
Agent Environments for Multi-Agent Systems –
A Research Roadmap

Danny Weyns1, Fabien Michel2, H. Van Dyke Parunak,
Olivier Boissier, Michael Schumacher, Alessandro Ricci

(Organizers E4MAS – 10 Years Later)
Anarosa Brandao, Carlos Carrascosa, Oguz Dikenelli, Stépane Galland,
Ander Pijoan, Patrick Simo Kanmeugne, Juan A. Rodriguez-Aguilar,

Julien Saunier, Visara Urovi, Franco Zambonelli
(Section Coordinators)

1 Linnaeus University Sweden, KU Leuven Belgium

danny.weyns@cs.kuleuven.be
2 Université de Montpellier, France

fmichel@lirmm.fr

Abstract. Ten years ago, researchers in multi-agent systems became more and
more aware that agent systems consist of more than only agents. The series of
workshops on Environments for Multi-Agent Systems (E4MAS 2004-2006) emerged
from this awareness. One of the primary outcomes of this endeavor was a principled
understanding that the agent environment should be considered as a primary design
abstraction, equally important as the agents. A special issue in JAAMAS 2007
contributed a set of influential papers that define the role of agent environments,
describe their engineering, and outline challenges in the field that have been the
drivers for numerous follow up research efforts. The goal of this paper is to wrap up
what has been achieved in the past 10 years and identify challenges for future
research on agent environments. Instead of taking a broad perspective, we focus on
three particularly relevant topics of modern software intensive systems: large scale,
openness, and humans in the loop. For each topic, we reflect on the challenges
outlined 10 years ago, present an example application that highlights the current
trends, and from that outline challenges for the future. We conclude with a roadmap
on how the different challenges could be tackled.

Keywords: agent environment, multi-agent systems, middleware, large-scale
systems, open systems, human in the loop.

1 Introduction

Ten years ago, the awareness grew among researchers in the multi-agent systems
community that agent systems consist of more than only agents. The Environments
for Multi-Agent System workshop (E4MAS [2]) that was organized in conjunction

with AAMAS 2004 emerged from this awareness. The driver for E4MAS 2004 was
the following statement:

There is a general agreement in the research community that agent
environments are essential for multi-agent systems, yet researchers neglect to
integrate the agent environment as a primary abstraction in their models and
tools for multi-agent systems.

During three successful editions of the E4MAS workshop [2][3][4] and various
additional activities, a substantial group of researchers worked intensively on the
subject of agent environments. One of the primary outcomes of this endeavor was a
principled understanding that the agent environment should be considered as a
primary design abstraction, equally important as the agents. Different models and
architectures have been proposed to design agent environments, and these designs
have been validated in a variety of application domains. A special issue devoted to
agent environments in multi-agent systems in the Journal on Autonomous Agents and
Multi-Agent Systems in 2007 [5] included a set of influential papers that define the
role of agent environments, describe their engineering, and outline challenges in the
field that have driven numerous follow-up research efforts.

At AAMAS 2014 in Paris, researchers in the E4MAS domain organized a
workshop on “E4MAS—10 Years Later,” and this paper builds upon discussions at
that workshop. The goal of this paper is:

• To reflect on the past 10 years of research and engineering on agent
environments for multi-agent systems;

• To investigate to what extent the challenges identified a decade ago have
been tackled;

• To outline challenges for future research on a short and longer term.

Instead of taking a broad perspective, we focus on three particularly relevant topics of
modern software intensive systems: the large scale of systems, the openness of
systems to deal with parts that enter and leave the system dynamically, and humans in
the loop that interact with the system. Evidently, we focus on these topics from the
viewpoint of agent environments for multi-agent systems. For each topic, we explain
the topic and highlight challenges outlined 10 years ago, we present an example
application illustrating the current trends, and then we outline challenges for the
future. We conclude the paper with a roadmap to tackle the different challenges.

The remainder of this paper is structured as follows. Section 2 focuses on the
impact on agent environments for large-scale multi-agent systems. Section 3 zooms in
on open agent environments for multi-agent systems. Section 4 discusses the impact
of humans in the loop on agent environments. Finally, Section 5 outlines a possible
roadmap for future research in this important field.

2 Agent Environments for Large-Scale Multi-Agent Systems

Many real world problems are of high dimension (lots of interacting features), large in
size and often stochastic by nature [22]. Such Large-Scale Systems (LSSs) are

intricately multifarious, with multiple objectives that can lead to conflicts among the
multiple decision makers present in these systems. A system can be considered as an
LSS if one (or both) of the following perspectives holds [23]: (i) It can be
decomposed into a number of interconnected subsystems, either for practical reasons
(design) or because computation needs to be distributed (performance); (ii) Its high
dimensionality leads to a combinatorial explosion in its space of possible behaviors,
so that the usual methods for modeling analyzing, controlling or designing cannot find
a solution in a reasonable amount of time. As a result, these systems require that the
control of the data and/or computation be decentralized over the subsystems. The
engineering of LSSs has been subject of extensive research, including approaches
proposed for dealing with complexity within the field of multi-agent systems.

In particular, MASs are a natural approach for modeling and implementing LSSs
because they rely on decentralized loci of control by means of agents [22]. A Large
Scale MAS (LSMAS) is a MAS that is hard to (i) engineer (e.g. coordination among
thousands of agents) or (ii) deploy (e.g., real-time interaction may no longer hold due
to the computational requirements). Bottlenecks in an LSMAS are usually related to
the size of the system in terms of the number of agents and the amount of data in the
system. Indeed, regardless of the application domain, each additional agent requires
some computational resources. Moreover, the MAS should be able to accept new
agents without compromising its functioning. This section discusses the crucial role
of agent environments for an LSMAS, i.e., a MAS with a large number of agents
evolving in application environments that potentially involve a huge amount of data.

2.1 Large scale and Agent Environments

The agent environment is now broadly recognized as a first class abstraction for
building a MAS, especially because it mediates interactions between agents and their
access to resources [7]. In an LSMAS, the number of interactions and resources could
be very large, hence the design of the agent environment is even more crucial because
it directly impacts scaling issues and plays an important role in managing potential
bottlenecks. We put forward four requirements that are central to engineering agent
environments for LSMAS:

1. Scalable Structure: refers to distributing the computation and state of the
agent environment. The agent environment may have different structures:
multi-level or hierarchical, multi-stage or dynamic. For example, the agent
environment may be structured in segments, each representing a local view
on the physical environment; segments may be connected via a P2P network.

2. Access to Resources: Typically, LSMASs are composed of heterogeneous
agents deployed in an agent environment, which defines laws that regulate
access to resources. At a large scale, monitoring, trust, and security aspects
are to be carefully designed so that the cost induced by managing access to
resources does not become a bottleneck.

3. Scalable Communication: When coordination among thousands of entities is
required, the agent environment should provide means for communication
between agents that do not involve any central point of access or control.

4. Interaction model: to achieve scalable agent environments, it is important to
provide agents with efficient means for perceptions, actions, and
interactions. Central here are suitable abstractions, e.g., the agent
environment should offer high-level primitives to agents for perception,
coordination etc., that support efficient processing by the agents.

2.2 Challenges on Large Scale Agent Environments in Retrospect

While scalability was not a prominent topic in the past E4MAS efforts, the four
requirements mentioned in the previous section have been partly identified or
addressed in different contexts during the period 2004-2007.

Scalable Structure and Access to Resources. Several researchers showed that the
structural scalability of the agent environment is strongly related to the ability to
achieve decentralized control over the environmental data and dynamics, so that one
can move easily from a monolithic structure to a distributed one. In [24], the agent
environment is decomposed into independent interaction spaces, each of which
defines explicitly local environmental rules. In the domain of large-scale traffic
simulation, [25] applies a holonic modeling of the agent environment so that the
environmental processes apply only locally. These examples show that decentralizing
the structure of the agent environment and managing access to resources based on the
principle of locality are already identified as key principles for achieving scalability
of agent environments.

Scalable Communication and Interaction Model. A decade ago, considering
dynamics in the agent environment as a efficient means for achieving communication
and coordination in an (LS)MAS was already a topic of interest in the E4MAS
community. Especially, nature-inspired mechanisms supporting indirect
communications through the agent environment, such as digital pheromones and force
fields, were considered to scale better than direct message exchanges (see e.g.
[28][29][26]), thus providing scalable interaction models for achieving coordination
among numerous agents using stigmergic principles. Nevertheless, it is interesting to
note that the mechanisms for engineering the agent environment discussed in [8] do
not consider explicitly scalability as a main feature of interest. Since then, the
dramatic evolution of the technological context, especially with respect to the
exponential increase of smart mobile devices, has put scalability on the agenda as a
major topic. Nowadays, scalability is no longer an option, but a requirement for many
MAS applications.

2.3 Example Application

We illustrate a recent effort on agent environments for LSMASs in the context of
Personalized Health Systems (PHSs). PHSs are systems that support patient-centered
healthcare by assisting patients in self-managing their medical conditions. Using a
PHS, patients and caregivers are connected so that health data are accessible

independently from their geographical location. Since the patient’s data is generated
in a distributed setting, these systems require reliable, scalable and interoperable
models of information flow. For example, [30] models the discovery and exchange of
health records with a dynamic interoperable MAS network. A high-level model of this
system is illustrated in Fig.1.

Fig. 1. SemHealthCoord: An agent-based LSMAS model for health data exchange

Different health communities (i.e. hospitals) store the patient’s data. A Peer-to-Peer
(P2P) architecture connects these communities dynamically and at large scale. Fig. 1
shows how the agent environment is organized. Health communities are connected as
Nodes in a P2P network. A set of coordination rules (Coordination Center) defines
how agents can find patients’ data and how they can propagate updates in the network
of communities. Since the data in different communities may be organized differently,
the querying of data follows a semantic knowledge base (Semantic Queries). In this
model, the agents specialize on performing specific tasks (i.e. finding the data about a
patient) while the agent environment itself defines how the interactions can take place
across communities. More specifically, the Coordination Center specifies how data
can be queried in a distributed level and how new data can be propagated to different
communities. The Agent Environment uses the TuCSoN coordination model [32]
where agents retract, write or read (called in-out or rd primitives) data in the
Coordination Center using specific tuple templates. These actions trigger reactions
that coordinate the tasks of different agents, despite these agents may not share the
same space, may not know each other’s reference, and may not be synchronized.

2.4 Challenges Ahead

Realizing the requirements of LSMASs outlined in Section 2.1, namely: (1) making
the structure scalable, (2) ensuring efficient access to resources, providing (3) scalable
communication means and (4) interaction models, are still major challenges. In this
respect, previous research emphasizes the crucial role of locality and decentralization
when engineering the agent environment's structure and mechanisms. Not addressing
these aspects puts more responsibility on the agents, which leads to complex agents
and hampers scalability. However, achieving locality and decentralization is not
sufficient if the system cannot be adapted and evolved over time. Therefore, future
research on scalable agent environments is about addressing the different aspects in
an integrated manner. We outline two key aspects for future efforts.

As we move toward LSMASs that have to deal with huge amounts of data,
elaborating efficient structures and dynamics is not only a solution for achieving
scalable communication and interaction, but also a key to more effective processing
of data and information. To that end, we see two important challenges that agent
environments have to address: (i) Preprocessing data: data should be modeled and
structured so that they can be easily managed and evolved using large scale dynamics
compliant to the underlying environment (e.g., by taking inspiration from map reduce
approaches), and (ii) Post-processing data: data should be synchronized with the
agents' needs. In other words, the agent environment could anticipate requests by
processing data accordingly, through internal dynamics.

 Another central challenge lies in designing agent environment structures and
dynamics in an integrated way; e.g., design agent environment dynamics so that they
accommodate the underlying physical infrastructure. Considering this aspect, one can
take inspiration from the General-Purpose computing on Graphics Processing Units
(GPGPU) community (High Performance Computing). In this context, computation
and data models are explicitly considered so that they can benefit from the underlying
physical infrastructure of the GPU (a massively parallel architecture). Performance
and scalability are directly influenced by how the data model accommodates the
underlying hardware. So, it is possible to design scalable agent environment dynamics
very efficiently because they are modeled matching the physical infrastructure. One
recent example is the use of digital pheromones in LSMAS simulations [34].

3 Open Agent Environments for Multi-Agent Systems

Living in an environment, perceiving it, and being affected by it intrinsically imply
openness. Software systems are no longer isolated, but become permeable sub-
systems, whose boundaries permit reciprocal side effects. The reciprocal influence
between system and environment is often extreme and complex, making it difficult to
identify clear boundaries between the system and its environment.

In several cases, to achieve their objectives, software systems must interact with
external software components, either to provide services and data, or to acquire them.
More generally, different software systems, independently designed and modeled, are
likely to "live" in the same environment and interact explicitly with each other. These

open interactions call for common ontologies, communication protocols, and suitable
broker and coordination infrastructures to enable interoperability.

A major advance in engineering multi-agent systems has been the recognition of
the importance of the agent environment in which the agents are situated, and through
which they interact, as a first-class abstraction. However, current environment-based
multi-agent systems rely on a fixed, a priori definition of the agent environment, and
only agents that conform to that definition can exploit it. A powerful next step is the
notion of an open agent environment, one that adapts in response to the agents that
inhabit it.

This section explores the theme of open agent environments for multi-agent
systems. We start by explaining the viewpoint we take on openness of agent
environments in this paper. Then we look at challenges of open agent environments
that have been identified earlier and reflect on these. We continue by illustrating a
typical existing approach to deal with openness in multi-agent systems. Finally, we
reflect and outline challenges ahead.

3.1 What is Openness?

The concept of openness of software systems is not well defined in the literature.
[12] refers to open software systems as systems that are specifically built to allow for
extensions. [13] considers openness as a property of software systems that are subject
to decentralized management and can dynamically change their structure. [17] refers
to openness as the system’s ability to deal with entities leaving and entering the
system. [14] refers to openness of a MAS as “the ability of introducing additional
agents into the system in excess to the agents that comprise it initially.” He
categorizes openness in three levels: (1) off-line openness, which allows addition of
new agents only off-line, e.g., by halting the system, adding agents, updating some
connection information, and re-starting the system, (2) static openness where agents
can be added to the system without re-starting it, but all of the agents either are
notified of such an addition, or they hold in advance a list of prospective additional
agents, and (3) dynamic openness that allows agents to leave or enter the system
dynamically, during run time, without explicit global notification.

Our particular interest here is in dynamic openness, which enables a system to
adjust itself dynamically to uncertainty in the environment, tasks, and availability of
resources. As outlined by numerous researchers, this type of uncertainty is
particularly relevant for systems that are deployed in environments with high levels of
dynamicity and change, which are nowadays the rule rather than the exception
[14][15][16].

3.2 Challenges on Openness of Agent Environments in Retrospect

In the period 2004 to 2007, several researchers pointed out challenges on the
openness of agent environments. [1] poses the following question:

What responsibilities does the agent environment have and what services can
it provide to increase its openness to heterogeneous agents?

Openness of agent environments was primarily seen as an engineering challenge.
For example, [7] identifies the need for suitable software architectures for the agent
environment, while [18] argues for suitable abstractions and infrastructures to support
agent environment design. [19] stresses the need of suitable mechanisms for the agent
environment to support social interactions. On a more concrete level, [17] poses the
question whether electronic institutions can be further exploited to handle openness.
The emphasis on openness of agent environments has been primarily on the need for
architectures and infrastructures that allow different agents to join or leave a multi-
agent system at will. The uncertainty in the deployment context, tasks, the availability
of resources and changing system requirements, and its impact on the openness of
multi-agent systems was not of primary concern a decade ago. This is not surprising,
as the dramatic change of operating conditions in which software intensive systems
are expected to operate has only become clear over the years.

3.3 Example Application

We illustrate the efforts on openness in engineering agent environments with an
example in the domain of supply chain management. Modern supply chain
management requires the collaboration of distributed and heterogeneous systems of
multiple companies, which naturally maps to open multi-agent systems. However,
developing such collaborative applications and building the supporting information
systems poses several engineering challenges. [20] presents Macodo, an architectural
approach that aims to address the problem of managing the design complexity of
collaborative applications.

Central to Macodo are five abstractions: actor, collaboration, role, behavior, and
interaction. Macodo offers a middleware infrastructure that supports these
abstractions at the levels of design and implementation. An actor is an entity that has
access to the collaboration environment and is capable of participating in
collaborations by playing roles. In a concrete system, actors can be business entities,
software agents, services, or even people. A collaboration is a controlled process,
taking place in the collaboration environment, of a group of actors working together
towards a set of goals. A collaboration consists of a set of roles, representing the
different actors and their responsibilities in the collaboration, and a set of interactions
among the actors of these roles. Collaborations are reusable and can be created and
destroyed by the manager of the collaboration. A role is the embodiment of the
participation of an actor in a collaboration that defines the actor’s responsibilities in
that participation. When an actor enters a collaboration, a new role instance is created.
When the actor leaves the collaboration, the corresponding role instance is destroyed.
The distinction between role and role instance is similar as in [55] that distinguishes
between role types and role instances. Within the context of a role, an actor can
execute behaviors and participate in interactions with other actors in the collaboration.
A behavior is a coherent unit of reusable functionality that is executed in the context
of a role. A behavior is typically application-specific and can encapsulate the
execution of a task or the participation in an interaction. Finally, an interaction is a
controlled exchange of information between the actors of a set of roles in a
collaboration. An interaction can have an application-specific protocol.

Macodo offers a set of architecture views that support engineers in modeling
applications using these abstractions. The Collaboration View models collaborations
as reusable modules and shows how they are decomposed into reusable submodules
(i.e., roles, interactions, and behaviors). The Collaboration View is used to describe
the collaborations in a system in terms of implementation units. The Collaboration &
Actor View models the actors in a system and the concrete collaboration instances
among them. In this view, actors are represented as components, and collaborations as
connectors. The Collaboration & Actor View is used to describe the runtime
architecture of a system in terms of actors and the collaborations between them,
assigning responsibilities to actors, while making abstraction of collaboration details.
The Role & Interaction View models the internal runtime architecture of a
collaboration in detail. This view allows documenting the concrete role and
interaction instances in a collaboration, the active behaviors of roles, and how roles
delegate the participation in interactions to behaviors. A behavior is executed in the
context of a role, giving the actor of the role access to the interfaces of the behavior.

The Macodo abstractions and architectural views allow the modeling and
documentation of collaborative applications. The Macodo middleware provides an
agent environment to design and implement collaborative applications that are
modeled in the Macodo architectural views. The platform supports the Macodo
abstractions as programming abstractions by mapping them to concrete technology.
Fig. 2 shows the primary elements of the Macodo middleware.

Fig. 2 Macodo middleware

[20] presents a concrete realization of the Macodo middleware using Web Services
technology. Once specified, collaboration modules can be loaded in the Macodo
middleware. The management service of the middleware can then be used to register
actors and to manage the life-cycle of concrete collaboration and role instances. After
a role has been assigned to an actor, the actor can ‘play’ the role. To play a role, an
actor uses interactions and behaviors. The information flow between the actors,
interactions, and behaviors is mediated by the middleware, which routes messages to

ActorActorActor

Warehouse TransporterVmi RetailerVmi Vendor

Client

Inventory Reporting
Behavior

InventoryInventory
Reporting
Interaction

Client

......

Role YRole X Role Z

key
<instance-name>:<type>

attachment

Actor
component

component port

collaboration
connector

connector role

Local Foods Network : Vmi Collaboration

Local Foods
West District:

Warehousing
Inc.:Food Supply: Acme

Logistics:
Local Foods
East District:

Vmi Vendor Warehouse Vmi Retailer Vmi Retailer Transporter

Vmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Vmi Retailer Role

Vmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction Consumption Reporting
Interaction

...

Cmi Collaboration

Warehouse Role

Inventory Reporting
Behavior

Cmi Retailer Role

Cmi Vendor Role Transporter Role

... ...

......

Inventory Reporting
Interaction Transport Interaction

Call-Off Interaction

...

module

module A
uses module

B

A
B

key

«Module»

«Capability»

Provider
Interface

Consumer
Interface

«Capability»

Provider
Interface

Consumer
Interface

«Module»

«Capability»

«Capability»

key

A uses
interface B

A realizes
interface B

A requires
capability B

A B A provides
capability B

A B

A B

A B

Conversation 2:

Organization A:

Conversation 1:

Role Y:

B C

B C

Role Y:

Behavior 2:Behavior 1:

B C

Role Z:

D

D

Role X:

A

A

Collaboration

Interaction

Actor

RoleBehavior

plays !

" between

1

0..* 0..*

2..* 0..*

1

0..*

10..*

!
executes participates in !

0..*0..*

1 1..*

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

Conversation 2:Conversation 1:

Role Y: Role Z:Role X:

Role Y:

Behavior 2:Behavior 1:

B C

key
<instance-name>:<type>

attachment

Actor
component

component port

connector

connector role

interface
delegation

B C

B C

D

DA

A

Behavior 1

Behavior 2
DC

Interaction 2

A

Interaction 1

B
Connector Z:

Component X:

A

A

Component Y:

B

B

Connector Z:

Subconnector Z:

A B

A' B'

Component X:

Subcomponent X:

A

A'

key

component

a colon (' : ') indicates
an instances

connector

component
port

connector
role

attachment

interface
delegation

Vmi Collaboration

Call-Off BehaviorCall-Off Fulfillment
Behavior

CallerStock

Seller
Consumption Reporting

Interaction

Call-Off
Interaction

Consumer

CarrierShipper
Transport
Interaction

......

Cmi Vendor Warehouse TransporterCmi Retailer

Client

Inventory Reporting
Behavior

Inventory
Inventory Reporting

Interaction

Cmi Collaboration

......

......

Call-Off Fulfillment
Behavior

CallerStock

CarrierShipper

Call-Off
Interaction

Transport
Interaction

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

key

role
component

behavior
component

interaction port
attached to
connector role

interaction
connector

Macodo Middleware

Management
Service

BehaviorBehaviorInteractionBehaviorBehaviorBehavior
Interaction
Port [0..*]

Actor Port [1]
Connector
Role [0..*]

Collaborations &
Roles

ke
y

Web service
client Web service

SOAP/HTTP
binding

external
system

middleware
infrastructure

BPEL
process

partner
Link

middleware
managed

data

X is deployed on
the middleware
infrastructure

X

Connector Role [0..*]

Provided Capability [0..*] Provided Capability [0..*]

ke
y

UML 2.0

:Actor :Macodo
Middleware

call-off order
MacodoData

create :Call-Off
Behavior

delivery info
MacodoData

delivery report
MacodoData

delivery info

delivery report

call-off order

.........

Java EE Server

«Stateless Session Bean»
Collaboration Mediator

Database Server

Collaboration
Repository

Collaboration
Registry

Process
Registry

Actor
Registry

«Stateless Session Bean»
Collaboration

Manager

BPEL Engine

Conversation ContainerConversation ContainerConversation ContainerConversation Container Behavior ContainerInteraction Container

«Bpel Process»
Interaction

«Bpel Process»
Behavior

ActorActorActor

key

component

node

Java
persistence
entity

logical
grouping

JPA+JTA
transactional &
persistent
read/write

SOAP/HTTP

Actor Capability Role" requiresprovides # 0..* 0..*0..* 0..*

the correct interactions, behaviors, and actors. Messages between the middleware and
actors contain additional Macodo data, which uniquely identifies the role to which a
message belongs. By decoupling actors from the roles they play, the Macodo
middleware offers an open agent environment where different agents can join and
leave collaborations at will.

In a concrete supply chain, the supply chain partners are the actors that can play the
roles of vendor, warehouse, retailer, and transporter. Each supply chain network can
be modeled as a collaboration. For example, in a vendor-managed inventory (VMI),
the vendor is responsible for managing the inventory. Products in the inventory, kept
in an intermediate warehouse, remain property of the vendor until consumed, or
called-off, by the retailer. The warehouse regularly reports inventory levels to the
vendor. Based on these inventory levels, the vendor replenishes the warehouse. The
retailer can call-off products from the warehouse, after which it reports the
consumption to the vendor. To model these collaborations, we can define roles,
behaviors, and interactions. For example, we can define an Inventory Reporting
Behavior for the Warehouse role to collect inventory levels and pass it to another role
using an Inventory Reporting Interaction (send inventory levels to interested parties).

The architecture views then support modeling concrete applications. For example,
with the Role & Interaction View can be used to model runtime qualities, such as
throughput of interactions or robustness of behaviors. We can, for example, specify
that the Call-Off Fulfillment Behavior should always reply to a Call-Off Interaction,
even if the actor of the Warehouse role is not reacting. The specifications can then be
implemented using the Macodo middleware programming abstractions and concrete
instanced can be loaded in the Macodo middleware. At runtime, actors can
dynamically enter, participate, and leave collaborations, and new actors can join. For
example, a new transporter can enter a collaboration and supply chain partners may
switch the transport service dynamically taking into account ongoing agreements.

3.4 Challenges Ahead

In previous research, openness of agent environments has primarily been
approached from an engineering perspective, emphasizing the ability of different
agents to join or leave a multi-agent system at will. As illustrated with the example
above, the main focus has been on identifying suitable modeling abstractions,
architectures and infrastructures to support open agent environments. However, the
ever-growing complexity of software systems introduces a variety of uncertainties
that need to be handled at runtime, including dynamics in operating conditions that
are difficult to predict and the need to handle changing system requirements that may
not be anticipated at design time. Several researchers have pointed out that traditional
engineering approaches may not be sufficient to deal with these uncertainties, and call
for new engineering solutions. To support openness, we see the following key
challenges for the next generation of agent environments:

• Handling uncertainty as a first-class citizen to deal with the inherent dynamics
of the context in which multi-agent systems are deployed.

• Reducing seamless integration of online runtime adaptation and offline
evolution.

• Support for agents to form sustainable ecosystems (e.g., infrastructure that
enables integration of mobile applications developed by different vendors).

• Efficient integration of a wide spectrum of services, from integrating ‘things’
to supporting intelligent cooperation between and among agents and humans.

4 Agent Environments and Humans in the Loop

Emerging technologies such as wireless sensor networks, Internet of Things (IoT),
and smart and wearable devices, provide the basis for new types of applications where
the physical world can be accessed or modified by computational systems. Examples
of such systems are energy management, health care, and traffic systems. These
applications are characterized by humans in the loop, i.e., humans are an essential part
of the realization of the rich functionalities of such systems. Humans can have the role
of users of the system, where they are in continuous interaction with the system
through computational devices (PC, tablet, smartphones, etc.), or with the physical
environment itself, as in IoT. Humans can also have a role as being integral parts of
the system itself, i.e., socio-technical systems. Examples include incorporating users
to perform security-critical functions, and incorporating activity models in smart
homes to improve the independence of elderly people.

Multi-agent systems are an effective approach for modeling and designing systems
with humans in the loop, given their characteristics of autonomy and sociality. In
particular, the notion of agent environment can play a crucial role, since the
environment is a natural place to model the shared distributed physical and social
world with which systems and people interact, and it offers rich forms of
communication, either explicit or implicit, temporary or persistent, with manageable
levels of coupling.

In this section, we explore the role of the agent environment in the design of multi-
agent systems with humans in the loop. We start by outlining the position of humans
in the loop in computing systems. Then we look at challenges that have been
identified earlier and reflect on these. We provide a recent example application that
shows how humans are integrated in the loop in a multi-agent system, and conclude
with challenges ahead in this promising area for future research.

4.1 Humans in the Loop

Based on a cursory review of the literature we identified several levels of involvement
of humans in the loop in computing systems. We noticed a particular interest for
humans-in-the-loop systems in the control systems community; see for example
[36][38][35]. Example efforts in the context of MAS are [42][41][40][43][49].

1. Humans-in-the-loop monitoring. This level is characterized by a system that
monitors humans and takes appropriate actions when needed. An example is
AlarmNet [37], which is a smart home health care application that monitors

activities of daily living by using environmental and wearable sensors and creates
a continuous medical history. Authorized health care providers are allowed to
monitor activity patterns to determine if the residents need immediate attention or
new healthcare services.

2. Humans-in-the-loop interaction. This level is characterized by humans that are in
continuous interaction with the system through computational devices. An
example is a mobile application that supports users to find each other based on
particular criteria such as locality, preferences, social contacts etc.

3. Minimizing human intervention. This level is characterized by a system that only
invokes a human operator when necessary, and does so in a minimally
intervening manner. An example is a human who is responsible for security-
related configuration decisions and enacting particular policies [39]. Such tasks
require knowledge that may be very hard to codify.

4. Humans-in-the-loop supervisory control. This level is characterized by
intermittent human operator interaction with a remote, automated system in order
to manage a controlled process or task environment. Examples include air traffic
control, military and space command and control, crises response management,
and unmanned vehicle operations.

Our interest in this section is on the different levels of human involvement in the loop
in multi-agent systems.

4.2 Challenges on Humans in the Loop in Retrospect

In the period 2004 to 2007, humans-in-the-loop in the context of agent environments
has not been explored very well in E4MAS research. [7] distinguishes between three
levels of support provided by the agent environment in MAS:

1. Providing support to agents for accessing the deployment context. Agents have
low-level knowledge to directly access hardware and software resources.

2. Providing agents an abstraction level to the deployment context. The abstraction
level bridges the conceptual gap between the agent abstraction and low-level
details of the deployment context.

3. Providing support to agents for interaction-mediation. The interaction-mediation
level offers support to regulate the access to shared resources, ensure restrictions
are met and mediate interaction between agents.

The three levels of support of the agent environment represent different degrees of
functionality that agents can use to achieve their goals. The obvious question in the
context of this section is: where are humans situated in this three level reference
model? Given the different levels of involvement of humans in the loop in MAS,
bringing humans in this picture is not a simple task. Straightforward modeling of
humans as either part of the deployment context or “special agents” will not be
satisfactory for the different responsibilities of humans in the loop in MAS. The key
point is to understand how the agent environment as first-class abstraction can support
different levels of involvements of humans in the loop in MAS.

4.3 Example Application

We illustrate current research on humans in the loop in MAS with an example
application from the domain of pervasive and ubiquitous computing that is called a
sociotechnical superorganism [44]. Pervasive and ubiquitous computing is a well-
known and obvious case where humans are in the loop. In these kinds of systems, the
infrastructure is used ubiquitously to access and deploy new services for interacting
with the surrounding physical world and with the social activities occurring in it.

A sociotechnical superorganism comprises networks of entities -- ICT devices and
citizens – that continuously and seamlessly cooperate in highly decentralized
activities. Entities can be involved in participatory sensing activities, and the results
of real-time sharing of knowledge at city scale enables a shared understanding, via
machine-based computing and humans-based reasoning, of urban issues of interest
and their dynamics. This in turn makes it possible to plan and direct responses or fix
problems with collective actions. Consequently, intelligent, coordinated responses to
city-scale problems emerge from a closed feedback loop involving collective sensing
activities, understanding and sharing of ideas, and collaborative actions.
In the SAPERE approach [45] pervasive service environments are modeled and
architected as a non-layered spatial substrate, laid above the actual pervasive network
infrastructure, on top of which human users act as prosumers continuously producing
and consuming data. Fig. 3 shows the SAPERE Reference Model. The agent
environment (MAS Environment) abstractions support the design of agents’ activities
and interactions.

Fig. 3. SAPERE Reference Model [56]

The substrate embeds the basic eco-laws that rule the activities of the system. There,
individuals of different species -- agents/services, data, and devices -- interact and
combine with each other (in respect of the eco-laws and typically based on their
spatial relationships), so as to serve their own individual needs as well as the
sustainability of the overall ecology. In this data-centric approach, the agent

learnt, strengths and weaknesses of the SAPERE modeling. In
particular, despite the fact we focus on a specific application,
we argue that key characteristics from the SAPERE approach
fruitfully open to a number of other pervasive computing
applications.

II. SAPERE IN NUTSHELL

SAPERE takes its primary inspiration from natural ecosys-
tems, and starts from the consideration that the dynamics
and decentralization of future multi-agent systems (MAS) will
make it suitable to model the overall world of services, data,
and devices as a sort of distributed computational ecosystem
[9].

Specifically (see Fig. 1), SAPERE considers modeling
and architecting a MAS environment [10] as a non-layered
spatial substrate, laid above the actual pervasive network
infrastructure. The substrate embeds the basic laws of nature
(or eco-laws) that rule the activities of the system. It represents
the environment on which individuals of different species (i.e.,
the agents) interact and combine with each other (in respect of
the eco-laws and typically based on their spatial relationships),
so as to serve their own individual needs as well as the
sustainability of the overall ecology. Users can access the
ecology in a decentralized way to use and consume data and
services, and they can also act as “prosumers” by injecting
new data and services.

For the agents living in the ecosystem, SAPERE adopts
a common modeling and a common treatment. All agents in
the ecosystem (and whether being sensors, actuators, services,
users, data, or resources in general) have an associated se-
mantic representation, which is a basic ingredient for enabling
dynamic unsupervised interactions between components. To
account for the high dynamics of the scenario and for its need
of continuous adaptation, SAPERE defines such annotations
as “living”, active entities, tightly associated to the agent
they describe, and capable of reflecting its current situation
and context. Such Live Semantic Annotations (LSAs) thus act
as observable interfaces of resources, as well as the basis
for enforcing semantic forms of dynamic interactions (both
for service aggregation/composition and for data/knowledge
management).

The eco-laws define the basic policies driving interactions
among the LSAs of the various agents of the ecology. In
particular, the idea is to enforce on a spatial basis, and possibly
relying on diffusive mechanisms, dynamic networking and
composition of data and services. Eco-laws, in particular, sup-
port agents discovery and interactions by connecting (bonding)
their LSAs; they support distributed operations by allowing
LSAs to be spread and aggregated across the network; they
also allow the deletion of unused LSAs for garbage collection.

Following the SAPERE approach, MAS design proceeds
by coding the agents’ computation activities (business logic)
and by specifying agents’ LSAs. The LSA of an agent com-
prises both a description of the agent current situation and
capabilities, and a description of its needs and requests.

To turn the above described reference architecture into an
operational one, a software substrate should proactively medi-
ate interactions between components (i.e., in general terms,

Fig. 1. The SAPERE Reference Architecture. The environment abstractions
support agents’ activities and interactions, easing the MAS design.

all those active agents that participate to the ecosystems).
That is, it should act as an active environment in which to
store the continuously updating LSAs of agents, so as to
adaptively support the matching process triggering eco-laws in
dependence of the current conditions of the overall ecosystem.

From the distribution viewpoint, SAPERE is formed by
a network of nodes, each hosting a local LSA-space, with
neighbor relations typically shaped according to some spatial
or network relations. The LSA-space is a realized as a local
tuple space, which hosts LSAs in the form of tuples. The
shape of the actual network of connection is determined by
a reconfigurable component, which can be based on, e.g., a
strategy that connects nodes based on spatial proximity or
rather one relying on social proximity [11]. The shape of such
network determines the paths along which LSAs on a node
can propagate and diffuse to other nodes.

Whenever an agent (whether corresponding to a device, a
sensor, a service, or to an application agent) approaches a node,
its own LSA is automatically injected into the LSA-space of
that node, making the component part of that space and of its
local coordination dynamics.

From the viewpoint of the underlying network, the environ-
ment accounts for transparently absorbing dynamic changes at
the arrival/dismissing of the supporting devices, without affect-
ing the perception of the spatial environment by individuals,
and is be able to detect events on LSAs and to trigger the
necessary eco-laws. Eco-laws are realized as a set of rules
embedded in SAPERE nodes, that is LSA-spaces are reactive
tuple spaces. For each node, the same set of eco-laws applies
to rule the dynamics between LSAs. In particular, we identified
four basic eco-laws that can fully support MAS activities.

The Bonding eco-law enables the interaction between
components that live in the same SAPERE node. The Bonding
eco-law realizes a bond between two components, i.e., a virtual
link between their LSAs. Such a bond is established as a result
of a pattern matching mechanism on the set of LSAs. Once a
bond is established the agent holding the LSA is notified of
the new bond and can trigger actions accordingly.

The Aggregation eco-law is intended to aggregate LSAs

315

environment supports human/agent interaction and coordination by providing an open
distributed set of data spaces, hosting streams of tuples -- generated by sensors,
actuators, human actions and reactions -- semantically combined, aggregated,
manipulated, and diffused according to the eco-laws.

[56] proposes “In good company”, a distributed application for the food court of a
shopping mall, that is based on SAPERE, The application enables people to spend
some time with friendly persons or anyhow sharing common affinities. A typical use
case scenario is the following: 1) a user running the application on its mobile phone
approaches the mall’s food court willing to launch “in good company”; 2) user’s
request for friendly locations is shared between the displays associated to a food
provider of the court; 3) for each given restaurant, the display takes care of polling its
costumers (using the app) to provide a measure of friendship affinity towards the
requesting user; 4) each display aggregates such measures and pushes back the
answer to the requesting user; 5) given such information the user can decide in which
restaurant to have lunch and which group of people to join.

For this application, a SAPERE node with the app code is running on users’
smartphones and restaurants’ display stands. Different agents running on different
devices interact with one another by sharing data via the spatial structure (see Fig. 3).
For example, the restaurant Agent propagates the affinity query (AQ) – with a
gradient indicating the number of hops and decay time – to surrounding displays. The
agent environment regulates the distribution of data through spread eco-laws and
aggregation eco-laws. This example shows how the agent environment can provide
support for humans-in-the-loop interaction.

4.4 Challenges Ahead

Bringing humans-in-the-loop in MAS applications through a supporting agent
environment is an open research topic. These kinds of systems pose complex
challenges for an agent environment such as to how model humans, how to design a
humans-aware communication infrastructure, how to provide decision and co-
ordination support, and how to implement regulation mechanisms. We conclude this
section by listing some of the key challenges we see in this exciting research area:

• Obtaining a comprehensive understanding of the spectrum of different types of
human-in-the-loop functions in MAS. The levels of human involvement in
computing systems provide a starting point.

• Defining and incorporating human models into agent environments to support
humans in the loop in MAS, incl. positioning these models into the levels of
support of the agent environment [7], or revision or extending the levels.

• Defining agent environment mechanisms and effective means for enabling
interaction, coordination, cooperation not only among agents, but among
humans and agents too.

• Understand the engineering implications of bringing humans in the loop in
agent environments. This challenge includes identifying methodologies for
designing and developing scalable agent environments for human-agent MAS,
that integrate with the technology stack, e.g., Internet-of-Things and the cloud.

• Take an inter-disciplinary perspective, by bringing together researchers and
expertise from both the human and the agent side, with the objective of
designing mixed agent environments with agents and humans.

5 Roadmap

Fig. 4 shows the typical progressing levels of maturity to solve problems of computing
systems over time [46]. Software/system engineers typically start by solving specific
problems in a specific way. When problems recur, the expertise is turned into reusable
solutions, for example in the form of frameworks or libraries. In the next stage,
engineers abstract from concrete realizations and document design knowledge in the
form of architectural approaches to solve the problems, such as tactics, patterns and
reference solutions. Then, the knowledge is often consolidated in stable middleware
solutions, offering developers programming abstractions and supporting
infrastructure. Finally, language support is developed that provides an integrated
solution to software developers.

Fig. 4. Maturity levels of computing system solutions

In terms of Fig. 4, researchers and engineers have explored solutions for the different
agent environment aspects we have discussed in this paper – large scale, openness,
humans in the loop – at different levels. Most efforts have focused on solving specific
problems with specific solutions, as testified in [2][3][4]. Some of these solutions
have been consolidated in reusable frameworks, e.g., [53][54]. A few researchers
have presented patterns to solve problems related to agent environment; examples are
[47] with a set of patterns for self-organizing systems, and [48] presenting the results
of a recent systematic survey of patterns applied in MAS. [52] presents an
architecture framework for collective intelligence systems, comprising three
viewpoints that support architects with designing agent environment for knowledge

sharing platforms that are based on stigmergic principles. Different middleware
solutions and a few component models have been developed. Prominent examples are
electronic institutions [49] and coordination artifacts [50]. Recently, some initial
efforts have been done on programming support for agent environments, e.g., [51].

A closer look at existing work shows that most efforts are at lower levels of
solution maturity, in particular ad-hoc implementations and frameworks. This is a
natural situation for research that has been in an explorative stage. However, we
believe that the time has come to balance exploration with consolidation. In Section 4
we have presented a variety of opportunities for exploratory research on agent
environments for MAS. We conclude with complementary opportunities to
consolidate research efforts:

• Perform empirical research to validate the claims of existing solutions of agent
environments for multi-agent systems.

• Consolidate existing knowledge on agent environments for multi-agent
systems; one effective way to do so is by performing a systematic survey of
the state of the art in the field;

• Consolidate existing know-how on agent environments for multi-agent
systems by documenting recurring solutions in the form of patterns, reference
models and reference architectures;

• Define model problems and exemplars to drive and communicate research
advances, establish research agendas, and compare and contrast alternative
approaches.

Computing systems are increasingly intertwined with the surrounding world in which
they are deployed and used. Furthermore, the growing dynamics, integration, and
expanding scale of software-intensive systems calls for decentralization. The agent
environment lies at the intersection of these two evolutions and will be more relevant
for future computing systems than ever before. We hope that both the opportunities
for further exploration and suggestions for consolidation may be a stimulus to further
study, development and maturation of the field of agent environments in multi-agent
systems.

References

[1] Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J. Environments for
multiagent systems state-of-the-art and research challenges, Volume 3374 of Lecture
Notes in Computer Science., Springer (2005)

[2] Weyns, D., Parunak, H.V.D., Michel, F.: Environments for Multi-Agent Systems, First
International Workshop, E4MAS 2004, New York, NY, USA, July 19, 2004, Revised
Selected Papers. Volume 3374 of Lecture Notes in Computer Science., Springer (2005)

[3] Weyns, D., Parunak, H.V.D., Michel, F.: Environments for Multi-Agent Systems II,
Second International Workshop, E4MAS 2005, Selected Revised and Invited Papers.
Volume 3830 of Lecture Notes in Computer Sci- ence., Springer (2006)

[4] Weyns, D., Parunak, H.V.D., Michel, F.: Environments for Multi-Agent Systems III,
Third International Workshop, E4MAS 2006. Selected Revised and Invited Papers. In:
E4MAS. Volume 4389 of Lecture Notes in Computer Science., Springer (2007)

[5] Parunak, H.V.D., Weyns, D.: Guest editors’ introduction, special issue on environments
for multi-agent systems. Autonomous Agents and Multi-Agent Systems 14(1) (2007) 1–4

[6] Weyns, D., Omicini, A. Special Issue Engineering Environments in Multi-Agent Systems.
Multiagent and Grid Systems 5(1) (2009) 1–131

[7] Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in multiagent
systems. Autonomous Agents and Multi-Agent Systems 14(1) (2007) 5–30

[8] Platon, E., Mamei, M., Sabouret, N., Honiden, S., Parunak, H.V.D.: Mechanisms for envi-
ronments in multi-agent systems: Survey and opportunities. Autonomous Agents and
Multi- Agent Systems 14(1) (2007) 31–47

[9] Viroli, M., Holvoet, T., Ricci, A., Schelfthout, K., Zambonelli, F.: Infrastructures for the
environment of multiagent systems. Autonomous Agents and Multi-Agent Systems 14(1)
(2007) 49–60

[10] Valckenaers, P., Sauter, J.A., Sierra, C., Rodrıguez-Aguilar, J.A.: Applications and
environ- ments for multi-agent systems. Autonomous Agents and Multi-Agent Systems
14(1) (2007) 61–85

[11] Helleboogh, A., Vizzari, G., Uhrmacher, A., Michel, F.: Modeling dynamic environments
in multi-agent simulation. Autonomous Agents and Multi-Agent Systems 14(1) (2007)
87–116

[12] Buckley, J., Mens, T., Zenger, M., Rashid, A., and Kniesel, G. 2005. Towards a taxonomy
of software change. Journal on Software Maintenance and Evolution: Research and
Practice, 309–332.

[13] F. Zambonelli and V. Parunak, Signs of a revolution in computer science and software
engineering. In Proceedings of the 3rd International Workshop on Engineering Societies
in the Agents World. Lecture Notes in Computer Science, vol. 2577. Springer, 2003

[14] O. Shehory, Software architecture attributes of multi-agent systems. In: Proceedings of
Agent Oriented Software Engineering, pp 77–90, 2000

[15] D. Weyns, Architecture-based design of multi-agent systems. Springer, Heidelberg 2010
[16] B. Cheng et al., Software Engineering for Self-Adaptive Systems: A Research Roadmap,

Lecture Notes in Computer Science, vol. 5525, 2009
[17] P. Valckenaers, J. Sauter, C. Sierra, J. A. Rodriguez-Aguilar, Applications and

environments for multi-agent systems, International Journal on Autonomous Agents and
Multi-Agent Systems 14 (1), 2007

[18] M. Viroli, T. Holvoet, A. Ricci, K. Schelfthout, F. Zambonelli, Infrastructures for the
environment of multiagent system, International Journal on Autonomous Agents and
Multi-Agent Systems 14 (1), 2007

[19] E. Platon, M. Mamei, N. Sabouret, S. Honiden, H. Van Dyke Parunak, Mechanisms for
environments in multi-agent systems: Survey and opportunities, International Journal on
Autonomous Agents and Multi-Agent Systems 14 (1), 2007

[20] R. Haesevoets, D. Weyns, T. Holvoet, Architecture-Centric Support for Adaptive Service
Collaborations, ACM Transactions on Software Engineering and Methodology (TOSEM),
23(1), 2014

[21] Weyns D., Architecture-Based Design of Multi-Agent Systems, Springer 2010
[22] P. Scerri, R. Vincent, and R. Mailler, Comparing three approaches to large-scale

coordination. Coordination of Large-Scale Multiagent Systems, Springer US, 2006.
[23] M. Jamshidi. Large-Scale Systems: Modeling and Control. North-Holland Series in

System Science and Engineering. North-Holland, 1983.
[24] A. Gouaïch, F. Michel and Y. Guiraud, MIC*: A Deployment Environment for

Autonomous Agents, Environments for Multi-Agent Systems, Lecture Notes in Computer
Science, volume 3374, Springer 2005

[25] S. Rodriguez, V. Hilaire and A. Koukam, Holonic modeling of environments for situated
multi-agent systems. Environments for Multi-Agent Systems II, Lecture Notes in
Computer Science, volume 3830, Springer 2006.

[26] D. Weyns, K. Schelfthout, and T. Holvoet, Exploiting a Virtual Environment in a Real-
World Application, Environments for Multi-Agent Systems II, Lecture Notes in Computer
Science volume 3830, Springer 2006

[27] H. Van Dyke Parunak. A survey of environments and mechanisms for humans-human
stigmergy. Environments for Multi-Agent Systems II, Lecture Notes in Computer Science
volume 3830, Springer 2006

[28] M. Mamei and F. Zambonelli, Motion coordination in the quake 3 arena environment: a
field-based approach. Environments for Multi-Agent Systems, Lecture Notes in Computer
Science, volume 3374, Springer 2005

[29] H. Van Dyke Parunak, Sven A. Brueckner, John Sauter, Digital Pheromones for
Coordination of Unmanned Vehicles, Environments for Multi-Agent Systems, Lecture
Notes in Computer Science, volume 3374, Springer 2005

[30] V. Urovi, A. C. Olivieri, S. Bromuri, N. Fornara, and M. I. Schumacher. A peer to peer
agent coordination framework for IHE based crosscommunity health record exchange.
28th ACM Symposium On Applied Computing, SAC 2013

[31] V. Urovi, A. C. Olivieri, S. Bromuri, N. Fornara, and M. I. Schumacher, Secure P2P cross-
community health record exchange in IHE compatible systems, International Journal on
Artificial Intelligence Tools, IJAIT 2013

[32] A. Omicini and E. Denti, From tuple spaces to tuple centres, Science of Computer
Programming, 41(3):277-294, 2001

[33] S. Puricel, S. Bromuri, J. Krampf, L. Diolosa, J. Puder, C. Montreuil, M. Schumacher, and
J. Ruiz, Telemedical outpatient monitoring and management of gestational diabetes mlitus
by the g-demande system: A randomized controlled feasibility study (tele-gdm). In
Diabetes Technology and Therapeutics, volume 16, 2014

[34] F. Michel, Translating agent perception computations into environmental processes in
multi-agent-based simulations: A means for integrating graphics processing unit
programming within usual agent-based simulation platforms. Systems Research and
Behavioral Science, 30(6), 2013.

[35] S. Munir and J. Stankovic and C. M. Liang and S. Lin, Cyber Physical System Challenges
for Humans-in-the-Loop Control, 8th International Workshop on Feedback Computing,
2013

[36] M. Cumming, Supervising automation: humans on the loop, Aero-Astro, MIT Aeronautics
and Astronautics Department, Massachusetts Institute of Technology 2008

[37] A Wood, J. Stankovic, G. Virone, L Selavo, Z. He, Q. Cao, T Doan, Y. Wu, L. Fang, and
R Stoleru, Context-Aware Wireless Sensor Networks for Assisted Living and Residential
Monitoring. IEEE Network 22, 4, 2008

[38] W. Li, D. Sadigh, S. S. Sastry, and S. A. Seshia, Synthesis for Humans-in-the-Loop
Control Systems,

[39] L. F. Cranor, A framework for reasoning about the human in the loop. Conference on
Usability, Psychology, and Security, UPSEC 2008

[40] F. Lancelot, M. Causse, N. Schneider, M. Mongeau, Humans-in-the-Loop Multi-agent
Approach for Airport Taxiing Operations, Trends in Practical Applications of Agents,
Multi-Agent Systems and Sustainability, Advances in Intelligent Systems and Computing
Volume 372, 2015

[41] Claes, R., Holvoet, T., Weyns, D.: A decentralized approach for anticipatory vehicle
routing using delegate multiagent systems. IEEE Transactions on Intelligent
Transportation Systems 12(2), 2011

[42] N. Schurr, J. Marecki, M. Tambe, P. Scerri, The Future of Disaster Response: Humans
Working with Multiagent Teams using DEFACTO, AAAI Spring Symposium on AI
Technologies for Homeland Security, 2005

[43] J. M. Bradshaw, P. Feltovich, M. Johnson, Humans-Agent Interaction, In The Handbook
of Humans-Machine Interaction: A Humans-Centered Design Approach, 2011

[44] Zambonelli, F.: Toward sociotechnical urban superorganisms. IEEE Computer 45(8), 76–
78 (2012)

[45] F. Zambonelli, G. Castelli, L. Ferrari, M. Mamei, A. Rosi, G. Di Marzo, M. Risoldi, A.
Tchao, S. Dobson, G. Stevenson, J. Ye, E. Nardini, A. Omicini, S. Montagna, M. Viroli,
A. Ferscha, S. Maschek, B. Wally, Self-aware Pervasive Service Ecosystems, Procedia
Computer Science, Volume 7, 2011

[46] D. Weyns, M. Caporuscio, B. Vogel, A. Kurti, Design for Sustainability = Runtime
Adaptation U Evolution, Sustainable Architecture: Global collaboration, Requirements,
Analysis, SAGRA 2015

[47] L. Gardelli, M. Viroli, A. Omicini, Design Patterns for Self-organising Systems, Lecture
Notes in Computer Science Volume 4696, 2007

[48] J. Juziuk, D. Weyns, T. Holvoet, Design Patterns for Multi-Agent Systems: A Systematic
Literature Review, Research Directions in Agent-Oriented Software Engineering,
Springer, 2015

[49] D. De Jonge, B. Rosell, and C. Sierra. Human interactions in electronic institutions. In AT,
2013

[50] A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini, Coordination
Artifacts: Environment-Based Coordination for Intelligent Agents. Third International
Joint Conference on Autonomous Agents and Multiagent Systems, 2004

[51] A. Ricci, M. Piunti, and M. Viroli, Environment programming in multi-agent systems: an
artifact-based perspective. Autonomous Agents and Multi-Agent Systems 23, 2, 2011

[52] J. Musil, A. Musil, D. Weyns, S. Biffl, An Architecture Framework for Collective
Intelligence Systems Working International Conference on Software Architecture, WICSA
2014:

[53] J. Sauter, R. Matthews, H. Van Dyke Parunak, and S. A. Brueckner, Performance of
digital pheromones for swarming vehicle control. Fourth international joint conference on
Autonomous agents and multiagent systems, AAMAS 2005

[54] A. Ricci, M. Viroli, and A. Omicini, CArtAgO: a framework for prototyping artifact-based
environments in MAS. Environments for multi-agent systems III, E4MAS 2006

[55] James Odell, H. Van Dyke Parunak, Mitchell Fleischer: The Role of Roles, Journal of
Object Technology, vol. 2, no. 1, 2003

[56] G. Castelli, M. Mamei, A. Rosi, F. Zambonelli, Developing Social Applications in
SAPERE, IEEE 10th International Conference on Ubiquitous Intelligence & Computing
and IEEE 10th International Conference on Autonomic & Trusted Computing, 2013

