PEPS-C1P meeting 13/09/2012 - Paris

Linearity and contiguity, a generalization of the C1P property

Philippe Gambette
LIGM
Université Paris-Est Marne-la-Vallée

Outline

- Contiguity and linearity
- Basic properties
- Links with other graph classes
- Bounds

Contiguity & linearity

Closed Contiguity:

$$cc(G) = min \{ cc(G,\sigma) \}$$

$$\sigma \in S_n$$

$$cc(G,\sigma) = \max_{x \in G} \{ cc_{G,\sigma}(x) \}$$

$$cc_{G,\sigma}(x) = \min_{P(x)=\{I_j \text{ intervals of } \sigma\}} \{|P(x)|\}$$

$$N[x]=\bigcup_{I_j\in P(x)^{J_j}} I_j$$

$$N[a]: \frac{a d b}{b} c e f h g$$

$$N[b]: \underline{a} \underline{d} \underline{b} \underline{c} \underline{e} \underline{f} \underline{h} \underline{g}$$

$$N[c]: a d \underline{b} \underline{c} e \underline{f} h g$$

$$N[d]: \underline{adbcefhg}$$

$$N[e]: a \underline{db} c \underline{efhg}$$

$$N[f]: adb\underline{cefh}g$$

$$N[h]: \underline{a} db c \underline{efh} \underline{g}$$

$$cc_{\sigma\sigma}(a) = 2$$

$$cc_{G,\sigma}(b) = 2$$

$$cc_{G,\sigma}(c) = 2$$

$$cc_{G,\sigma}(d) = 2$$

$$cc_{G,\sigma}(e) = 2$$

$$\operatorname{cc}_{G,\sigma}(f) = 1$$

$$\operatorname{cc}_{G,\sigma}(g)=2$$

$$cc_{G,\sigma}(h) = 2$$

Contiguity & linearity

Open Contiguity:

$$oc(G,\sigma) = \max_{x \in G} \{ oc_{G,\sigma}(x) \}$$

Basic properties

For any graph G, $cl(G) \le ol(G)+1 \le oc(G)+1 \le cc(G)+2$

Complement: For any graph G, $cc(\overline{G}) \le cc(G)+1$

Substitution-composition: For any graphs G and H,

$$cc(G_{V \leftarrow H}) \le max(cc(G), cc(H)) + 1$$

$$oc(G_{x \leftarrow H}) \le max(oc(G), oc(H)) + 1$$

$$cl(G_{_{v \leftarrow H}}) \le max(cl(G), cl(H)) + 1$$

$$ol(G_{x \leftarrow H}) \le max(ol(G), ol(H)) + 1$$

Possibly, the neighborhood interval of x containing x is broken by the substitution composition

(add x & friends in the end of each line) to realize their own closed neighborhood + one line to include them in the neighborhood of all their neighbors in G-H

Link with other graph classes

```
cc(G) = 1 \Leftrightarrow unit interval graph
```

$$oc(G) = 1$$
 \subseteq biconvex graph

Given a fixed k, cc(G) = k? oc(G) = k? NP-complete

Wang, Lau & Zhao, DAM, 2007

For any graph G, $cc(G) \le n/4 + O(\sqrt{n \log n})$

Gavoille & Peleg, SIAM JoDM, 1999

Link with other graph classes

G unit k-track graph => $cl(G) \le k$

Proof: each track coded by one order

Bounds for contiguity

Lower bound for interval graphs and permutation graphs:

There is a family of interval graphs and permutation graphs with n vertices having contiguity at least O(log(n))

Crespelle & Gambette, 2009

Bounds for cographs:

Every cograph has contiguity at most O(log(n)).

There is a family of cographs with n vertices having contiguity at least O(log(n)) Crespelle & Gambette, 2009

Approximation algorithm for cographs:

There is a constant factor approximation algorithm (approx. ratio 23) to compute the contiguity of cographs .

Crespelle & Gambette, 2012

Tightness of the bounds

Closed contiguity:

The algorithm provides the exact contiguity for any cograph G with a binary complete cotree with n vertices: cc(G)=log(n)/2+1

Oreste Manoussakis, 2012