Bordeaux Graph Workshop 21/11/2012 - Bordeaux

(Nearly)-tight bounds on the linearity and contiguity of cographs

Christophe Crespelle LIP Université de Lyon INRIA

Philippe Gambette LIGM Université Paris-Est Marne-la-Vallée

Outline

- Contiguity and linearity
- Cographs and cotrees
- A min-max theorem on the rank of a tree
- Upper bounds with caterpillar decompositions
- Lower bounds with claws
- Perspectives

Outline

- Contiguity and linearity
- Cographs and cotrees
- A min-max theorem on the rank of a tree
- Upper bounds with caterpillar decompositions
- Lower bounds with claws
- Perspectives

a closed-k-interval model of G

adbcefhg

 \rightarrow order σ where the closed neighborhood of each vertex is the union of at most k intervals of σ

a closed-k-interval model of G

 \rightarrow order σ where the closed neighborhood of each vertex is the union of at most k intervals of σ $N[a]: \quad \underline{a \ d \ b} \ c \ e \ f \ \underline{h} \ g$

a closed-k-interval model of G

 \rightarrow order σ where the closed neighborhood of each vertex is the union of at most k intervals of σ

$$V[a]: \frac{a \, d \, b \, c \, e \, f \, \underline{h} \, g}{\Longrightarrow} \implies k \ge 2$$

a closed-k-interval model of G

 \rightarrow order σ where the closed neighborhood of each vertex is the union of at most k intervals of σ

$$V[b]: \quad \frac{a}{b} \frac{b}{c} \frac{c}{e} \frac{f}{h} \frac{g}{g} \implies k \ge 2$$

a closed-k-interval model of G

 \rightarrow order σ where the closed neighborhood of each vertex is the union of at most k intervals of σ

$$N[c]: \quad a \ d \ \underline{b \ c} \ e \ \underline{f} \ h \ \underline{g} \qquad \implies k \ge 2$$

a closed-k-interval model of G

 \rightarrow order σ where the closed neighborhood of each vertex is the union of at most k intervals of σ $a \ d \ b \ c \ e \ f \ h \ g \implies k = 2$ $\implies cc(G) \le 2$

closed contiguity of G, cc(G): smallest k / G has a closed-k-interval model

. . .

a closed-k-interval model of G

 \rightarrow order σ where the closed neighborhood of each vertex is the union of at most k intervals of σ $a \ d \ b \ c \ e \ f \ h \ g \implies k = 2$ $\implies cc(G) \le 2$

A min-max parameter: $cc(G) = \min_{\sigma} \max_{v} cc_{G,\sigma}(v)$

a closed-k-interval model of G

 \rightarrow order σ where the closed neighborhood of each vertex is the union of at most k intervals of σ $a \ d \ b \ c \ e \ f \ h \ g \qquad \implies k = 2$ $\implies cc(G) \le 2$

A min-max parameter: $cc(G) = \min_{\sigma} \max_{v} cc_{G,\sigma}(v)$

closed contiguity of G, cc(G): smallest k / G has a closed-k-interval model

compact representation of G

Contiguity and consecutives ones

. .

	a d b c e f h g		
	<i>a</i> 1 1 1 0 0 0 1 0		
a closed-<i>k</i>-interval model of <i>G</i>	<i>d</i> 1 1 0 0 1 0 0 0		
\rightarrow order σ where the closed neighborhood of each vertex is the union of at most k intervals of σ	<i>b</i> 1 0 1 1 1 0 0 0	adjacency	
	<i>c</i> 00110100	matrix A of G	
	<i>e</i> 01101111		
	<i>f</i> 00011110		
	<u>h</u> 1 0 0 0 1 1 1 1		
	<i>g</i> 0 0 0 0 1 0 1 1		

G has **closed contiguity** $\leq k$ if the lines and columns of the adjacency matric *A* of *G* can be reordered so that they contain at most *k* blocks of consecutives ones.

Contiguity and consecutives ones

a closed- <i>k</i> -interval model of <i>G</i> \rightarrow order σ where the closed neighborhood of each vertex is the union of at most <i>k</i> intervals of σ	$a d b c e f h g$ $a \underline{111} 0 0 0 \underline{1} 0$ $d \underline{11} 0 0 \underline{1} 0 0 0$ $b \underline{10111} 0 0 0$ $c 0 0 \underline{11} 0 \underline{100}$ $e 0 \underline{11} 0 \underline{1111}$ $f 0 0 0 \underline{1111}$ $f 0 0 0 \underline{1111}$ $g 0 0 0 0 \underline{1011}$
--	--

G has **closed contiguity** $\leq k$ if the lines and columns of the adjacency matric *A* of *G* can be reordered so that they contain at most *k* blocks of consecutives ones.

an open-k-interval model of G

 \rightarrow order σ where the open neighborhood of each vertex is the union of at most k intervals of σ

$N(a): \quad a \underline{d b} c e f \underline{h} g \implies k \ge 2$

open contiguity of *G*, *o*c(*G*): smallest *k* / *G* has an open-*k*-interval model

an open-k-interval model of G

 \rightarrow order σ where the open neighborhood of each vertex is the union of at most k intervals of σ

$N(h): \stackrel{\underline{a} \ d \ b \ c \ \underline{efh} \ \underline{g}}{\Longrightarrow} k \ge 3$ $\implies \operatorname{oc}(G) \le 3$

open contiguity of G, oc(G): smallest k / G has an open-k-interval model

an **open-k-interval model** of G

 \rightarrow order σ where the open neighborhood of each vertex is the union of at most k intervals of σ $N(h): \begin{array}{c} \underline{a} \ d \ b \ c \ \underline{efh} \ \underline{g} \\ \Rightarrow k \ge 3 \\ \Rightarrow \operatorname{oc}(G) \le 3 \end{array}$

Remark: $oc(G) \le cc(G)+1$; $cc(G) \le oc(G)+1$

open contiguity of *G*, *o*c(*G*): smallest *k* / *G* has an open-*k*-interval model

Linearity

a closed-k-line model of G

 \rightarrow k orders where the closed neighborhood of each vertex is the union of one interval per order

$$V[a]: \begin{array}{c} \underline{a\ d\ b\ c\ e\ f\ h\ g} \\ a\ d\ b\ c\ e\ f\ g\ \underline{h} \end{array} \implies k \ge 2$$

closed linearity of *G*, *cl*(*G*): smallest *k* / *G* has a closed-*k*-line model

Linearity

an **open-k-line model** of G

 \rightarrow k orders where the open neighborhood of each vertex is the union of one interval per order

$$N(h): \begin{array}{c} \underline{a} \ d \ b \ c \ e \ f \ h \ g \\ a \ d \ b \ c \ \underline{e \ f \ g} \ h \end{array} \implies k \ge 2$$

open linearity of *G*, *ol*(*G*): smallest *k* / *G* has an open-*k*-line model

Linearity

an **open-k-line model** of G

 \rightarrow k orders where the open neighborhood of each vertex is the union of one interval per order

$$N(h): \begin{array}{c} \underline{a} \ d \ b \ c \ e \ f \ h \ g \\ a \ d \ b \ c \ e \ f \ g \ h \end{array} \implies k \ge 2$$

Remark:

 $ol(G) \le cl(G)+1$; $cl(G) \le ol(G)+1$ $cl(G) \le cc(G)$ (replicate same order)

open linearity of *G*, *ol*(*G*): smallest *k* / *G* has an open-*k*-line model

Computing the contiguity/linearity

 $cc(G) = 1 \Leftrightarrow cl(G) = 1 \Leftrightarrow G$ unit interval graph

 $oc(G) = 1 \Leftrightarrow ol(G) = 1 \Leftrightarrow G$ biconvex graph

Given a fixed $k \ge 2$, cc(G) = k? oc(G) = k? **NP-complete**

Wang, Lau & Zhao, DAM, 2007

Bounds:

For any graph G, $cl(G) \le cc(G) \le n/4 + O(\sqrt{n \log n})$

Gavoille & Peleg, SIAM JoDM, 1999

There exist interval graphs and permutation graphs with n vertices and with closed contiguity at least O(log n) / closed linearity at least O(log n / log log n) Crespelle & Gambette, IWOCA 2009

Computing the contiguity/linearity

 $cc(G) = 1 \Leftrightarrow cl(G) = 1 \Leftrightarrow G$ unit interval graph

 $oc(G) = 1 \Leftrightarrow ol(G) = 1 \Leftrightarrow G$ **biconvex** graph

Given a fixed $k \ge 2$, cc(G) = k? oc(G) = k? **NP-complete**

Wang, Lau & Zhao, DAM, 2007

Bounds:

For any graph G, $cl(G) \le cc(G) \le n/4 + O(\sqrt{n \log n})$

Gavoille & Peleg, SIAM JoDM, 1999

There exist interval graphs and permutation graphs with n vertices and with closed contiguity at least O(log n) / closed linearity at least O(log n / log log n) Crespelle & Gambette, IWOCA 2009

Outline

- Contiguity and linearity
- Cographs and cotrees
- A min-max theorem on the rank of a tree
- Upper bounds with caterpillar decompositions
- Lower bounds with claws
- Perspectives

cograph G = graph without induced P₄ graph built by series composition (**s**eries operation) and disjoint union (**p**arallel operation) \rightarrow cotree T

cograph G = graph without induced P_4 graph built by series composition (**s**eries operation) and disjoint union (**p**arallel operation) \rightarrow cotree T

cograph G = graph without induced P₄ graph built by series composition (series operation) and disjoint union (**p**arallel operation) \rightarrow cotree T Т G g bcdef h a

Useful properties:

Complement: For any graph G, $cc(\overline{G}) \le cc(G)+1$

Series & parallel operation: For any graphs G and H, $cc(s(G,H) \le max(cc(G),cc(H))+1, cc(p(G,H) \le max(cc(G),cc(H)))$ $cl(s(G,H) \le max(cl(G),cl(H))+1, cl(p(G,H) \le max(cl(G),cl(H)))$

Useful properties:

Complement: For any graph G, $cc(\overline{G}) \le cc(G)+1$

Series & parallel operation: For any graphs G and H, $cc(s(G,H) \le max(cc(G),cc(H))+1, cc(p(G,H) \le max(cc(G),cc(H)))$ $cl(s(G,H) \le max(cl(G),cl(H))+1, cl(p(G,H) \le max(cl(G),cl(H)))$ **Useful properties:**

Complement: For any graph G, $cc(\overline{G}) \le cc(G)+1$

Series & parallel operation: For any graphs G and H, $cc(s(G,H) \le max(cc(G),cc(H))+1, cc(p(G,H) \le max(cc(G),cc(H)))$ $cl(s(G,H) \le max(cl(G),cl(H))+1, cl(p(G,H) \le max(cl(G),cl(H)))$ $cc(G) \le height(T)$

Cograph with caterpillar cotree: $cc(G) \le 2$

Useful properties:

Complement: For any graph G, $cc(\overline{G}) \le cc(G)+1$

Series & parallel operation: For any graphs G and H, $cc(s(G,H) \le max(cc(G),cc(H))+1, cc(p(G,H) \le max(cc(G),cc(H)))$ $cl(s(G,H) \le max(cl(G),cl(H))+1, cl(p(G,H) \le max(cl(G),cl(H)))$

Cograph with caterpillar cotree: $cc(G) \le 2$

Combine both to get an upper bound for general cographs?

 $\sigma = d h a b c e f g$

Outline

- Contiguity and linearity
- Cographs and cotrees
- A min-max theorem on the rank of a tree
- Upper bounds with caterpillar decompositions
- Lower bounds with claws
- Perspectives

Rank of a tree

rank(T) = maximal height of a complete binary tree T' obtained from T by edge contractions

Rank of a tree

rank(*T*) = maximal height of a complete binary tree *T*' obtained from *T* by edge contractions

 \Rightarrow rank(T)=2

Rank and path partition of a tree

For any rooted tree *T*, **rank**(*T*) = maximum height of its **path partitions**

A path partition $\{P_1, P_2, P_3, P_4, P_5, P_6\}$ of T

A path partition tree of T

Outline

- Contiguity and linearity
- Cographs and cotrees
- A min-max theorem on the rank of a tree
- Upper bounds with caterpillar decompositions
- Lower bounds with claws
- Perspectives

Upper bound on the contiguity / linearity

For a cograph G and its cotree T, $cc(G) \le 2 \operatorname{rank}(T) + 1 \le 2 (\log n) + 1$

Upper bound on the contiguity / linearity

For a cograph G and its cotree T, $cc(G) \le 2 \operatorname{rank}(T) + 1 \le 2 (\log n) + 1$

Upper bound on the contiguity / linearity

For a cograph G and its cotree T, $cc(G) \le 2 \operatorname{rank}(T) + 1 \le 2 (\log n) + 1$

3 Refine the order by recursively treating each T_i

Outline

- Contiguity and linearity
- Cographs and cotrees
- A min-max theorem on the rank of a tree
- Upper bounds with caterpillar decompositions
- Lower bounds with claws
- Perspectives

Lower bound on the contiguity

For a cograph G with complete binary cotree, $cc(G) \ge ((\log n)-5)/4$

Idea of the proof:

claw K_{1,3} Base case: Vertices x y & t all need to be $cotree(K_{1,3})$ adjacent to z in σ so that their neighborhood is one interval XVI Ζ $\rightarrow cc(K_{1,3}) \ge 2$ 4(*k*+1) Induction: **V**₂ |4k|

Lower bound on the linearity

For a cograph G with complete binary cotree, $cl(G) \ge O((\log n)/(\log \log n))$

Idea of the proof:

Base case is star $K_{1,2k+1}$ (bigger than $K_{1,3}$)

 \rightarrow need a bigger complete binary cotree, of height $\geq 2k[\log(2k+1)]+1$

Tightness of the bounds

For a cograph G with complete binary cotree, $cc(G) = (\log n)/2 + 1$

Oreste Manoussakis, 2012

Idea of the proof:

Careful analysis of the result of the root-path decomposition algorithm for the upper bound.

Analysis based on C_{A} -cycles for the lower bound.

Linearity open: $O(\log n)$ or $O((\log n)/(\log \log n))$?

For any cograph *G*, there is a linear time constant-factor approximation algorithm to compute its contiguity.

Crespelle & Gambette, WALCOM 2013

Idea of the proof:

Approximate value given by the root-path decomposition algorithm.

Lower and upper bounds on the contiguity depending on the height of the biggest complete binary tree which is a minor of the cotree *T* of *G*, i.e. the **rank** of *T*:

 $cc(G) \leq 2 \operatorname{rank}(T) + 1$

 $\operatorname{cc}(G) \geq (\operatorname{rank}(T) - 7) \ / \ 4$

 \rightarrow approximation ratio 23

Outline

- Contiguity and linearity
- Cographs and cotrees
- A min-max theorem on the rank of a tree
- Upper bounds with caterpillar decompositions
- Lower bounds with claws
- Perspectives

Open problems

- Linearity of cographs?
- Gap between linearity and contiguity?
- Linearity or contiguity of graphs classes generalizing cographs

Practical applications of linearity and contiguity

- practical approaches to get upper bounds?
- use in algorithmic contexts? Solving problems on graphs with bounded linearity or contiguity.
- use for some graph classes arising from applications:

→ express a complexity value for phylogenetic networks (*min. spread*) Asano, Jansson, Sadakane, Uehara & Valiente, 2010

Thank you for your attention

Any questions?

Work partially supported by the PEPS-C1P project CN

Christophe Crespelle & Philippe Gambette (2009), *Efficient Neighbourhood Encoding for Interval Graphs and Permutation Graphs and O(n) Breadth-First Search*, IWOCA'09, LNCS 5874, p. 146-157.

Christophe Crespelle & Philippe Gambette (2013), *Linear-time Constant-ratio Approximation Algorithm and Tight Bounds for the Contiguity of Cographs*, WALCOM'13, LNCS, to appear.