
Getting negative approximabiliy results for your
favorite problem: a tutorial

Marin Bougeret

Outline

1 Tools

2 Examples

3 A word on structural approximation theory

2 / 40

Introduction

Context/Notations

NPO: "standard" opt problems (VC, TSP, MAX SAT..). In
particular:

given input I of Π ∈ NPO, poly to decide if a string s is a
solution and to compute its value m(I , s) (denoted m(s))
can be max or min problem
opt(I) denote the optimal value

given min problem Π, a poly algorithm A has ratio ρ ≥ 1 i�
∀I , A(I) ≤ ρ(I)opt(I) (A(I) ≥ opt(I)

ρ(I) for max problem)

basic classes of problems:
PTAS (for any ε > 0 ratio (1 + ε)) ⊆ APX (ratio c where c is
a constant) ⊆ NPO

3 / 40

Introduction

Situation of interest here

given Π ∈ NPO, how getting negative approximability results
for Π ? (no ratio ρ (in poly time) unless ..)

structural theory of approximability

approximability preserving reduction: a tutorial

Answer

As expected: by providing reductions:

chose a Π′ hard to approximate (no ρ′ for Π′ unless ..)

�nd a reduction Π′ ≤R Π that "preserves value of solutions"

deduce ρ for Π ⇒ ρ′ for Π′, and thus no ρ for Π unless ..

4 / 40

Introduction

what does "preserves value of solutions" mean ?

di�erent scenarios are possible

solutions of Π1 solutions of Π2

which condition C the reduction should satisfy to transmit a
given ratio ?

let's check exisiting tools

5 / 40

Introduction

what does "preserves value of solutions" mean ?

di�erent scenarios are possible

solutions of Π1 solutions of Π2

which condition C the reduction should satisfy to transmit a
given ratio ?

let's check exisiting tools

6 / 40

Introduction

what does "preserves value of solutions" mean ?

di�erent scenarios are possible

solutions of Π1 solutions of Π2

which condition C the reduction should satisfy to transmit a
given ratio ?

let's check exisiting tools

7 / 40

Tools: gap reduction Vs approx. preserving reduction

Tool 1: Gap reduction

8 / 40

Tools: gap reduction Vs approx. preserving reduction

Tool 1: Gap reduction

8 / 40

Tools: gap reduction Vs approx. preserving reduction

Gap reduction

extremely natural (C is natural), powerful (derive no PTAS , no
APX ..), widely used tool

⇒ no need to do a tutorial :)

ATTENTION CORRIGER LA DEF For the sake of completeness:
given input (I , k)

classical Πdec : decide if Opt(I) ≥ k or Opt(I) < k

Πρ−gap: decide if Opt(I) ≥ k or Opt(I) ≤ k
ρ(I)

the classical karp reduction between Π′dec and Πdec is replaced
by a karp reduction between Π′ρ′−gap and Πρ−gap

thus, proving an innapproimability result = proving that
Πρ−gap is hard (and thus no ratio ρ− ε)

Moreover, thanks to PCP theory, there is a lot of candidate source
problems whose hardness is known for a large gap.

9 / 40

Tools: gap reduction Vs approx. preserving reduction

Tool 2: Approximation preserving reduction (short guide in [Cre97])

And this is why we will talk about it!

10 / 40

Tools: gap reduction Vs approx. preserving reduction

Tool 2: Approximation preserving reduction (short guide in [Cre97])

And this is why we will talk about it!

10 / 40

Tools: gap reduction Vs approx. preserving reduction

Tool 2: Approximation preserving reduction (short guide in [Cre97])

And this is why we will talk about it!

10 / 40

Tools: gap reduction Vs approx. preserving reduction

in all reduction we must provide a pair (f , g) where f maps
instances, g backward maps solutions, both polynomial

then, depending on the reduction (previous slide) (f , g) must
satisfy additional properties.. which are not very "natural"

Unlike Karp or param. reduction, f only depends on I (f (I , k)).

Example: L reduction (Given Π1 and Π2 in NPO, max or min)

Π1 ≤L Π2 i� ∃ poly (f , g) and α1, α2 > 0 | ∀I1, ∀s solution of
f (I1):

optΠ2(f (I1)) ≤ α1optπ1(I1)

|m1(g(s))− optπ1(I1)| ≤ α2|m2(s)− optπ2(f (I1))|
Conclusion

previous reductions have interest for structural theory

but given Π, and a target class (no PTAS) painful to try each
of these reductions

⇒ let us de�ne a simple property C that (f , g) should satisfy
11 / 40

Condition C

In practice, what do we (I? :) do once our reduction f from Π1

to Π2 is de�ned (even before knowing if we look for gap, or
≤∗):

given a "good" solution s1 of I1 we show that a "good"
solution s2 exists for f (I1)
given a "good" solution s2 of f (I1) we show that a "good"
solution s1 exists for I1

De�nition of C for two min problems

f veri�es C for function c1 and c2 i� (I2 = f (I1)):
∀t, ∃s1 sol of I1 | m1(s1) ≤ c1(t) ⇔ ∃s2 sol of I2 | m2(s2) ≤ c2(t)

De�nition of C is adapted for any combination of min/max problem
by replacing ≤ by ≥

If even have a poly function that computes s1 from s2 (�xme other
idrectio important ?) case 2 will imply L reduction Otherwise, the
statement is equivalent with "OPT1 <= ... <=>OPT2 <= ...�,
and a PTAS for pb 2 will imply a PTAS for the evulation pb 1 (but
not an L reduc)

12 / 40

Condition C: some common cases

Case 1 (Karp reduction)

∀t ∃s1 for I1 st. m1(s1) ≤ c1 ⇔ ∃s2 for I2 st. m2(s2) ≤ c2

Case 2

∀t ∃s1 for I1 st. m1(s1) ≤ p + αt ⇔ ∃s2 for I2 st. m2(s2) ≤ t
(with possibly ∃c st. p ≤ c × opt1(I1))

Case 3

∀t ∃s1 for I1 st. m1(s1) ≤ t ⇔ ∃s2 for I2 st. m2(s2) ≤ p + αt
(with possibly ∃c st. p ≤ c × opt1(I1))

13 / 40

Condition C: some common cases

Why these particular functions ci?: these cases occur in a lot
of reductions

In particular, many L reductions (to show no PTAS) are
implicitely proved by using Case 3

Do not list all the implications for all cases (like "with these
values of α, p, min/max problems, case * implies a *
reduction") but:

1 try to prove the equivalence for a pair c1(t) and c2(t)
2 then check: if I have ρ2 for Π2, then I have ρ1 = .. for Π1

14 / 40

Example: consequences of Case 3

Case 3

∀t ∃s1 for I1 st. m1(s1) ≤ t ⇔ ∃s2 for I2 st. m2(s2) ≤ p + αt
(with possibly ∃c st. p ≤ copt1(I1))

Suppose I have a ρ2 approximate solution algorithm A2.

Given input I1, let I2 = f (I1) and s2 = A2(I2).

s2 ≤ ρ2OPT (I2)

s1 ≤ s2−p
α ≤ ρ2(p+αOPT (I1))−p

α

≤ ρ2OPT (I1) + p ρ2−1α

Thus, if ∃c such that p ≤ cOPT (I1) (which is standard):

PTAS for Π2 implies PTAS for Π1

APX Π2 implies APX Π1 (with a di�erent ratio)

If we even want to bene�t from structural theory, we can even
observe that Case 3 implies a L-reduction. Thus if Π1 is complete
for L-reduction, so is Π2 15 / 40

Gap vs reduction verfying C
Suppose that we reduce from VC to our min problem Π, and that
we have the two following reductions.

Reduction f1 (gap)

f1 maps any input (I , k) of DecVC to an input I ′ of Π such that

VC (I) ≤ k ⇒ opt(I ′) ≤ n + k

VC (I) ≥ k + 1⇒ opt(I ′) ≥ n + k + 1

(to be more formal we could say that f1 maps to an input (I ′, k) of
gapa,bΠ with a(I ′, k) = n + k + 1 and b(I ′, k) = n + k)

Reduction f2 (satisfying C)
f2 maps any input I of VC to an input I ′ of Π such that
∀k ,VC (I) ≤ k ⇔ opt(I ′) ≤ n + k
which is equivalent to: for any k ,

VC (I) ≤ k ⇒ opt(I ′) ≤ n + k

VC (I) ≥ k + 1⇒ opt(I ′) ≥ n + k + 1
16 / 40

Gap vs reduction verfying C

Reduction f1 (gap)

f1 maps any input (I , k) of DecVC to an input I ′ of Π such that

VC (I) ≤ k ⇒ opt(I ′) ≤ n + k

VC (I) ≥ k + 1⇒ opt(I ′) ≥ n + k + 1

Reduction f2 (satisfying C)
f2 maps any input I of VC to an input I ′ of Π such that for any k ,

VC (I) ≤ k ⇒ opt(I ′) ≤ n + k

VC (I) ≥ k + 1⇒ opt(I ′) ≥ n + k + 1

Looks the same .. but

f1 implies: for any ε > 0, no algo that for any I ′, k has
a(I ′,k)
b(I ′,k) − ε ratio .. which here give no (1 + 1

n+k)− ε (which
only tells us no FPTAS)

f2 implies no PTAS
17 / 40

Gap vs reduction verfying C

So .. why is f2 more powerfull ?

Because f1 depends on k and f2 does not:

given I , for each k , f1 produces an input I ′k (gadgets may
depend on k) such that previous equations are satis�ed

given I , f2 produces an input I ′ such that previous equations
are satis�ed for any k

18 / 40

Outline

1 Tools

2 Examples

3 A word on structural approximation theory

19 / 40

Vertex Cover in cubic graphs

VC (∆): vertex cover pb in graphs of maximum degree ∆.

Known

VC (4) does not admit a PTAS unless P=NP

Theorem [AK97]

VC (3) does not admit a PTAS unless P=NP.
→ We will prove this using case 3

We could also say (as case 3 ⇒≤L⇒≤PTAS):

Known

VC (4) is APX-complete (for PTAS red)

Theorem

VC (3) is APX-complete

20 / 40

Vertex Cover in cubic graphs

Proof: reduction from VC (4)

let I1 be an instance of VC (4)

we construct I2 as follows:

u v2v1

c

a

d

b
a b

c

v

d

I1 I2

let s be number of deg 4 vertices in I1
∀t, ∃S1 st |S1| ≤ t ⇔ ∃S2 st |S2| ≤ t + s

⇒ if d(v) ≤ 3 take v in S2 i� v ∈ S1
if d(v) = 4 and v ∈ S1 take {v1, v2} ∈ S2
if d(v) = 4 and v /∈ S1 take {u} ∈ S2

∃c st s ≤ cOPT (I1) as OPT (I1) ≥ n1−1
4
≥ s−1

4

21 / 40

Max Cut

Theorem

Max Cut does not admit a PTAS unless P=NP.
→ We will prove this using case 3

Proof: reduction from MAX NAE 3SAT from [PY88]

MAX NAE 3SAT:

input: n variables and m clauses on 3 variables (ex
C` = x̄i ∨ xj ∨ xk)

a clause is satis�ed i� it has at least one true literal and at
least one false literal (ex xi = f , xj = t, xk = t does not
satisfy C`, but with xk = f it does)

22 / 40

Max Cut

Proof: from MAX NAE 3SAT to MAX CUT in multigraphs

let I1 be an instance of MAX NAE 3SAT

we construct I2 as follows (we �rst de�ne a multigraph):
vxi

Cℓ vxk

vx̄i

vxj

for each variable xi : create two vertices vxi , vx̄i with 2ki parallel
edges (ki is the total number of occurences of xi and x̄i)
for each clause C`: add edges to create a triangle (ex for
C` = x̄i ∨ xj ∨ xk , add {vx̄i , vxj}, {vxj , vxk}, {vxk , vx̄i})

∀t, ∃S1 st |S1| ≥ t ⇔ ∃S2 st |S2| ≥ 2t + 2k (where
k =

∑n
i=1

ki)

⇒ each variables adds 2ki edges, each satis�ed clause adds 2
edges

23 / 40

Max Cut

Proof: from MAX NAE 3SAT to MAX CUT in multigraphs

vxi

A B

vx̄i

∀t, ∃S1 st |S1| ≥ t ⇔ ∃S2 st |S2| ≥ 2t + 2k (where
k =

∑n
i=1

ki)

⇐ Let A, B be a partition of V .
for every i , it is always better to have vxi and vx̄i in di�erents
parts: we get 2k edges
then, each triangle either contributes to 0 or 2 edges

∃c st 2k ≤ cOPT (I1) as k =
∑n

i=1
ki ≤ 3m and

OPT (I1) ≥ 3m
4

(fron random assignement)

Thus, MAX CUT in multigraphs does not admit a PTAS unless
P=NP.

24 / 40

Max Cut

Proof: from MAX CUT in multigraphs to MAX CUT

let I1 be an instance of MAX CUT in multigraphs with m1

edges

we construct I2 of MAX CUT by replacing each edge
e = {u, v} by a path Pe = {u, ae , be , v}
∀t, ∃S1 st |S1| ≥ t ⇔ ∃S2 st |S2| ≥ t + 2m1 (where m1 is the
number of edges of the mutligraph)

⇒ For each edge in the cut in S1 we get 3 edges in S2, and for
the other edges we get 2 edges. Thus, |S2| ≥ 3t + 2(m1 − t)

⇐ Same argument

∃c st 2m1 ≤ cOPT (I1) as OPT (I1) ≥ m1
2

(fron random
assignement)

25 / 40

Max 3 SAT(B): using expander

Theorem

Max 3SAT(B) (where each literal appears in at most B clauses)
does not admit a PTAS unless P=NP.
→ We will prove this using case 3

Proof: from MAX 3SAT to MAX 3SAT(B) (from [PY88])

let I1 be an instance of MAX 3SAT with n variables and m
clauses. Wlog let us suppose that each literal appears (total
number of positive and negative apparaitions) c times.

let us recall the classical Karp reduction:

for each variable xi introduce c variables x1i , . . . , x
c
i , and add

2c clauses x1i ⇔ x2i , . . . , x
c
i ⇔ x1i

use now copies in the original clauses (xi ∨ x̄j ∨ xk becomes

xu1i ∨ ¯xu2k ∨ xu3l)

26 / 40

Max 3 SAT(B): using expander

Proof of the classical Karp reduction

let Gc be the corresponding graph with c vertices {x1i , . . . , xci }
and mGc = c following edges: add {xui , xvi } i� there is a clause
with xui ⇔ xvi (Gc is a cycle)

if all the x`i have the same truth value, we get 2mGc satis�ed
clauses from the variable gadget

thus: ∃S1 st |S1| = m⇔ ∃S2 st |S2| = m + 2nmGc

x2i

x2i

x1i
x2i

x2i

A
B

Gc with c = 5

A cut of size x = 2

2 clauses

27 / 40

Max 3 SAT(B): using expander

Why does it fail for case 3

∀t, ∃S1 st |S1| ≥ t ⇐ ∃S2 st |S2| ≥ t + 2nmGc is wrong.

⇐ Tentative proof. Suppose in a sol S2 that a variable i has n1
copies set to true and n2 to false, with n1 + n2 = c and
n1 ≤ n2.

The truth values of x`i de�nes a partition X1,X2 and a cut of
size x

if we set the n1 copies to false we get
val(S ′

2
) ≥ val(S2)− |X1|+ x , and thus we need x ≥ |X1|.. not

true when Gc is a cycle

x2i

x2i

x1i
x2i

x2i

A
B

Gc with c = 5

A cut of size x = 2

2 clauses

28 / 40

Max 3 SAT(B): using expander

What do we need for Gc

O(c) vertices are allowed, with c distinguished vertices (that
will appear in the original clauses of MAX 3SAT)

∀ partition X1, X2, at least min(s1, s2) edges in the cut where
Xi contains si distinguished vertices

maximum degree B (and thus we can't use a clique)

If we have such a Gc , we get our result for Max 3SAT(B):

for each variable xi introduce nGc variables

add equivalences between these variables according to Gc

use the c distinguished copies in the original clauses (we get
m + 2nmGc clauses in the instance of Max 3SAT(B))

x2i x5ix1i x3i x4i x4jx3jx2jx1j x5kx1k x
2
k x3k x4k

O(c) vertices

Gc with c = 5

xi ∨ x̄j ∨ xk becomes x2i ∨ x̄1j ∨ x3k

x5j

29 / 40

Max 3 SAT(B): using expander

What do we need for Gc

O(c) vertices are allowed, with c distinguished vertices (that
will appear in the original clauses of MAX 3SAT)

∀ partition X1, X2, at least min(s1, s2) edges in the cut where
Xi contains si distinguished vertices

maximum degree B

If we have such a Gc , we get our result for Max 3SAT(B):

we get ∀t, ∃S1 st |S1| ≥ t ⇔ ∃S2 st |S2| ≥ t + 2nmGc as it is
always better to assign the same values to the nGc copies of
every variable

∃c ′ st 2nmGc ≤ c ′OPT (I1) as nmGc ≤ nO(c)B , nc = 3m, and
OPT (I1) ≥ 7m

8
(fron random assignement)

x2i x5ix1i x3i x4i x4jx3jx2jx1j x5kx1k x
2
k x3k x4k

O(c) vertices

Gc with c = 5

xi ∨ x̄j ∨ xk becomes x2i ∨ x̄1j ∨ x3k

x5j

30 / 40

Max 3 SAT(B): using expander

De�nition

A n vertices graph is a α-expander if every subset S of at most n
2

vertices is adj. to ≥ α|S | vertices outside S (cut(S ,V \ S) ≥ α|S |)

Theorem

There exists a constant α > 0 such that for any n there is a
α-expander on n vertices with maximum degree 3.

Constructing Gc

take c disjoint full binary trees with at least 1

α leaves each

connect their leaves in a cubic α expander

mark the c roots as distinguished nodes

x1i x3i xcix4ix2i

α expander on c
α vertices

1
α leaves

31 / 40

Max 3 SAT(B): using expander

Constructing Gc

G has O(c) vertices

G has constant degree

let X1, X2 a partition and e = cut(X1,X2) where Xi contains
si distinguished nodes

let si = ti + t ′i with ti the number of trees included in Xi

e ≥ 1

α (αmin(t1, t2)) + t ′
1

+ t ′
2
≥ min(t1 + t ′

1
, t2 + t ′

2
)

x1i x3i x4ix2i

X1

at least 1
α × αmin(t1, t2) edges

xci s1 = 2 with t1 = 1 and t′1 = 1

s2 = 3 with t2 = 2 and t′2 = 1

32 / 40

Outline

1 Tools

2 Examples

3 A word on structural approximation theory

33 / 40

A word on structural approximation theory

Example of results in structural theory

Given a class C, a problem Π (not necessarily in C) and a
reduction ≤R , prove that Π is C-complete for ≤R .
One consequence: Π becomes a candidate to separate classes:
if C′ ⊆ C and ≤R preserves C′ , either Π /∈ C′, either C′ = C.
Or C̄′ = C where C̄′ = {Π | ∃Π′ ∈ C′ | Π′ ≤R Π}

A bit of history (from [AP05])

(≤R , C′, C,Π) means Π is C-complete for ≤R and ≤R preserves C′
(≤S , ,min − NPO,minWSAT)

(≤S , ,max − NPO,maxWSAT)

(≤A,APX ,NPO,Π1)

(≤P ,PTAS ,APX ,Π2)

(≤F ,FPTAS ,PTAS ,Π3)

However, Πi are arti�cial problems. Are they classes where
complete problems are natural ? Yes: MAX SNP 34 / 40

Max SNP

De�nition [KMSV98]

MAX SNP is the class of NPO problems expressible as �nding a S
which maximizes the objective function

f (I , S) = |{x | φ(I , S , x)}|

where I = (U,P) denotes the input (consisting of a �nite universe
U and a �nite set of bounded arity predicates P), and φ is a
quanti�er-free �rst order formula.

Example: MAX CUT ∈ MAX SNP

f (I ,S) = |{{u, v} | u ∈ S ∧ v /∈ S ∧ {u, v} ∈ E}| where I = G
with G = (V ,E)

35 / 40

Max SNP

De�nition [KMSV98]

MAX SNP is the class of NPO problems expressible as �nding a S
which maximizes the objective function

f (I , S) = |{x | φ(I , S , x)}|

where I = (U,P) denotes the input (consisting of a �nite universe
U and a �nite set of bounded arity predicates P), and φ is a
quanti�er-free �rst order formula.

Example: MAX 2 SAT ∈ MAX SNP

formulation not in MAX SNP:
f (I ,S) = |{c | ∃x((Pos(c , x) ∧ x ∈ S) ∨ (Neg(c, x) ∧ x /∈ S))}|
where I = (U,P) with P = {Pos,Neg}

36 / 40

Max SNP

De�nition [KMSV98]

MAX SNP is the class of NPO problems expressible as �nding a S
which maximizes the objective function

f (I , S) = |{x | φ(I , S , x)}|

where I = (U,P) denotes the input (consisting of a �nite universe
U and a �nite set of bounded arity predicates P), and φ is a
quanti�er-free �rst order formula.

Example: MAX 2 SAT ∈ MAX SNP

formulation in MAX SNP: f (I , S) = |{((x1, x2) |
((x1, x2) ∈ C0 ⇒ (x1 ∈ S ∨ s2 ∈ S))∧
((x1, x2) ∈ C1 ⇒ (x1 /∈ S ∨ s2 ∈ S))∧
((x1, x2) ∈ C2 ⇒ (x1 /∈ S ∨ s2 /∈ S))}| where Ci is the set of
predicates where the �rst i variables appear negatively and the 2− i
others positively

37 / 40

Max SNP

Nice facts about Max SNP [PY88]

MAX SNP ⊆ APX (and "easy" proof)

MAX SNP has several natural complete problems (for ≤L):
MAX 3 SAT(B), MAX IS(B), . . . (and "easy" proof of �rst
problem hard, MAX 3SAT)

More: see for example [KMSV98].

38 / 40

Conclusion

a personal roadmap given your favorite problem Π:
if you want big inapproximability results, try gap reductions.

Candidates: IS, VC, Kdm, *SAT, ...

if you want no PTAS, try to prove condition of case 3 (even if
it could be used for other inapproximaility results).

Candidates : all problems on cubic graphs, **SAT, ...

Condition "extra add. factor ≤ cOpt1(I)" often easy to get.

approximation preserving reduction can be used for positive
and negative results, but breaks the gap

please help me �nding L/PTAS reduction not using case 3

39 / 40

Bibliography

[AK97] Paola Alimonti and Viggo Kann.
Hardness of approximating problems on cubic graphs.
In Italian Conference on Algorithms and Complexity, pages 288�298. Springer, 1997.

[AP05] Giorgio Ausiello and Vangelis Paschos.
Approximability preserving reduction.
2005.

[Cre97] Pierluigi Crescenzi.
A short guide to approximation preserving reductions.
In Computational Complexity, 1997. Proceedings., Twelfth Annual IEEE Conference on
(Formerly: Structure in Complexity Theory Conference), pages 262�273. IEEE, 1997.

[KMSV98] Sanjeev Khanna, Rajeev Motwani, Madhu Sudan, and Umesh Vazirani.
On syntactic versus computational views of approximability.
SIAM Journal on Computing, 28(1):164�191, 1998.

[PY88] Christos Papadimitriou and Mihalis Yannakakis.
Optimization, approximation, and complexity classes.
In Proceedings of the twentieth annual ACM symposium on Theory of computing, pages
229�234. ACM, 1988.

40 / 40

	Tools
	Examples
	A word on structural approximation theory

