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a graph G

a closed-k-interval model of G

→ order σ where the closed 
neighborhood of each vertex is the 
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G has closed contiguity ≤k if the lines and columns of the adjacency matric A of 
G can be reordered so that they contain at most k blocks of consecutives ones.

a 1 1 1 0 0 0 1 0
d 1 1 0 0 1 0 0 0
b 1 0 1 1 1 0 0 0
c 0 0 1 1 0 1 0 0
e 0 1 1 0 1 1 1 1
f  0 0 0 1 1 1 1 0
h 1 0 0 0 1 1 1 1
g 0 0 0 0 1 0 1 1

adjacency 
matrix A of G
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G has closed contiguity ≤k if the lines and columns of the adjacency matric A of 
G can be reordered so that they contain at most k blocks of consecutives ones.

⟹ cc(G) ≤ 2

a 1 1 1 0 0 0 1 0
d 1 1 0 0 1 0 0 0
b 1 0 1 1 1 0 0 0
c 0 0 1 1 0 1 0 0
e 0 1 1 0 1 1 1 1
f  0 0 0 1 1 1 1 0
h 1 0 0 0 1 1 1 1
g 0 0 0 0 1 0 1 1
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an open-k-line model of G

→ k orders where the open 
neighborhood of each vertex is the 
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open linearity of G, ol(G): smallest k / G has an open-k-line model
                                              

N(h): ⟹ k ≥ 2

Remark:
ol(G) ≤ cl(G)+1 ; cl(G) ≤ ol(G)+1
cl(G) ≤ cc(G) (replicate same order)
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Computing the contiguity/linearity

cc(G) = 1        cl(G) = 1       G unit interval graph

oc(G) = 1       ol(G) = 1       G biconvex graph

Given a fixed k≥2, cc(G) = k ? oc(G) = k ? NP-complete
Wang, Lau & Zhao, DAM, 2007

Bounds:

For any graph G, cl(G) ≤ cc(G) ≤ n/4+O(  n log n )
Gavoille & Peleg, SIAM JoDM, 1999

There exist interval graphs and permutation graphs with n vertices and with 
closed contiguity at least O(log n) / closed linearity at least O(log n / log log n)

Crespelle & Gambette, IWOCA 2009



  

Computing the contiguity/linearity

cc(G) = 1        cl(G) = 1       G unit interval graph

oc(G) = 1       ol(G) = 1       G biconvex graph

Given a fixed k≥2, cc(G) = k ? oc(G) = k ? NP-complete
Wang, Lau & Zhao, DAM, 2007

Bounds:
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There exist interval graphs and permutation graphs with n vertices and with 
closed contiguity at least O(log n) / closed linearity at least O(log n / log log n)

Crespelle & Gambette, IWOCA 2009

upper bound ?
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cograph G = graph without induced P
4

graph built by series composition (series operation) and
disjoint union (parallel operation)

→ cotree T

Two vertices adjacent in G
iff their lowest common ancestor in T is a series node
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4
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Useful properties:

Complement: For any graph G, cc(G) ≤ cc(G)+1
Series & parallel operation: For any graphs G and H,
cc(s(G,H) ≤ max(cc(G),cc(H))+1, cc(p(G,H) ≤ max(cc(G),cc(H))
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Contiguity of cographs

Useful properties:

Complement: For any graph G, cc(G) ≤ cc(G)+1
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Combine both to get 
an upper bound for 
general cographs?
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rank(T) = maximal height of a complete binary tree T' obtained from T
by edge contractions

Rank of a tree

T



  

rank(T) = maximal height of a complete binary tree T' obtained from T
by edge contractions

Rank of a tree

T T'

⟹ rank(T)=2



  

Rank and path partition of a tree

For any rooted tree T, rank(T) = maximum height of its path partitions
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Upper bound on the contiguity / linearity

For a cograph G and its cotree T, cc(G) ≤ 2 rank(T) + 1 ≤ 2 (log n) + 1

Idea of the proof:

Consider a “root-path decomposition” of T
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Consider a “root-path decomposition” of T

Build the order
→ cc(G) ≤ 2 + max cc(G[X

i
])

Refine the order by recursively treating each T
i

P
S

P

S
P

S

T
1
T
2

T
6

T
p-1

T
4

T
p-3

T
p

T

T
3

T
5

T
p-2

T
p-4

∀ i ∊ [1..p], rank(T
i
) +1 ≤ rank(T)

X
1

...
X
2

X
3

X
6

X
p-2

X
p-1

X
4

X
5

X
p-4

X
p

...
X
p-3

i∊[1..p]

1

2

3



  

• Contiguity and linearity

• Cographs and cotrees

• A min-max theorem on the rank of a tree

• Upper bounds with caterpillar decompositions

• Lower bounds with claws

• Perspectives

Outline



  

Lower bound on the contiguity
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For a cograph G with complete binary cotree, cc(G) ≥ ((log n)-5)/4

Idea of the proof:

Base case:

Induction:

tyx

Vertices x y & t all need to be  
adjacent to z in σ so that their 
neighborhood is one interval
→ cc(K

1,3
) ≥ 2



  

Lower bound on the linearity

For a cograph G with complete binary cotree, cl(G) ≥ O((log n)/(log log n))

Idea of the proof:

Base case is star K
1,2k+1

 (bigger than K
1,3

)

→ need a bigger complete binary cotree, of height ≥ 2k⌈log(2k+1)⌉+1



  

Tightness of the bounds

For a cograph G with complete binary cotree, cc(G) = (log n)/2 +1

Oreste Manoussakis, 2012

Idea of the proof:

Careful analysis of the result of the root-path decomposition algorithm for the 
upper bound.

Analysis based on C
4
-cycles for the lower bound.

Linearity open: O(log n) or O((log n)/(log log n)) ?



  

Tightness of the bounds

For any cograph G, there is a linear time constant-factor
approximation algorithm to compute its contiguity.

Crespelle & Gambette, WALCOM 2013

Idea of the proof:

Approximate value given by the root-path decomposition algorithm.

Lower and upper bounds on the contiguity depending on the height of the 
biggest complete binary tree which is a minor of the cotree T of G, i.e. the 
rank of T:

cc(G) ≤ 2 rank(T) + 1

cc(G) ≥ (rank(T) – 7) / 4

→ approximation ratio 23
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Perspectives

Open problems

• Linearity of cographs?

• Gap between linearity and contiguity?

• Linearity or contiguity of graphs classes generalizing cographs

Practical applications of linearity and contiguity

• practical approaches to get upper bounds?

• use in algorithmic contexts? Solving problems on graphs with bounded 
linearity or contiguity.

• use for some graph classes arising from applications:
→ express a complexity value for phylogenetic networks (min. spread)

Asano, Jansson, Sadakane, Uehara & Valiente, 2010



  

Thank you for your attention

Any questions?

Work partially supported by the PEPS-C1P project

Christophe Crespelle & Philippe Gambette (2009), Efficient Neighbourhood Encoding for Interval 
Graphs and Permutation Graphs and O(n) Breadth-First Search, IWOCA'09, LNCS 5874, p. 146-157.

Christophe Crespelle & Philippe Gambette (2013), Linear-time Constant-ratio Approximation 
Algorithm and Tight Bounds for the Contiguity of Cographs, WALCOM'13, LNCS, to appear.


	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46

