Bordeaux Graph Workshop

 21/11/2012 - Bordeaux
(Nearly)-tight bounds on the linearity and contiguity of cographs

Christophe Crespelle
LIP
Université de Lyon
INRIA

Philippe Gambette LIGM
Université Paris-Est Marne-la-Vallée

Outline

- Contiguity and linearity
- Cographs and cotrees
- A min-max theorem on the rank of a tree
- Upper bounds with caterpillar decompositions
- Lower bounds with claws
- Perspectives

Outline

- Contiguity and linearity
- Cographs and cotrees
- A min-max theorem on the rank of a tree
- Upper bounds with caterpillar decompositions
- Lower bounds with claws
- Perspectives

Contiguity

a graph G

a closed-k-interval model of G
adbcefhg
\rightarrow order σ where the closed neighborhood of each vertex is the union of at most k intervals of σ
closed contiguity of $G, \mathrm{cc}(G)$: smallest k / G has a closed- k-interval model

Contiguity

a graph G

a closed-k-interval model of G

$$
N[a]: \text { adbcefghg }
$$

\rightarrow order σ where the closed neighborhood of each vertex is the union of at most k intervals of σ
closed contiguity of $G, \mathrm{cc}(G)$: smallest k / G has a closed- k-interval model

Contiguity

a graph G

a closed-k-interval model of G

$$
N[a]: \text { adbcefhg } \Rightarrow k \geq 2
$$

\rightarrow order σ where the closed neighborhood of each vertex is the union of at most k intervals of σ
closed contiguity of $G, \mathrm{cc}(G)$: smallest k / G has a closed- k-interval model

Contiguity

a graph G

a closed-k-interval model of G

$$
N[b]: \text { adbcefhg } \quad \Rightarrow k \geq 2
$$

\rightarrow order σ where the closed neighborhood of each vertex is the union of at most k intervals of σ
closed contiguity of $G, \mathrm{cc}(G)$: smallest k / G has a closed- k-interval model

Contiguity

a graph G

a closed-k-interval model of G

$$
N[c]: \quad a d \underline{b c e f h g} \quad \Rightarrow k \geq 2
$$

\rightarrow order σ where the closed neighborhood of each vertex is the union of at most k intervals of σ
closed contiguity of $G, \mathrm{cc}(G)$: smallest k / G has a closed- k-interval model

Contiguity

a graph G

a closed-k-interval model of G

$$
a d b c e f h g \quad \Rightarrow k=2
$$

\rightarrow order σ where the closed
$\Rightarrow \mathrm{cc}(G) \leq 2$ neighborhood of each vertex is the union of at most k intervals of σ
closed contiguity of $G, \mathrm{cc}(G)$: smallest k / G has a closed- k-interval model

Contiguity

a graph G

a closed-k-interval model of G

$$
\begin{aligned}
\ldots \quad a d b c e f h g & \Rightarrow k=2 \\
& \Rightarrow c c(G) \leq 2
\end{aligned}
$$

neighborhood of each vertex is the union of at most k intervals of σ

A min-max parameter:
$\mathrm{cc}(G)=\min _{\sigma} \max _{v} \mathrm{Cc}_{G, \sigma}(\mathrm{v})$
closed contiguity of $G, \mathrm{cc}(G)$: smallest k / G has a closed- k-interval model

Contiguity

a graph G
a closed-k-interval model of G
neighborhood of each vertex is the union of at most k intervals of σ

$$
\begin{aligned}
\ldots \quad a d b c e f h g & \Rightarrow k=2 \\
& \Rightarrow c c(G) \leq 2
\end{aligned}
$$

A min-max parameter:
$\mathrm{cc}(G)=\min _{\sigma} \max _{v} \mathrm{Cc}_{G, \sigma}(\mathrm{v})$
closed contiguity of $G, \mathrm{cc}(G)$: smallest k / G has a closed- k-interval model

Contiguity and consecutives ones

a graph G
a closed-k-interval model of G
\rightarrow order σ where the closed neighborhood of each vertex is the union of at most k intervals of σ

G has closed contiguity $\leq k$ if the lines and columns of the adjacency matric A of G can be reordered so that they contain at most k blocks of consecutives ones.

Contiguity and consecutives ones

a graph G
a closed-k-interval model of G
\rightarrow order σ where the closed neighborhood of each vertex is the union of at most k intervals of σ

$$
\begin{aligned}
& \text { adbcefhg } \\
& \text { a } 11100010 \\
& \text { d } \underline{11001000} \\
& \begin{array}{l}
b 10111000 \\
c 00110100
\end{array} \Rightarrow \mathrm{cc}(\mathrm{G}) \leq 2 \\
& e 0 \underline{1101111} \\
& f 00011110 \\
& h \underline{10001111} \\
& \text { g00001011 }
\end{aligned}
$$

G has closed contiguity $\leq k$ if the lines and columns of the adjacency matric A of G can be reordered so that they contain at most k blocks of consecutives ones.

Contiguity

a graph G

an open-k-interval model of G

$$
N(a): \text { adbcefhg } \Rightarrow k \geq 2
$$

\rightarrow order σ where the open neighborhood of each vertex is the union of at most k intervals of σ
open contiguity of $G, o c(G)$: smallest k / G has an open- k-interval model

Contiguity

a graph G

an open-k-interval model of G

$$
\begin{aligned}
N(h): \text { addbcefhg} & \Rightarrow k \geq 3 \\
& \Rightarrow \mathrm{oc}(G) \leq 3
\end{aligned}
$$

\rightarrow order σ where the open neighborhood of each vertex is the union of at most k intervals of σ
open contiguity of $G, o c(G)$: smallest k / G has an open- k-interval model

Contiguity

a graph G

an open-k-interval model of G

$$
\begin{aligned}
N(h): \underline{a d b c \underline{e f h} \underline{g}} & \Rightarrow \mathrm{k} \geq 3 \\
& \Rightarrow \mathrm{oc}(G) \leq 3
\end{aligned}
$$

\rightarrow order σ where the open
neighborhood of each vertex is the union of at most k intervals of σ

$$
\begin{aligned}
& \text { Remark: } \\
& \operatorname{oc}(G) \leq \mathrm{cc}(G)+1 ; \mathrm{cc}(G) \leq \mathrm{oc}(G)+1
\end{aligned}
$$

open contiguity of G, oc(G): smallest k / G has an open- k-interval model

Linearity

a graph G

a closed-k-line model of G

$$
N[a]: \frac{\operatorname{adbcefhg}}{\text { adbcefgh }} \Rightarrow \mathrm{k} \geq 2
$$

$\rightarrow k$ orders where the closed
neighborhood of each vertex is the union of one interval per order
closed linearity of $G, c /(G)$: smallest k / G has a closed- k-line model

Linearity

a graph G

an open- \boldsymbol{k}-line model of G

$$
\begin{aligned}
& N(h): \begin{array}{l}
\text { adbcefhg } \\
\\
\text { adbcefgh }
\end{array} \quad \Rightarrow \mathrm{k} \geq 2,
\end{aligned}
$$ neighborhood of each vertex is the union of one interval per order

open linearity of $G, o l(G)$: smallest k / G has an open- k-line model

Linearity

a graph G

an open- k-line model of G

$$
\begin{aligned}
& N(h): \begin{array}{l}
\underline{a d b c e f h g} \quad \Rightarrow \mathrm{k} \geq 2 \\
\\
\quad \begin{array}{l}
d b c e f g h
\end{array} \\
\text { Remark: } \\
\mathrm{ol}(G) \leq \mathrm{cl}(G)+1 ; \mathrm{cl}(G) \leq \mathrm{ol}(G)+1 \\
\mathrm{cl}(G) \leq \operatorname{cc}(G)(\text { replicate same order })
\end{array}
\end{aligned}
$$

neighborhood of each vertex is the union of one interval per order
open linearity of $G, o /(G)$: smallest k / G has an open- k-line model

Computing the contiguity/linearity

$\mathrm{cc}(G)=1 \Leftrightarrow \mathrm{cl}(G)=1 \Leftrightarrow G$ unit interval graph
$o c(G)=1 \Leftrightarrow \mathrm{ol}(G)=1 \Leftrightarrow G$ biconvex graph

Given a fixed $k \geq 2, \mathrm{cc}(G)=k$? oc $(G)=k$? NP-complete
Wang, Lau \& Zhao, DAM, 2007

Bounds:
For any $\operatorname{graph} G, \mathrm{cl}(G) \leq \mathrm{cc}(G) \leq n / 4+O(\sqrt{n \log n})$
Gavoille \& Peleg, SIAM JoDM, 1999
There exist interval graphs and permutation graphs with n vertices and with closed contiguity at least $\mathrm{O}(\log n) /$ closed linearity at least $\mathrm{O}(\log n / \log \log n)$

Computing the contiguity/linearity

$\mathrm{cc}(G)=1 \Leftrightarrow \mathrm{cl}(G)=1 \Leftrightarrow G$ unit interval graph
$o c(G)=1 \Leftrightarrow \mathrm{ol}(G)=1 \Leftrightarrow G$ biconvex graph

Given a fixed $k \geq 2, \mathrm{cc}(G)=k$? oc $(G)=k$? NP-complete
Wang, Lau \& Zhao, DAM, 2007

Bounds:
For any $\operatorname{graph} G, \mathrm{cl}(G) \leq \mathrm{cc}(G) \leq n / 4+O(\sqrt{n \log n})$
Gavoille \& Peleg, SIAM JoDM, 1999
There exist interval graphs and permutation graphs with n vertices and with closed contiguity at least $\mathrm{O}(\log n) /$ closed linearity at least $\mathrm{O}(\log n / \log \log n)$ Crespelle \& Gambette, IWOCA 2009

Outline

- Contiguity and linearity
- Cographs and cotrees
- A min-max theorem on the rank of a tree
- Upper bounds with caterpillar decompositions
- Lower bounds with claws
- Perspectives

Cographs

cograph $G=$ graph without induced P_{4}

 graph built by series composition (series operation) and disjoint union (parallel operation)\rightarrow cotree T

Two vertices adjacent in G
iff their lowest common ancestor in T is a series node

Cographs

```
cograph G = graph without induced P}\mp@subsup{P}{4}{
graph built by series composition (series operation) and
disjoint union (parallel operation)
cotree T
```


G

Two vertices adjacent in G
iff their lowest common ancestor in T is a series node

Cographs

Two vertices adjacent in G
iff their lowest common ancestor in T is a series node

Cographs

cograph $G=$ graph without induced P_{4}

graph built by series composition (series operation) and disjoint union (parallel operation)
\rightarrow cotree T

Two vertices adjacent in G
iff their lowest common ancestor in T is a series node

Cographs

cograph $G=$ graph without induced P_{4}
graph built by series composition (series operation) and disjoint union (parallel operation)
\rightarrow cotree T

Useful properties:
Complement: For any graph $G, \operatorname{cc}(\bar{G}) \leq \operatorname{cc}(G)+1$
Series \& parallel operation: For any graphs G and H, $\mathrm{cc}(\mathbf{s}(G, H) \leq \max (\mathrm{cc}(G), \mathrm{cc}(H))+1, \mathrm{cc}(\mathbf{p}(G, H) \leq \max (\mathrm{cc}(G), \mathrm{cc}(H))$ $\mathrm{cl}(\mathbf{s}(G, H) \leq \max (\mathrm{cl}(G), \mathrm{cl}(H))+1, \mathrm{cl}(\mathrm{p}(G, H) \leq \max (\mathrm{cl}(G), \mathrm{cl}(H))$

Cographs

cograph $G=$ graph without induced P_{4}
graph built by series composition (series operation) and disjoint union (parallel operation)
\rightarrow cotree T

Useful properties:
Complement: For any graph $G, \operatorname{cc}(\bar{G}) \leq \operatorname{cc}(G)+1$
Series \& parallel operation: For any graphs G and H, $\mathrm{cc}(\mathbf{s}(G, H) \leq \max (\mathrm{cc}(G), \mathrm{cc}(H))+1, \mathrm{cc}(\mathbf{p}(G, H) \leq \max (\mathrm{cc}(G), \mathrm{cc}(H))$ $\mathrm{cl}(\mathbf{s}(G, H) \leq \max (\mathrm{cl}(G), \mathrm{cl}(H))+1, \mathrm{cl}(\mathrm{p}(G, H) \leq \max (\mathrm{cl}(G), \mathrm{cl}(H))$

Contiguity of cographs

Useful properties:
Complement: For any graph $G, \mathrm{cc}(\bar{G}) \leq \mathrm{cc}(G)+1$
Series \& parallel operation: For any graphs G and H, $\left.\begin{array}{l}\mathrm{cc}(\mathbf{s}(G, H) \leq \max (\mathrm{cc}(G), \mathrm{cc}(H))+1, \mathrm{cc}(\mathrm{p}(G, H) \leq \max (\mathrm{cc}(G), \mathrm{cc}(H)) \\ \mathrm{cl}(\mathbf{s}(G, H) \leq \max (\mathrm{cl}(G), \mathrm{cl}(H))+1, \mathrm{cl}(\mathrm{p}(G, H) \leq \max (\mathrm{cl}(G), \mathrm{cl}(H))\end{array}\right\} \mathrm{cc}(G) \leq \operatorname{height}(T)$

Cograph with caterpillar cotree: $\mathrm{cc}(G) \leq 2$

Contiguity of cographs

Useful properties:
Complement: For any graph $G, \mathrm{cc}(\bar{G}) \leq \mathrm{cc}(G)+1$
Series \& parallel operation: For any graphs G and H, $\left.\begin{array}{l}\mathrm{cc}(\mathbf{s}(G, H) \leq \max (\mathrm{cc}(G), \mathrm{cc}(H))+1, \mathrm{cc}(\mathrm{p}(G, H) \leq \max (\mathrm{cc}(G), \mathrm{cc}(H)) \\ \mathrm{cl}(\mathbf{s}(G, H) \leq \max (\mathrm{cl}(G), \mathrm{cl}(H))+1, \mathrm{cl}(\mathrm{p}(G, H) \leq \max (\mathrm{cl}(G), \mathrm{cl}(H))\end{array}\right\} \mathrm{cc}(G) \leq \operatorname{height}(T)$

Cograph with caterpillar cotree: $\operatorname{cc}(G) \leq 2$

Combine both to get an upper bound for general cographs?

Outline

- Contiguity and linearity
- Cographs and cotrees
- A min-max theorem on the rank of a tree
- Upper bounds with caterpillar decompositions
- Lower bounds with claws
- Perspectives

Rank of a tree

$\operatorname{rank}(T)=\quad$ maximal height of a complete binary tree T^{\prime} obtained from T by edge contractions

Rank of a tree

$\operatorname{rank}(T)=\quad$ maximal height of a complete binary tree T^{\prime} obtained from T by edge contractions

Rank and path partition of a tree

For any rooted tree $T, \operatorname{rank}(T)=$ maximum height of its path partitions

A path partition $\left\{P_{1^{\prime}}, P_{2^{\prime}} P_{3^{\prime}} P_{4^{\prime}}, P_{5^{\prime}}, P_{6}\right\}$ of T

A path partition tree of T

Outline

- Contiguity and linearity
- Cographs and cotrees
- A min-max theorem on the rank of a tree
- Upper bounds with caterpillar decompositions
- Lower bounds with claws
- Perspectives

Upper bound on the contiguity / linearity

For a cograph G and its cotree $T, \mathrm{cc}(G) \leq 2 \operatorname{rank}(T)+1 \leq 2(\log n)+1$

Idea of the proof:
(1) Consider a "root-path decomposition" of T

$$
\forall i \in[1 . . p], \operatorname{rank}\left(T_{i}\right)+1 \leq \operatorname{rank}(T)
$$

Upper bound on the contiguity / linearity

For a cograph G and its cotree $T, \mathrm{cc}(G) \leq 2 \operatorname{rank}(T)+1 \leq 2(\log n)+1$

Idea of the proof:
(1) Consider a "root-path decomposition" of T

$$
\forall i \in[1 . . p], \operatorname{rank}\left(T_{i}\right)+1 \leq \operatorname{rank}(T)
$$

(2) Build the order

$$
\rightarrow \mathrm{cc}(G) \leq 2+\max _{i \in[1 . . p]} \mathrm{cc}\left(\bar{G}\left[X_{i}\right]\right)
$$

Upper bound on the contiguity / linearity

For a cograph G and its cotree $T, \mathrm{cc}(G) \leq 2 \operatorname{rank}(T)+1 \leq 2(\log n)+1$

Idea of the proof:
(1) Consider a "root-path decomposition" of T

$$
\forall i \in[1 . . p], \operatorname{rank}\left(T_{i}\right)+1 \leq \operatorname{rank}(T)
$$

(2) Build the order

$$
\rightarrow \mathrm{cc}(G) \leq 2+\max _{i \in[1 . . p]} \mathrm{cc}\left(G\left[X_{j}\right]\right)
$$

(3) Refine the order by recursively treating each T_{i}

Outline

- Contiguity and linearity
- Cographs and cotrees
- A min-max theorem on the rank of a tree
- Upper bounds with caterpillar decompositions
- Lower bounds with claws
- Perspectives

Lower bound on the contiguity

For a cograph G with complete binary cotree, $\operatorname{cc}(G) \geq((\log n)-5) / 4$

Idea of the proof:
Base case: Vertices x y \& t all need to be adjacent to z in σ so that their neighborhood is one interval $\rightarrow \mathrm{cc}\left(K_{1,3}\right) \geq 2$

Lower bound on the linearity

For a cograph G with complete binary cotree, $\mathrm{cl}(G) \geq \mathrm{O}((\log n) /(\log \log n))$

Idea of the proof:
Base case is star $K_{1,2 k+1}$ (bigger than $K_{1,3}$)
\rightarrow need a bigger complete binary cotree, of height $\geq 2 k[\log (2 k+1)]+1$

Tightness of the bounds

For a cograph G with complete binary cotree, $c c(G)=(\log n) / 2+1$
Oreste Manoussakis, 2012
Idea of the proof:
Careful analysis of the result of the root-path decomposition algorithm for the upper bound.

Analysis based on C_{4}-cycles for the lower bound.

Linearity open: $\mathrm{O}(\log n)$ or $\mathrm{O}((\log n) /(\log \log n))$?

Tightness of the bounds

For any cograph G, there is a linear time constant-factor approximation algorithm to compute its contiguity.

Crespelle \& Gambette, WALCOM 2013

Idea of the proof:
Approximate value given by the root-path decomposition algorithm.
Lower and upper bounds on the contiguity depending on the height of the biggest complete binary tree which is a minor of the cotree T of G, i.e. the rank of T :

$$
\begin{gathered}
\mathrm{cc}(G) \leq 2 \operatorname{rank}(T)+1 \\
\mathrm{cc}(G) \geq(\operatorname{rank}(T)-7) / 4 \\
\rightarrow \\
\text { approximation ratio } 23
\end{gathered}
$$

Outline

- Contiguity and linearity
- Cographs and cotrees
- A min-max theorem on the rank of a tree
- Upper bounds with caterpillar decompositions
- Lower bounds with claws
- Perspectives

Perspectives

Open problems

- Linearity of cographs?
- Gap between linearity and contiguity?
- Linearity or contiguity of graphs classes generalizing cographs

Practical applications of linearity and contiguity

- practical approaches to get upper bounds?
- use in algorithmic contexts? Solving problems on graphs with bounded linearity or contiguity.
- use for some graph classes arising from applications:
\rightarrow express a complexity value for phylogenetic networks (min. spread)

Thank you for your attention

Any questions?

Work partially supported by the PEPS-C1P project

Christophe Crespelle \& Philippe Gambette (2009), Efficient Neighbourhood Encoding for Interval Graphs and Permutation Graphs and O(n) Breadth-First Search, IWOCA'09, LNCS 5874, p. 146-157.

Christophe Crespelle \& Philippe Gambette (2013), Linear-time Constant-ratio Approximation Algorithm and Tight Bounds for the Contiguity of Cographs, WALCOM'13, LNCS, to appear.

