Happy Guénoche Symposium Marseille – 25/10/2012

The overlap distance between partitions

Philippe Gambette

Joint work with Eunjung Kim (LAMSADE, CNRS) and Stéphane Thomassé (LIP, ENS Lyon)

Alain's coauthors

Treecloud of Alain's coauthors (hyperlex cooccurrence distance)

red color: most recent publications

Alain's publications

Treecloud of the 50 most frequent words in Alain's publication titles.

red color: most recent publications

Alain's publications

Treecloud of the 50 most frequent words in Alain's publication titles.

red color: most recent publications

Outline

- The overlap distance between partitions
- Equivalent and related problems
- A fixed-parameter complexity approach
- A linear kernel for a restricted version
- Perspectives

Outline

- The overlap distance between partitions
- Equivalent and related problems
- A fixed-parameter complexity approach
- A linear kernel for a restricted version
- Perspectives

Problem: comparing two partitions P1 and P2

How similar are P1 and P2?

Several existing distances between partitions:

- Rand distance
- Adjusted Rand distance
- Transfer distance, and more generally:
 Minimum Length Sequence metrics:
 removal, augmentation, mutation, division, mergence, transfer

• ...

Day, 1981 Guénoche & Denoeud, 2006

Several existing distances between partitions.

Several existing distances between partitions.

Several existing distances between partitions.

Comparing clustering algorithm results

Several existing distances between partitions.

occurs when **comparing two clustering algorithms**, or **two sets of parameters** for the same algorithm

Overlap distance:

d(P,P') = min |{elements whose deletion remove all overlaps between P and P'}|

Overlap distance:

 $d(P,P') = min \mid \{elements whose deletion remove all overlaps between P and P'\}\mid$

Not a **metric** (no separation property) just a **dissimilarity**

if no overlap → easy to visualize both partitions

Overlap distance:

 $d(P,P') = min \mid \{elements whose deletion remove all overlaps between P and P'\}\mid$

Overlap distance:

 $d(P,P') = min \mid \{elements \text{ whose deletion remove all overlaps between } P \text{ and } P'\}\mid$

Another example

Overlap distance:

 $d(P,P') = min \mid \{elements whose deletion remove all overlaps between P and P'\}\mid$

$$d(P,P') = ?$$

Another example

Overlap distance:

 $d(P,P') = min \mid \{elements \text{ whose deletion remove all overlaps between } P \text{ and } P'\}\mid$

$$d(P,P')=2$$

Outline

- The overlap distance between partitions
- Equivalent and related problems
- A fixed-parameter complexity approach
- A linear kernel for a restricted version
- Perspectives

An equivalent problem

Maximum Compatible Subset problem:

Input: set *C* of subsets of elements of a set *X*

Output: the smallest subset R of X such that C restricted to X-R

contains no overlap.

Overlap distance

between P and P'

Maximum Compatible Subset

of
$$C = P \cup P'$$

An equivalent problem: restricted Max Compatible Subset

Maximum Compatible Subset problem:

Input: set *C* of subsets of elements of a set *X*

Output: the smallest subset R of X such that C restricted to X-R

contains no overlap.

Overlap distance = restricted Maximum Compatible Subset: the input clusters come from 2 partitions of X

Overlap distance

between P and P'

Maximum Compatible Subset

of $C = P \cup P'$

An equivalent problem: restricted Max Compatible Subset

Maximum Compatible Subset problem :

Input: set *C* of subsets of elements of a set *X*

Output: the smallest subset R of X such that C restricted to X-R

contains no overlap.

Overlap distance = restricted Maximum Compatible Subset:

the input clusters come from 2 partitions of X

Maximum Compatible Subset is NP-hard

Steel & Hamel, 1996

An equivalent problem: restricted Max Compatible Subset

Maximum Compatible Subset problem :

Input: set *C* of subsets of elements of a set *X*

Output: the smallest subset *R* of *X* such that *C* restricted to *X-R*

contains no overlap.

Overlap distance = restricted **Maximum Compatible Subset**:

the input clusters come from 2 partitions of X

Maximum Compatible Subset is NP-hard

Steel & Hamel, 1996

Restricted Maximum Compatible Subset is NP-hard

Gambette, Kim & Thomassé, 2012

Maximum Compatible Subset problem :

Input: set *C* of subsets of elements of a set *X*

Output: the smallest subset R of X such that C restricted to X-R

contains no overlap.

Cluster intersection graph:

Each vertex: a set of C (subset of P or P')

Edge between vertex x and y if cluster x intersects with cluster y

Edge weight = number of elements in the intersection

Maximum Compatible Subset problem:

Input: set *C* of subsets of elements of a set *X*

Output: the smallest subset R of X such that C restricted to X-R

contains no overlap.

Cluster intersection graph:

What characterizes two **overlapping clusters** in the cluster intersection graph?

Maximum Compatible Subset problem:

Input: set *C* of subsets of elements of a set *X*

Output: the smallest subset R of X such that C restricted to X-R

contains no overlap.

Cluster intersection graph:

Two overlapping clusters (a and b') iff a P_a in the cluster intersection graph

Maximum Compatible Subset problem :

Input: set *C* of subsets of elements of a set *X*

Output: the smallest subset R of X such that C restricted to X-R

contains no overlap.

Cluster intersection graph:

Two overlapping clusters (a and b') iff a P_a in the cluster intersection graph

Deleting elements of X to remove the overlap equivalent to destroying the P₄ by removing an edge

Maximum Compatible Subset problem :

Input: set *C* of subsets of elements of a set *X*

Output: the smallest subset R of X such that C restricted to X-R

contains no overlap.

Cluster intersection graph:

Deleting the minimum number of elements of X to remove all overlaps

equivalent to

destroying all P₄ graphs by removing a set of edges of minimum size

Maximum Compatible Subset problem:

Input: set *C* of subsets of elements of a set *X*

Output: the smallest subset R of X such that C restricted to X-R

contains no overlap.

Cluster intersection graph:

Deleting the minimum number of elements of X to remove all overlaps

equivalent to

Getting a **star forest** by deleting a **set of edges of minimum weight**(in a bipartite graph)

Bipartite Weighted Edge Deletion Star Forest is NP-hard

Bipartite Weighted Edge Deletion Star Forest problem :

Input: bipartite graph *G*

Output: a subset E' of edges of G of minimum weight such that G-

E' is a star forest

Restricted Maximum Compatible Subset is equivalent to Bipartite Weighted Edge Deletion Star Forest.

Gambette, Kim & Thomassé, 2012

Bipartite weighted edge deletion star forest is NP-hard.

Chen, Engelberg et al 2007

The more restricted case where all weights equal 1 is equivalent to finding a minimum dominating set in a bipartite graph → NP-hard ISGCI (http://www.graphclasses.org/classes/gc_69.html), Dewdney 1981

Bipartite Weighted Edge Deletion Star Forest is NP-hard

Bipartite Weighted Edge Deletion Star Forest problem :

Input: bipartite graph *G*

Output: a subset E' of edges of G of minimum weight such that G-

E' is a star forest

Restricted Maximum Compatible Subset is equivalent to Bipartite Weighted Edge Deletion Star Forest.

Gambette, Kim & Thomassé, 2012

Outline

- The overlap distance between partitions
- Equivalent and related problems
- A fixed-parameter complexity approach
- A linear kernel for a restricted version
- Perspectives

Fixed-parameter complexity

Computing the overlap distance: NP-hard

Fixed-parameter complexity approach: Deciding whether the overlap distance is at most k in time O(f(k))*poly(n)) (function f can grow exponentially fast)

O*(3^k) by reducing to Maximum Compatible Subset

Computing the overlap distance: NP-hard

Fixed-parameter complexity approach:

Deciding whether the **overlap distance is at most** k in time O(f(k)*poly(n)) (function f can grow exponentially fast)

Maximum Compatible Subset can be solved in time $O(3^k.poly(n))$

Huson, Rupp, Berry, Gambette & Paul, 2009

O*(3^k) by reducing to Weighted Edge Deletion Star Forest

Computing the overlap distance: NP-hard

Fixed-parameter complexity approach:

Deciding whether the **overlap distance** is at most k in time O(f(k)*poly(n)) (function f can grow exponentially fast)

O*(3^k) by reducing to Weighted Edge Deletion Star Forest

Computing the overlap distance: NP-hard

Fixed-parameter complexity approach:

Deciding whether the **overlap distance is at most** k in time O(f(k)*poly(n)) (function f can grow exponentially fast)

Easy $O(3^k.poly(n))$ time algorithm

Cluster intersection graph:

Two overlapping clusters (a and b') iff a P_a in the cluster intersection graph

Try all possibilities to remove the P_{\perp} .

You have to remove either

- first edge a-a' (cost 2)
- second edge a-b' (cost 1)
- third edge b-b' (cost 2)

O*(3^k) by reducing to Weighted Edge Deletion Star Forest

Computing the overlap distance: NP-hard

Fixed-parameter complexity approach:

Deciding whether the **overlap distance is at most** k in time O(f(k)*poly(n)) (function f can grow exponentially fast)

Easy $O(3^k.poly(n))$ time algorithm

Cluster intersection graph:

Edge a-b' (cost 1) removed

Consider the next P_4 and repeat until the total cost reaches k.

 \rightarrow "bounded search tree" of height k \rightarrow O(3 k .poly(n)) time

O*(2.247^k) by reducing to Weighted 3-Hitting Set

 $O(2.247^k.poly(n))$ time algorithm using Weighted 3-Hitting Set

Weighted 3-Hitting Set problem:

Input: a set *S* of weighted elements + a set *Y* of subsets of *S* of size 3 **Output:** a subset *V* of *S* of minimum weight such that each subset of *S* in *Y* contains at least one element of *V*

Cluster intersection graph:

Each P₄ corresponds to a **subset of 3 edges**

O*(2.247^k) by reducing to Weighted 3-Hitting Set

 $O(2.247^k.poly(n))$ time algorithm using Weighted 3-Hitting Set

Weighted 3-Hitting Set problem:

Input: a set *S* of weighted elements + a set *Y* of subsets of *S* of size 3 **Output:** a subset *V* of *S* of minimum weight such that each subset of *S* in *Y* contains at least one element of *V*

Cluster intersection graph:

Each P₄ corresponds to a **subset of 3 edges**

Removing all P₄ by deleting the subset of edges of minimum weight

reduces to

Solving **Weighted 3-Hitting Set**where *S* is the set of weighted edges of *G*and *Y* is the set of all P₄ graphs of *G*(size of *Y*: at most cubic in the size of *C*)

O*(2.247^k) by reducing to Weighted 3-Hitting Set

 $O(2.247^k.poly(n))$ time algorithm using Weighted 3-Hitting Set

Fernau, 2006

Weighted 3-Hitting Set problem:

Input: a set S of weighted elements + a set Y of subsets of S of size 3 **Output:** a subset V of S of minimum weight such that each subset of S in Y contains at least one element of V

3-Hitting Set problem:

Input: a set S of elements + a set Y of subsets of S of size 3

Output: a subset *V* of *S* of minimum size such that each subset of *S* in

Y contains at least one element of V

Character graph:

3-Hitting Set problem:

Input: a set S of elements + a set Y of subsets of S of size 3

Output: a subset *V* of *S* of minimum size such that each subset of *S* in

Y contains at least one element of V

Character graph:

Two clusters **overlap** (a and b')

if and only if

the character graph "contains an M" as an induced subgraph

3-Hitting Set problem:

Input: a set S of elements + a set Y of subsets of S of size 3

Output: a subset *V* of *S* of minimum size such that each subset of *S* in

Y contains at least one element of V

Character graph:

Two clusters overlap (a and b')

if and only if

the character graph "contains an M" as an induced subgraph

Computing the overlap distance *reduces to*Deleting the minimum nb of vertices to destroy all M-graphs

which reduces to

3-Hitting Set on the **triplets of vertices involved in an M-graph**Guillemot, 2010

3-Hitting Set problem:

Input: a set S of elements + a set Y of subsets of S of size 3

Output: a subset V of S of minimum size such that each subset of S in

Y contains at least one element of V

O*(1.84^k) by reducing to Star Editing (unweighted case)

 $O(1.84^k.poly(n))$ time algorithm using **Star Editing**

Damaschke & Molokov, 2012

Star Editing problem:

Input: a graph with red and blue edges

Output: a subset E' of E of minimum size whose color has to be

changed so that the red edges become a union of stars

Cluster intersection (multi)-graph:

O*(1.84^k) by reducing to Star Editing (unweighted case)

 $O(1.84^k.poly(n))$ time algorithm using **Star Editing**

Damaschke & Molokov, 2012

Star Editing problem:

Input: a graph with red and blue edges

Output: a subset E' of E of minimum size whose color has to be

changed so that the red edges become a union of stars

The overlap distance and related problems

Outline

- The overlap distance between partitions
- Equivalent and related problems
- A fixed-parameter complexity approach
- A linear kernel for a restricted version
- Perspectives

The overlap distance and related problems

Edge Deletion Star Forest problem:

Input: graph *G*

Output: a subset E' of edges of G of minimum size k such that

G-E' is a star forest

Edge Deletion Star Forest problem :

Input: graph *G*

Output: a subset E' of edges of G of minimum size k such that

G-E' is a star forest

Edge Deletion Star Forest has a kernel of size 30k

Gambette, Kim & Thomassé, 2012

"Reduction rules"

→ solve the problem on a smaller graph.

→ after applying the reduction rules, graph with at most 30k vertices

 \rightarrow "Kernel" of size 30k

Edge Deletion Star Forest problem:

Input: graph *G*

Output: a subset E' of edges of G of minimum size k such that

G-E' is a star forest

Edge Deletion Star Forest has a kernel of size 30k

Gambette, Kim & Thomassé, 2012

(X,Y,Z)-decomposition of G:

- X is a vertex cover of G of size $\leq 4k$ (can be found easily with Maximum Matching)
- other vertices: in Z if degree 1, in Y if >1

"Reduction rules"

- → solve the problem on a smaller graph.
- → after applying the reduction rules, graph with at most 30*k* vertices
 - \rightarrow "Kernel" of size 30k

Edge Deletion Star Forest problem :

Input: graph *G*

Output: a subset E' of edges of G of minimum size k such that

G-E' is a star forest

Edge Deletion Star Forest has a kernel of size 30k

Gambette, Kim & Thomassé, 2012

(X,Y,Z)-decomposition of G:

Reduction rule:

As long as a vertex x of X has more neighbors in Z than in X U Y, remove one of its neighbors in Z

Outline

- The overlap distance between partitions
- Equivalent and related problems
- A fixed-parameter complexity approach
- A linear kernel for a restricted version
- Perspectives

Perspectives

- Optimizing (in theory and in practice) the computation of the **overlap distance** (fixed parameter algorithms, approximations, heuristics...): implementation and comparison on real data
- Analyzing the properties of this distance measure and relevant applications
- Using the overlap distance to visualize conflicting partitions

Thank you!

Especially to Alain, Anaïs, Christine, Elisabeth, Gilles, Laurent for their welcome in Marseilles

