Getting negative approximabiliy results for your favorite problem: a tutorial

Marin Bougeret

3 A word on structural approximation theory

Context/Notations

- NPO: "standard" opt problems (VC, TSP, MAX SAT..). In particular:
 - given input *I* of Π ∈ NPO, poly to decide if a string *s* is a solution and to compute its value *m*(*I*, *s*) (denoted *m*(*s*))
 - can be max or min problem
 - opt(I) denote the optimal value
- given min problem Π , a poly algorithm A has ratio $\rho \ge 1$ iff $\forall I, A(I) \le \rho(I)opt(I) \ (A(I) \ge \frac{opt(I)}{\rho(I)}$ for max problem)
- basic classes of problems: *PTAS* (for any $\epsilon > 0$ ratio $(1 + \epsilon)$) $\subseteq APX$ (ratio c where c is a constant) $\subseteq NPO$

Situation of interest here

- given Π ∈ NPO, how getting negative approximability results for Π ? (no ratio ρ (in poly time) unless ..)
- structural theory of approximability
- approximability preserving reduction: a tutorial

Answer

As expected: by providing reductions:

- chose a Π' hard to approximate (no ρ' for Π' unless ...)
- find a reduction $\Pi' \leq_R \Pi$ that "preserves value of solutions"
- deduce ρ for $\Pi \Rightarrow \rho'$ for Π' , and thus no ρ for Π unless ...

- what does "preserves value of solutions" mean ?
- different scenarios are possible

- \bullet which condition ${\ensuremath{\mathcal{C}}}$ the reduction should satisfy to transmit a given ratio ?
- let's check exisiting tools

- what does "preserves value of solutions" mean ?
- different scenarios are possible

- which condition \mathcal{C} the reduction should satisfy to transmit a given ratio ?
- let's check exisiting tools

Introduction

- what does "preserves value of solutions" mean ?
- different scenarios are possible

- which condition \mathcal{C} the reduction should satisfy to transmit a given ratio ?
- let's check exisiting tools

Tool 1: Gap reduction

Tool 1: Gap reduction

Gap reduction

- extremely natural (*C* is natural), powerful (derive no *PTAS*, no *APX*..), widely used tool
- \Rightarrow no need to do a tutorial :)

ATTENTION CORRIGER LA DEF For the sake of completeness: given input (I, k)

- classical Π_{dec} : decide if $Opt(I) \ge k$ or Opt(I) < k
- $\Pi_{\rho-gap}$: decide if $Opt(I) \ge k$ or $Opt(I) \le \frac{k}{\rho(I)}$
- the classical karp reduction between Π'_{dec} and Π_{dec} is replaced by a karp reduction between $\Pi'_{\rho'-gap}$ and $\Pi_{\rho-gap}$
- thus, proving an innapproimability result = proving that $\Pi_{\rho-gap}$ is hard (and thus no ratio $\rho \epsilon$)

Moreover, thanks to PCP theory, there is a lot of candidate source problems whose hardness is known for a large gap.

Tool 2: Approximation preserving reduction (short guide in [Cre97])

Tool 2: Approximation preserving reduction (short guide in [Cre97])

Red.	Ref.	Additional parameters	Constraints to be satisfied	Membership preserved
≤strict	[34]		$R_A(x, g(x, y)) \le R_B(f(x), y)$	all
≤A	[34]	function c	$R_B(f(x), y) \le r \Rightarrow R_A(x, g(x, y)) \le c(r)$	APX
≤p	[34]	function c	$R_B(f(x), y) \le c(r) \Rightarrow R_A(x, g(x, y)) \le r$	PTAS
≤c	[41]	constant α	$R_A(x, g(x, y)) \le \alpha R_B(f(x), y)$	APX
≤⊾	[36]	constants α , β	$\begin{array}{l} opt_B(f(x)) \leq \alpha opt_A(x) \\ E_A(x,g(x,y)) \leq \beta E_B(f(x),y) \end{array}$	PTAS APX if $type_A = min$
≤s	[13]		$\begin{array}{l} \operatorname{opt}_B(f(x)) = \operatorname{opt}_A(x) \\ \operatorname{m}_A(x,g(x,y)) = \operatorname{m}_B(f(x),y) \end{array}$	all
≤E	[29]	polynomial p constant β	$\begin{array}{l} \operatorname{opt}_{B}\left(f(x)\right) \leq p\left(x \right) \operatorname{opt}_{A}(x) \\ R_{A}(x,g(x,y)) \leq 1 + \beta \left(R_{B}(f(x),y) - 1\right) \end{array}$	all
≤ptas	[18]	ratio r	$R_B(f(x,r),y) \leq c(r) \Rightarrow R_A(x,g(x,y,r)) \leq r$	PTAS
≤ap	[15]	constant α	$R_B(f(x, r), y) \le r \Rightarrow R_A(x, g(x, y, r)) \le 1 + \alpha(r - 1)$	all

Tool 2: Approximation preserving reduction (short guide in [Cre97])

Red.	Ref.	Additional	Constraints to be satisfied	Membership
≤strict	[34]		$R_A(x, g(x, y)) \le R_B(f(x), y)$	all
≤A	[34]	function c	$R_B(f(x), y) \le r \Rightarrow R_A(x, g(x, y)) \le c(r)$	APX
≤p	[34]	function c	$R_B(f(x), y) \le c(r) \Rightarrow R_A(x, g(x, y)) \le r$	PTAS
≤c	[41]	constant α	$R_A(x, g(x, y)) \le \alpha R_B(f(x), y)$	APX
≤L	[36]	constants α , β	$\begin{array}{l} opt_B(f(x)) \leq oopt_A(x) \\ E_A(x,g(x,y)) \leq \beta E_B(f(x),y) \end{array}$	$\begin{array}{l} \text{PTAS} \\ \text{APX if type}_{A} = \min \end{array}$
≤s	[13]		$\begin{array}{l} opt_B(f(x)) = opt_A(x) \\ m_A(x,g(x,y)) = m_B(f(x),y) \end{array}$	all
≤E	[29]	polynomial p constant β	$\begin{array}{l} \operatorname{opt}_B(f(x)) \leq p\left(x \right) \operatorname{opt}_A(x) \\ R_A(x, g(x, y)) \leq 1 + \beta \left(R_B(f(x), y) - 1\right) \end{array}$	all
Sptas	[18]	ratio r	$R_B(f(x,r),y) \leq c(r) \Rightarrow R_A(x,g(x,y,r)) \leq r$	PTAS
≤ap	[15]	constant α	$R_B(f(x,r),y) \leq r \Rightarrow R_A(x,g(x,y,r)) \leq 1 + \alpha(r-1)$	all

And this is why we will talk about it!

- in all reduction we must provide a pair (f, g) where f maps instances, g backward maps solutions, both polynomial
- then, depending on the reduction (previous slide) (f,g) must satisfy additional properties.. which are not very "natural"

Unlike Karp or param. reduction, f only depends on I(f(I, k)).

Example: L reduction (Given Π_1 and Π_2 in NPO, max or min)

 $\Pi_1 \leq_L \Pi_2$ iff \exists poly (f,g) and $\alpha_1, \alpha_2 > 0 \mid \forall I_1, \forall s$ solution of $f(I_1)$:

- $opt_{\Pi_2}(f(I_1)) \le \alpha_1 opt_{\pi_1}(I_1)$
- $|m_1(g(s)) opt_{\pi_1}(l_1)| \le \alpha_2 |m_2(s) opt_{\pi_2}(f(l_1))|$

Conclusion

- previous reductions have interest for structural theory
- but given Π, and a target class (no PTAS) painful to try each of these reductions

L/40

${\sf Condition}\ {\cal C}$

- In practice, what do we (I? :) do once our reduction f from Π₁ to Π₂ is defined (even before knowing if we look for gap, or ≤_{*}):
 - given a "good" solution s₁ of I₁ we show that a "good" solution s₂ exists for f(I₁)
 - given a "good" solution s₂ of f(l₁) we show that a "good" solution s₁ exists for l₁

Definition of C for two min problems

f verifies C for function c_1 and c_2 iff $(I_2 = f(I_1))$: $\forall t, \exists s_1 \text{ sol of } I_1 \mid m_1(s_1) \leq c_1(t) \Leftrightarrow \exists s_2 \text{ sol of } I_2 \mid m_2(s_2) \leq c_2(t)$

Definition of ${\cal C}$ is adapted for any combination of min/max problem by replacing \leq by \geq

If even have a poly function that computes s_1 from s_2 (fixme other idrectio important ?) case 2 will imply L reduction Otherwise, the statement is equivalent with " $OPT_1 <= ... <=>OPT_2 <= ...$ ".

/ 40

Case 1 (Karp reduction)

 $orall t \exists s_1 ext{ for } l_1 ext{ st. } m_1(s_1) \leq c_1 \Leftrightarrow \exists s_2 ext{ for } l_2 ext{ st. } m_2(s_2) \leq c_2$

Case 2

 $\forall t \exists s_1 \text{ for } I_1 \text{ st. } m_1(s_1) \leq p + \alpha t \Leftrightarrow \exists s_2 \text{ for } I_2 \text{ st. } m_2(s_2) \leq t$ (with possibly $\exists c \text{ st. } p \leq c \times opt_1(I_1)$)

Case 3

 $\forall t \exists s_1 \text{ for } I_1 \text{ st. } m_1(s_1) \leq t \Leftrightarrow \exists s_2 \text{ for } I_2 \text{ st. } m_2(s_2) \leq p + \alpha t$ (with possibly $\exists c \text{ st. } p \leq c \times opt_1(I_1)$)

- Why these particular functions c_i?: these cases occur in a lot of reductions
- In particular, many L reductions (to show no PTAS) are implicitely proved by using Case 3
- Do not list all the implications for all cases (like "with these values of α, p, min/max problems, case * implies a * reduction") but:
 - try to prove the equivalence for a pair $c_1(t)$ and $c_2(t)$
 - 2 then check: if I have ρ_2 for Π_2 , then I have $\rho_1 = ...$ for Π_1

Example: consequences of Case 3

Case 3

 $\forall t \exists s_1 \text{ for } I_1 \text{ st. } m_1(s_1) \leq t \Leftrightarrow \exists s_2 \text{ for } I_2 \text{ st. } m_2(s_2) \leq p + \alpha t$ (with possibly $\exists c \text{ st. } p \leq copt_1(I_1)$)

- Suppose I have a ρ_2 approximate solution algorithm A_2 .
- Given input I_1 , let $I_2 = f(I_1)$ and $s_2 = A_2(I_2)$.

$$s_{1} \leq \frac{s_{2}}{\alpha} \leq \frac{\rho_{2}OPT(I_{2})}{\rho_{2}(p+\alpha OPT(I_{1}))-p} \\ \leq \rho_{2}OPT(I_{1}) + p\frac{\rho_{2}-1}{\alpha}$$

Thus, if $\exists c$ such that $p \leq cOPT(I_1)$ (which is standard):

- PTAS for Π_2 implies PTAS for Π_1
- APX Π_2 implies APX Π_1 (with a different ratio)

If we even want to benefit from structural theory, we can even observe that Case 3 implies a *L*-reduction. Thus if Π_1 is complete for *L*-reduction, so is Π_2

Gap vs reduction verfying ${\cal C}$

Suppose that we reduce from VC to our min problem Π , and that we have the two following reductions.

Reduction f_1 (gap)

 f_1 maps any input (I, k) of Dec_{VC} to an input I' of Π such that

- $VC(I) \le k \Rightarrow opt(I') \le n + k$
- $VC(I) \ge k + 1 \Rightarrow opt(I') \ge n + k + 1$

(to be more formal we could say that f_1 maps to an input (I', k) of $gap_{a,b}\Pi$ with a(I', k) = n + k + 1 and b(I', k) = n + k)

Reduction f_2 (satisfying C)

 f_2 maps any input I of VC to an input I' of Π such that $\forall k, VC(I) \leq k \Leftrightarrow opt(I') \leq n+k$ which is equivalent to: for any k,

- $VC(I) \le k \Rightarrow opt(I') \le n + k$
- $VC(I) \ge k+1 \Rightarrow opt(I') \ge n+k+1$

Reduction f_1 (gap)

 f_1 maps any input (I,k) of Dec_{VC} to an input I' of Π such that

•
$$VC(I) \le k \Rightarrow opt(I') \le n+k$$

•
$$VC(I) \ge k+1 \Rightarrow opt(I') \ge n+k+1$$

Reduction f_2 (satisfying C)

 f_2 maps any input I of VC to an input I' of Π such that for any k,

- $VC(I) \le k \Rightarrow opt(I') \le n + k$
- $VC(I) \ge k+1 \Rightarrow opt(I') \ge n+k+1$

Looks the same .. but

- f_1 implies: for any $\epsilon > 0$, no algo that for any l', k has $\frac{a(l',k)}{b(l',k)} \epsilon$ ratio ... which here give no $(1 + \frac{1}{n+k}) \epsilon$ (which only tells us no FPTAS)
- *f*₂ implies no PTAS

So .. why is f_2 more powerfull ?

Because f_1 depends on k and f_2 does not:

- given I, for each k, f₁ produces an input I'_k (gadgets may depend on k) such that previous equations are satisfied
- given I, f_2 produces an input I' such that previous equations are satisfied for any k

3 A word on structural approximation theory

Vertex Cover in cubic graphs

 $VC(\Delta)$: vertex cover pb in graphs of maximum degree Δ .

Known

VC(4) does not admit a PTAS unless P=NP

Theorem [AK97]

VC(3) does not admit a PTAS unless P=NP.

ightarrow We will prove this using case 3

We could also say (as case $3 \Rightarrow \leq_L \Rightarrow \leq_{PTAS}$):

Known

VC(4) is APX-complete (for PTAS red)

Theorem

VC(3) is APX-complete

Proof: reduction from VC(4)

- let I_1 be an instance of VC(4)
- we construct I_2 as follows:

if
$$d(v) = 4$$
 and $v \in S_1$ take $\{v_1, v_2\} \in S_2$
if $d(v) = 4$ and $v \notin S_1$ take $\{u\} \in S_2$

• $\exists c \text{ st } s \leq cOPT(I_1) \text{ as } OPT(I_1) \geq rac{n_1-1}{4} \geq rac{s-1}{4}$

Theorem

Max Cut does not admit a PTAS unless P=NP. \rightarrow We will prove this using case 3

Proof: reduction from MAX NAE 3SAT from [PY88]

MAX NAE 3SAT:

- input: n variables and m clauses on 3 variables (ex
 C_ℓ = x̄_i ∨ x_j ∨ x_k)
- a clause is satisfied iff it has at least one true literal and at least one false literal (ex x_i = f, x_j = t, x_k = t does not satisfy C_ℓ, but with x_k = f it does)

Max Cut

Proof: from MAX NAE 3SAT to MAX CUT in multigraphs

- let I1 be an instance of MAX NAE 3SAT
- we construct I_2 as follows (we first define a multigraph):

- for each variable x_i: create two vertices v_{xi}, v_{xi} with 2k_i parallel edges (k_i is the total number of occurences of x_i and x_i)
- for each clause C_{ℓ} : add edges to create a triangle (ex for $C_{\ell} = \bar{x_i} \lor x_j \lor x_k$, add $\{v_{\bar{x_i}}, v_{x_j}\}, \{v_{x_j}, v_{x_k}\}, \{v_{x_k}, v_{\bar{x_i}}\})$
- $\forall t, \exists S_1 \text{ st } |S_1| \ge t \Leftrightarrow \exists S_2 \text{ st } |S_2| \ge 2t + 2k \text{ (where } k = \sum_{i=1}^n k_i \text{)}$

 \Rightarrow each variables adds $2k_i$ edges, each satisfied clause adds 2 edges

Max Cut

Proof: from MAX NAE 3SAT to MAX CUT in multigraphs

- $\forall t, \exists S_1 \text{ st } |S_1| \ge t \Leftrightarrow \exists S_2 \text{ st } |S_2| \ge 2t + 2k \text{ (where } k = \sum_{i=1}^n k_i \text{)}$
 - \leftarrow Let A, B be a partition of V.
 - for every *i*, it is always better to have v_{x_i} and $v_{\bar{x}_i}$ in differents parts: we get 2k edges
 - then, each triangle either contributes to 0 or 2 edges
- $\exists c \text{ st } 2k \leq cOPT(I_1) \text{ as } k = \sum_{i=1}^n k_i \leq 3m \text{ and } OPT(I_1) \geq \frac{3m}{4} \text{ (fron random assignement)}$

Thus, MAX CUT in multigraphs does not admit a PTAS unless P=NP.

Proof: from MAX CUT in multigraphs to MAX CUT

- let I₁ be an instance of MAX CUT in multigraphs with m₁ edges
- we construct I_2 of MAX CUT by replacing each edge $e = \{u, v\}$ by a path $P_e = \{u, a_e, b_e, v\}$
- $\forall t, \exists S_1 \text{ st } |S_1| \ge t \Leftrightarrow \exists S_2 \text{ st } |S_2| \ge t + 2m_1 \text{ (where } m_1 \text{ is the number of edges of the mutligraph)}$
 - ⇒ For each edge in the cut in S_1 we get 3 edges in S_2 , and for the other edges we get 2 edges. Thus, $|S_2| \ge 3t + 2(m_1 t)$
 - ⇐ Same argument
- ∃c st 2m₁ ≤ cOPT(I₁) as OPT(I₁) ≥ m_{1/2} (fron random assignement)

Theorem

Max 3SAT(B) (where each literal appears in at most B clauses) does not admit a PTAS unless P=NP.

 \rightarrow We will prove this using case 3

Proof: from MAX 3SAT to MAX 3SAT(B) (from [PY88])

- let *I*₁ be an instance of MAX 3SAT with *n* variables and *m* clauses. Wlog let us suppose that each literal appears (total number of positive and negative apparaitions) *c* times.
- let us recall the classical Karp reduction:
 - for each variable x_i introduce c variables x_i^1, \ldots, x_i^c , and add 2c clauses $x_i^1 \Leftrightarrow x_i^2, \ldots, x_i^c \Leftrightarrow x_i^1$
 - use now copies in the original clauses $(x_i \lor \bar{x_j} \lor x_k$ becomes $x_i^{u_1} \lor x_k^{\bar{u}_2} \lor x_l^{u_3})$

Proof of the classical Karp reduction

- let G_c be the corresponding graph with c vertices {x_i¹,...,x_i^c} and m_{G_c} = c following edges: add {x_i^u, x_i^v} iff there is a clause with x_i^u ⇔ x_i^v (G_c is a cycle)
- if all the x_i^ℓ have the same truth value, we get $2m_{G_c}$ satisfied clauses from the variable gadget
- thus: $\exists S_1 \text{ st } |S_1| = m \Leftrightarrow \exists S_2 \text{ st } |S_2| = m + 2nm_{G_c}$

Why does it fail for case 3

- $\forall t, \exists S_1 \text{ st } |S_1| \ge t \Leftarrow \exists S_2 \text{ st } |S_2| \ge t + 2nm_{G_c}$ is wrong.
- $\Leftarrow \mbox{ Tentative proof. Suppose in a sol } S_2 \mbox{ that a variable } i \mbox{ has } n_1 \mbox{ copies set to true and } n_2 \mbox{ to false, with } n_1 + n_2 = c \mbox{ and } n_1 \leq n_2.$
 - The truth values of x^ℓ_i defines a partition X₁, X₂ and a cut of size x
 - if we set the n_1 copies to false we get $val(S'_2) \ge val(S_2) |X_1| + x$, and thus we need $x \ge |X_1|$.. not true when G_c is a cycle

What do we need for G_c

- $\mathcal{O}(c)$ vertices are allowed, with *c* distinguished vertices (that will appear in the original clauses of MAX 3SAT)
- ∀ partition X₁, X₂, at least min(s₁, s₂) edges in the cut where X_i contains s_i distinguished vertices
- maximum degree B (and thus we can't use a clique)

If we have such a G_c , we get our result for Max 3SAT(B):

- for each variable x_i introduce n_{G_c} variables
- add equivalences between these variables according to G_c
- use the c distinguished copies in the original clauses (we get $m + 2nm_{G_c}$ clauses in the instance of Max 3SAT(B))

What do we need for G_c

- $\mathcal{O}(c)$ vertices are allowed, with *c* distinguished vertices (that will appear in the original clauses of MAX 3SAT)
- ∀ partition X₁, X₂, at least min(s₁, s₂) edges in the cut where X_i contains s_i distinguished vertices
- maximum degree B

If we have such a G_c , we get our result for Max 3SAT(B):

- we get $\forall t$, $\exists S_1$ st $|S_1| \ge t \Leftrightarrow \exists S_2$ st $|S_2| \ge t + 2nm_{G_c}$ as it is always better to assign the same values to the n_{G_c} copies of every variable
- $\exists c' \text{ st } 2nm_{G_c} \leq c'OPT(I_1) \text{ as } nm_{G_c} \leq n\mathcal{O}(c)B, nc = 3m, \text{ and } OPT(I_1) \geq \frac{7m}{8} \text{ (fron random assignement)}$

Definition

A *n* vertices graph is a α -expander if every subset *S* of at most $\frac{n}{2}$ vertices is adj. to $\geq \alpha |S|$ vertices outside *S* ($cut(S, V \setminus S) \geq \alpha |S|$)

Theorem

There exists a constant $\alpha > 0$ such that for any *n* there is a α -expander on *n* vertices with maximum degree 3.

Constructing G_c

- take c disjoint full binary trees with at least $\frac{1}{\alpha}$ leaves each
- ullet connect their leaves in a cubic lpha expander
- mark the c roots as distinguished nodes

Constructing G_c

- G has $\mathcal{O}(c)$ vertices
- G has constant degree
- let X_1 , X_2 a partition and $e = cut(X_1, X_2)$ where X_i contains s_i distinguished nodes
 - let $s_i = t_i + t'_i$ with t_i the number of trees included in X_i
 - $e \geq \frac{1}{\alpha}(\alpha \min(t_1, t_2)) + t'_1 + t'_2 \geq \min(t_1 + t'_1, t_2 + t'_2)$

 $s_1 = 2$ with $t_1 = 1$ and $t'_1 = 1$ $s_2 = 3$ with $t_2 = 2$ and $t'_2 = 1$

A word on structural approximation theory

Example of results in structural theory

Given a class C, a problem Π (not necessarily in C) and a reduction ≤_R, prove that Π is C-complete for ≤_R. One consequence: Π becomes a candidate to separate classes: if C' ⊆ C and ≤_R preserves C', either Π ∉ C', either C' = C.

• Or
$$\overline{\mathcal{C}'} = \mathcal{C}$$
 where $\overline{\mathcal{C}'} = \{ \Pi \mid \exists \Pi' \in \mathcal{C}' \mid \Pi' \leq_R \Pi \}$

A bit of history (from [AP05])

 $(\leq_R, \mathcal{C}', \mathcal{C}, \Pi)$ means Π is \mathcal{C} -complete for \leq_R and \leq_R preserves \mathcal{C}'

- $(\leq_{S}, min NPO, minWSAT)$
- $(\leq_{S}, max NPO, maxWSAT)$
- (\leq_A , APX, NPO, Π_1)
- $(\leq_P, PTAS, APX, \Pi_2)$
- $(\leq_F, FPTAS, PTAS, \Pi_3)$

However, Π_i are artificial problems. Are they classes where complete problems are natural ? Yes: MAX SNP

Definition [KMSV98]

MAX SNP is the class of NPO problems expressible as finding a ${\cal S}$ which maximizes the objective function

$$f(I,S) = |\{x \mid \phi(I,S,x)\}|$$

where I = (U, P) denotes the input (consisting of a finite universe U and a finite set of bounded arity predicates P), and ϕ is a quantifier-free first order formula.

Example: MAX CUT \in MAX SNP $f(I, S) = |\{\{u, v\} \mid u \in S \land v \notin S \land \{u, v\} \in E\}|$ where I = Gwith G = (V, E)

Definition [KMSV98]

MAX SNP is the class of NPO problems expressible as finding a ${\cal S}$ which maximizes the objective function

$$f(I,S) = |\{x \mid \phi(I,S,x)\}|$$

where I = (U, P) denotes the input (consisting of a finite universe U and a finite set of bounded arity predicates P), and ϕ is a quantifier-free first order formula.

Example: MAX 2 SAT \in MAX SNP

formulation not in MAX SNP: $f(I,S) = |\{c \mid \exists x ((Pos(c,x) \land x \in S) \lor (Neg(c,x) \land x \notin S))\}|$ where I = (U, P) with $P = \{Pos, Neg\}$

Definition [KMSV98]

MAX SNP is the class of NPO problems expressible as finding a ${\cal S}$ which maximizes the objective function

 $f(I,S) = |\{x \mid \phi(I,S,x)\}|$

where I = (U, P) denotes the input (consisting of a finite universe U and a finite set of bounded arity predicates P), and ϕ is a quantifier-free first order formula.

Example: MAX 2 SAT \in MAX SNP

formulation in MAX SNP: $f(I, S) = |\{((x_1, x_2) | ((x_1, x_2) \in C_0 \Rightarrow (x_1 \in S \lor s_2 \in S)) \land ((x_1, x_2) \in C_1 \Rightarrow (x_1 \notin S \lor s_2 \in S)) \land ((x_1, x_2) \in C_2 \Rightarrow (x_1 \notin S \lor s_2 \notin S)) \}|$ where C_i is the set of predicates where the first i variables appear negatively and the 2 - i others positively

Nice facts about Max SNP [PY88]

- MAX SNP \subseteq APX (and "easy" proof)
- MAX SNP has several natural complete problems (for ≤_L): MAX 3 SAT(B), MAX IS(B), ... (and "easy" proof of first problem hard, MAX 3SAT)

More: see for example [KMSV98].

- a personal roadmap given your favorite problem Π:
 - if you want big inapproximability results, try gap reductions. Candidates: IS, VC, Kdm, *SAT, ...
 - if you want no PTAS, try to prove condition of case 3 (even if it could be used for other inapproximaility results).

Candidates : all problems on cubic graphs, **SAT, ... Condition "extra add. factor $\leq cOpt_1(I)$ " often easy to get.

- approximation preserving reduction can be used for positive and negative results, but breaks the gap
- please help me finding L/PTAS reduction not using case 3

[AK97]	Paola Alimonti and Viggo Kann. Hardness of approximating problems on cubic graphs. In <u>Italian Conference on Algorithms and Complexity</u> , pages 288–298. Springer, 1997.			
[AP05]	Giorgio Ausiello and Vangelis Paschos. Approximability preserving reduction. 2005.			
[Cre97]	Pierluigi Crescenzi. A short guide to approximation preserving reductions. In Computational Complexity, 1997. Proceedings., Twelfth Annual IEEE Conference on (Formerly: Structure in Complexity Theory Conference), pages 262–273. IEEE, 1997.			
[KMSV98]	Sanjeev Khanna, Rajeev Motwani, Madhu Sudan, and Umesh Vazirani. On syntactic versus computational views of approximability. SIAM Journal on Computing, 28(1):164–191, 1998.			
[PY88]	Christos Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and complexity classes. In Proceedings of the twentieth annual ACM symposium on Theory of computing, pages 229-234. ACM, 1988.			