in the original data? 2 ideas:

▶ how much is the distance matrix Robinsonian?
▶ how successful is supervised machine-learning in capturing the

chronological signal?
▶ which linguistic patterns change with the chronology?

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

What do we want to study/evaluate?
▶ the chronological signal in the clustering? (lots of DH tools

produce clustering)
▶ the chronological signal in the original data? 2 ideas:

▶ how much is the distance matrix Robinsonian?

▶ how successful is supervised machine-learning in capturing the
chronological signal?

▶ which linguistic patterns change with the chronology?

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

What do we want to study/evaluate?
▶ the chronological signal in the clustering? (lots of DH tools

produce clustering)
▶ the chronological signal in the original data? 2 ideas:

▶ how much is the distance matrix Robinsonian?
▶ how successful is supervised machine-learning in capturing the

chronological signal?

▶ which linguistic patterns change with the chronology?

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

What do we want to study/evaluate?
▶ the chronological signal in the clustering? (lots of DH tools

produce clustering)
▶ the chronological signal in the original data? 2 ideas:

▶ how much is the distance matrix Robinsonian?
▶ how successful is supervised machine-learning in capturing the

chronological signal?
▶ which linguistic patterns change with the chronology?

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

How Robinsonian is the input matrix?

Robinsonian matrix
Given a matrix d expressing the distance between novels, we say
that d is Robinsonian if for any set of three distinct texts texti ,
textj and textk such that date(texti) < date(textj) < date(textk),
max(d(texti , textj), d(textj , textk)) ≤ d(texti , textk).

text1 text2 text3
text1 0 2 4
text2 2 0 1
text3 4 1 0

An example of a Robinsonian distance matrix: both d(text1, text2)
and d(text2, text3) are lower than d(text1, text3).

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

How to measure distance?

▶ “motifs” : n-grams (unigram to pentagram) of part of
speech and semantic labels

▶ create vectors of relative frequencies of motifs :
p = (p1, p2, ...pn), q = (q1, q2, ...qn)

▶ canberra metric D(p, q) = ∑ |pi −qi |
pi +qi

Example motifs
“Il est fâcheux que cela traîne en longueur”
▶ Unigrams :[‘il’, ‘être’, ‘ADJ’, ‘que’, ‘cela’, ‘PRES’, ‘en’, ‘NC’,

‘...’]
▶ Bigrams :[(‘Il’,‘être’), (‘être’,‘ADJ’),(‘ADJ’,‘que’),

(‘que’,‘cela’), (‘cela’,‘PRES’), (‘PRES’,‘en’), (‘en’,‘NC’),
(‘NC’,‘...’)]

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Regression

Methodology for the regression

▶ Get vector representations of texts with the relative frequency
of motifs.

▶ Split a corpus of an author in 5 parts: 80 % train, 20 % test.
The books are the data-points.

▶ Proceed by cross-validation to get predictions on every book.
▶ Perform Lasso LARS (regression with feature selection)
▶ Study the correlation between the predicted and actual year.
▶ Study the remaining features in context and try to interpret

them.

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Result of the regression

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Result of the regression

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Which linguistic patterns are increasing or
decreasing?

Some patterns are stylemes
▶ “. Et” (Zola)

▶ Quoi donc ? Était-ce la fin ? Un souffle glacé avait couru sur
le camp, anéanti de sommeil et d’angoisse. Et ce fut alors que
Jean et Maurice reconnurent le colonel de Vineuil [...] (La
débâcle)

▶ What then? Was it the end? An icy breath had run over the
camp, annihilated by sleep and anguish. And it was then that
Jean and Maurice recognized Colonel de Vineuil [...]

▶ “dit à [proper_name]” (Balzac)
▶ J’attends la réponse, dit à Rastignac le commissionnaire de

madame de Nucingen. (Le père Goriot)
▶ I’m waiting for an answer, said the commissioner of Madame

de Nucingen to Rastignac.

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Conclusion

Main results
▶ NP-hardness proofs for problems useful in bioinformatics and

digital humanities
▶ FPT-algorithm in the deletion degree
▶ implementation in Python of an algorithm solving OTCM and

OTDE, to evaluate the chronological signal in a tree
▶ a direct method to study the presence of the chronological

signal in the data

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

Conclusion

Future works
▶ optimize the dynamic programming algorithm for OTDE
▶ evaluate the expected number of inversions or deleted leaves

for a random order
▶ do more experiments about the new approaches:

▶ solve OTCM / OTDE on other datasets from different fields
(some examples already added to
https://github.com/oseminck/tree_order_evaluation)

▶ in-depth studies of cases where some leaves are expected to be
wrongly ordered for OTDE

▶ discuss the obtained results about the evolution of idiolect
with specialists of the authors

LIGM 2022-05-17 Reordering a tree according to an order on its leaves

https://github.com/oseminck/tree_order_evaluation

	Introduction
	Modelization
	Algorithms
	Hardness Results
	Experiments
	Other Methods to Evaluate the Chronological Signal

