Getting negative approximabiliy results for your

favorite problem: a tutorial

Marin Bougeret

@ Tools

2/40

Introduction

Context/Notations

e NPO: "standard" opt problems (VC, TSP, MAX SAT..). In
particular:
e given input / of 1 € NPO, poly to decide if a string s is a

solution and to compute its value m(/, s) (denoted m(s))
@ can be max or min problem

o opt(l) denote the optimal value

@ given min problem I1, a poly algorithm A has ratio p > 1 iff

VI, A(l) < p(opt(1) (A(l) > og(tl()l) for max problem)

@ basic classes of problems:

PTAS (for any € > 0 ratio (1 +¢€)) € APX (ratio ¢ where c is
a constant) C NPO

4

3/40

Introduction

Situation of interest here

e given 1 € NPO, how getting negative approximability results
for I 7 (no ratio p (in poly time) unless ..)

. L :
. . " : 1

Answer

As expected: by providing reductions:

@ chose a " hard to approximate (no p’ for " unless ..)

o find a reduction " <g I that "preserves value of solutions"

o deduce p for N = p’ for [, and thus no p for I unless ..

4/40

Introduction

o what does "preserves value of solutions" mean ? J

o different scenarios are possible

solutions of I1; solutions of Iy

@ which condition C the reduction should satisfy to transmit a
given ratio ?

o let's check exisiting tools

5/40

Introduction

o what does "preserves value of solutions" mean ? J

o different scenarios are possible

solutions of I1; solutions of Iy

@ which condition C the reduction should satisfy to transmit a
given ratio ?

o let's check exisiting tools

6/40

Introduction

o what does "preserves value of solutions" mean ? J

o different scenarios are possible

solutions of II; solutions of Il

@ which condition C the reduction should satisfy to transmit a
given ratio 7

o let's check exisiting tools

7/40

Tools: gap reduction Vs approx. preserving reduction

Tool 1: Gap reduction J

8/40

Tools: gap reduction Vs approx. preserving reduction

Tool 1: Gap reduction |

8/40

Tools: gap reduction Vs approx. preserving reduction

Gap reduction

o extremely natural (C is natural), powerful (derive no PTAS, no
APX_..), widely used tool

= no need to do a tutorial :)

ATTENTION CORRIGER LA DEF For the sake of completeness:
given input (/, k)

o classical Mgyec: decide if Opt(/) > k or Opt(l) < k

@ [M,_gap: decide if Opt(/) > k or Opt(l) < ﬁ
o the classical karp reduction between M/, and Mgec is replaced

by a karp reduction between I_I;,,fgap and M,_gap

@ thus, proving an innapproimability result = proving that
My—gap is hard (and thus no ratio p — ¢)

Moreover, thanks to PCP theory, there is a lot of candidate source
problems whose hardness is known for a large gap.

9 /40

Tools: gap reduction Vs approx. preserving reduction

Tool 2: Approximation preserving reduction (short guide in [Cre97])J

10/ 40

Tools: gap reduction Vs approx. preserving reduction

Tool 2: Approximation preserving

reduction (short guide in [Cre97])J

Red. [Ref. ‘Additional ‘Constraints ‘Membership
parameters 10 be satisfied preserved
Sanir | 34 Ra(z.9(z.y)) < Rp(f(2).9) all
<a |34 functionc Rp(f(z).9) <r = Ra(z,9(z,9)) < c(r) APX
<p | [34] | functionc Rp(f(z).9) S clr) = Ra(z.g9(z,9)) <7 PTAS
<c [a1] ‘constant o Ra(z,9(z,y)) < aRp(f(z).y) APX
<L | 136 | constants a. B Pty (/(z)) < a0pt,(z) PTAS
Ealz.9(z.v)) < BEp(f(z).y) APXif type , = min
<s |03 Opty(f(2) = opty(2) a
Ma(z.9(2,v)) = mp(f(z),y)
<e | [29] | polynomial p opty(f(2)) < p(lz])opty(x) all
‘constant § Ralz,9(z,9)) <1+ 8 (Rp(f(z),9) - 1)
Seas | (8] | ratior Ra(f(z.7).9) < () = Ra(z.9(2,0,7) < 7 PTAS
<ap | (151 | constanta | Rp(f(z,7).y) <= Ralz,9(z,y,7)) <14 alr-1) all

10/ 40

Tools: gap reduction Vs approx. preserving reduction

Tool 2: Approximation preserving reduction (short guide in [Cre97])J

Red. [Ref. ‘Additional ‘Constraints ‘Membership
parameters 10 be satisfied
Setrier 34) Ra(z.g(z.v)) < Rp(f(z).4) all
<a |34 functionc Rp(f(z).9) <r = Ra(z,9(z,9)) < c(r) APX
<p |[34) | functionc Rp(f(z).y) S c(r) = Ra(z.9(z,0) <7 PTAS
<c [a1] ‘constant o Ra(z,9(z,y)) < aRp(f(z).y) APX
<1 | 136) | constants a, 3 opt(/(z) < aOPt,(z) PTAS
Ealz.9(z.v)) < BEp(f(z).y) APXif type , = min
Ss |13 opty(f()) = opt,(z) all
Ma(z.9(2,v)) = mp(f(z),y)
<& | 1291 | polynomial p opty (£(2)) < p(1z)) Oty () all
‘constant § Ralz,9(z,9)) <1+ 8 (Rp(f(z),9) - 1)
Spras | 118) ratio Ra(f(z.r).9) < e(r) = Ralz,9(z,y, 1)) < 7 PTAS
<ap | [(15] | constanta | Rp(f(z,r).y) 7= Ralz.9(z,s,r)) < 1+alr—1) all

And this is why we will talk about it!)

10/ 40

Tools: gap reduction Vs approx. preserving reduction

o in all reduction we must provide a pair (f, g) where f maps
instances, g backward maps solutions, both polynomial

o then, depending on the reduction (previous slide) (f, g) must
satisfy additional properties.. which are not very "natural"

Unlike Karp or param. reduction, f only depends on | (#/+4)).

Example: L reduction (Given Iy and Ty in NPO, max or min)

My <, My iff 3 poly (f,g) and ag, 0 > 0 | Vh, Vs solution of
f(h):

e optn,(f(h)) < aropty (h)

o [mi(g(s)) — optr, (h)| < azlma(s) — optr, (f(h))|

Conclusion

|

@ previous reductions have interest for structural theory

@ but given [, and a target class (no PTAS) painful to try each
of these reductions

/40

Condition C

@ In practice, what do we (17 :) do once our reduction f from Iy
to Iy is defined (even before knowing if we look for gap, or
S*):

o given a "good" solution s; of /; we show that a "good"
solution s, exists for f (/)

o given a "good" solution s, of f(/;) we show that a "good"
solution s; exists for /;

| A

Definition of C for two min problems

f verifies C for function ¢ and iff (b = f(h)):
Vt, 3sy sol of h | mi(s1) < ci(t) < sz sol of b | ma(s2) < (1)

V.

Definition of C is adapted for any combination of min/max problem
by replacing < by >

y

If even have a poly function that computes s; from s, (fixme other
idrectio important 7) case 2 will imply L reduction Otherwise, the
statement is equivalent with "OPT+- <= <=>0PT->, <= " /40

Condition C: some common cases

Case 1 (Karp reduction)
¥t Js; for f; st. m1(51) < ¢ & dsp for b st. m2(52) <o

Case 2
Vt ds; for I st. m1(51) < p+ at & s, for b st. m2(52) <t
(with possibly Jc st. p < ¢ x opti(h))

| A\

Case 3
Vt s for h st. my(s1) < t & 3sp for b st. my(sy) < p+ at
(with possibly Jc st. p < ¢ x opt1(h))

13/40

Condition C: some common cases

@ Why these particular functions ¢;?: these cases occur in a lot
of reductions

o In particular, many L reductions (to show no PTAS) are
implicitely proved by using Case 3
@ Do not list all the implications for all cases (like "with these

values of a, p, min/max problems, case * implies a *
reduction") but:

@ try to prove the equivalence for a pair ¢i(t) and c(t)
@ then check: if | have p, for My, then | have p; = .. for M

14 /40

Example: consequences of Case 3

Vt 3s; for h st. mi(s1) < t < Jsp for b st. m(s2) < p+ at
(with possibly Jc st. p < copti(h))

@ Suppose | have a p, approximate solution algorithm A,.
o Given input /i, let b = f(li) and sp = Ax(h).

s < p20PT (h)
5 < 2P < p2(p+aOPT(I))—p
— (0% — (0% 1
< p2OPT(h)+ p?—~

Thus, if 3¢ such that p < cOPT(l1) (which is standard):
@ PTAS for Ny implies PTAS for Iy
e APX Iy implies APX My (with a different ratio)

If we even want to benefit from structural theory, we can even
observe that Case 3 implies a L-reduction. Thus if [y is complete
for L-reduction, so is Iy % /40

Gap vs reduction verfying C

Suppose that we reduce from VC to our min problem I1, and that
we have the two following reductions.

Reduction f; (gap)
fi maps any input (/, k) of Decyc to an input I” of I such that
o VC(I)< k= opt(l') <n+k
o VC()> k+1=opt(l')>n+k+1
(to be more formal we could say that ; maps to an input (/’, k) of
gapapll with a(l’, k) = n+ k+1 and b(I', k) = n+ k)

A

Reduction f, (satisfying C)
f> maps any input / of VC to an input /” of 1 such that
Vk, VC(I) < k< opt(l') < n+ k
which is equivalent to: for any k,
o VC(I)< k= opt(l')y<n+k
o VC(I)>k+1=opt(l')>n+k+1

v
16 /40

Gap vs reduction verfying C

Reduction f; (gap)

fi maps any input (/, k) of Decyc to an input I” of I such that
o VC(I) < k= opt(l')<n+k
o VC(I) > k+1=opt(l')>n+k+1

Reduction f, (satisfying C)

f, maps any input / of VC to an input /" of I such that for any k,
o VC(I)< k= opt(l')<n+k
o VC() > k+1=opt(l')>n+k+1

Looks the same .. but

o f; implies: for any € > 0, no algo that for any /', k has
28,”8 — € ratio .. which here give no (1 + ﬁ) — € (which
only tells us no FPTAS)

o f, implies no PTAS

47 /40

Gap vs reduction verfying C

So .. why is f, more powerfull ?

Because f; depends on k and f does not:

o given /, for each k, fi produces an input /, (gadgets may
depend on k) such that previous equations are satisfied

@ given /, f, produces an input /” such that previous equations
are satisfied for any k

18/ 40

© Examples

19/ 40

Vertex Cover in cubic graphs

VC(A): vertex cover pb in graphs of maximum degree A.

VC(4) does not admit a PTAS unless P=NP

Theorem [AK97]

V(C(3) does not admit a PTAS unless P=NP.
— We will prove this using case 3

We could also say (as case 3 =<;=<pras):

VC(4) is APX-complete (for PTAS red)

VC(3) is APX-complete

20 /40

Vertex Cover in cubic graphs

Proof: reduction from VC(4)
o let / be an instance of VC(4)

@ we construct /, as follows:

- v U Uy

L I

o let s be number of deg 4 vertices in |
o Vt,AS1 st |S1| <t IS st S| <t+s
= if d(v) <3 take vin S iff ve 5
if d(v) =4and v € 5; take {vi,nn} € S,
if d(v)=4and v ¢ 5; take {u} € 5,

o Jcsts < cOPT(h) as OPT(h) > L > =71

21/40

Max Cut

Theorem
Max Cut does not admit a PTAS unless P=NP.
— We will prove this using case 3

Proof: reduction from MAX NAE 3SAT from [PY88]

MAX NAE 3SAT:
@ input: n variables and m clauses on 3 variables (ex
Cr = X; V X V Xk)
o a clause is satisfied iff it has at least one true literal and at
least one false literal (ex x; = f, x; = t, xx = t does not
satisfy Cp, but with x, = f it does)

22 /40

Max Cut

Proof: from MAX NAE 3SAT to MAX CUT in multigraphs

o let /1 be an instance of MAX NAE 3SAT

@ we construct h as follows (we first define a multigraph):

o for each variable x;: create two vertices v, vz, with 2k; parallel
edges (k; is the total number of occurences of x; and ;)

o for each clause C;: add edges to create a triangle (ex for
Co =XV XV xx, add {vg, vig }, { Vg, Vi > {Vis Vi })

o Vt, 351 st |S1| > t < IS, st |Sp| > 2t + 2k (where
= 27:1 ki)
= each variables adds 2k; edges, each satisfied clause adds 2
edges

23 /40

Max Cut

Proof: from MAX NAE 3SAT to MAX CUT in multigraphs

o Vt, 351 st |S1| > t & 3S; st |Sy| > 2t + 2k (where
n
= Zi:l ki)
< Let A, B be a partition of V.
o for every i, it is always better to have v,. and vz, in differents
parts: we get 2k edges
o then, each triangle either contributes to 0 or 2 edges
o dc st 2k < cOPT(l) as k =>_" ; ki < 3m and
OPT(h) > 37 (fron random assignement)

Thus, MAX CUT in multigraphs does not admit a PTAS unless
P=NP.

%4/ 40

Max Cut

Proof: from MAX CUT in multigraphs to MAX CUT

o let /1 be an instance of MAX CUT in multigraphs with m;
edges
@ we construct /, of MAX CUT by replacing each edge
e ={u, v} by a path P, = {u, ac, be, v}
o Vt, 351 st |S1| > t < 3S; st |Sp| > t+ 2my (where my is the
number of edges of the mutligraph)
= For each edge in the cut in S; we get 3 edges in S,, and for
the other edges we get 2 edges. Thus, |Sy| > 3t +2(my — t)
< Same argument
o Jdc st 2my < cOPT(h) as OPT(h) > 5 (fron random
assignement)

25 /40

Max 3 SAT(B): using expander

Theorem

Max 3SAT(B) (where each literal appears in at most B clauses)
does not admit a PTAS unless P=NP.
— We will prove this using case 3

Proof: from MAX 3SAT to MAX 3SAT(B) (from [PY88])

o let /; be an instance of MAX 3SAT with n variables and m
clauses. Wlog let us suppose that each literal appears (total
number of positive and negative apparaitions) ¢ times.

o let us recall the classical Karp reduction:

o for each variable x; introduce c variables x?, ..., xf, and add
2c clauses x! < x?, ..., xf < x}
o use now copies in the original clauses (x; V Xj V x, becomes
uy le us
XtV X2V x"®)

26 /40

Max 3 SAT(B): using expander

Proof of the classical Karp reduction
o let G, be the corresponding graph with c vertices {x},...,x¢}
and mg, = c following edges: add {x",x"} iff there is a clause
with x & xV (Gc is a cycle)
o if all the xf have the same truth value, we get 2mg, satisfied
clauses from the variable gadget

@ thus: 35; st |S1| = m < 35 st |Sa| = m+ 2nmg,

A 2 clauses

G, withe=5

A cut of size z =2

27 /40

Max 3 SAT(B): using expander

Why does it fail for case 3
o Vt, 351 st |S1]| > t < IS, st |Sa| > t+ 2nmg, is wrong.

< Tentative proof. Suppose in a sol S, that a variable j has ny
copies set to true and n, to false, with ny + n, = ¢ and
n S ns.

o The truth values of xf defines a partition Xy, X5 and a cut of
size x

o if we set the n; copies to false we get
val(S5) > val(S2) — | Xi| + x, and thus we need x > | Xi|.. not
true when G; is a cycle

<

A 2 clauses

G, withe=5

A cut of size v =2

28 /40

Max 3 SAT(B): using expander

What do we need for G,

o O(c) vertices are allowed, with ¢ distinguished vertices (that
will appear in the original clauses of MAX 3SAT)

@ V partition Xi, X, at least min(sy, s2) edges in the cut where
X; contains s; distinguished vertices

@ maximum degree B (and thus we can't use a clique)

If we have such a G, we get our result for Max 3SAT(B):
o for each variable x; introduce ng, variables
@ add equivalences between these variables according to G,

@ use the c distinguished copies in the original clauses (we get
m + 2nmg, clauses in the instance of Max 3SAT(B))

x; V@& V xy becomes a7 V Ve

G.withe=5

whad ot atal whut @3 T
O s 900 8S eedEE oo

29 /40

Max 3 SAT(B): using expander

What do we need for G,

e O(c) vertices are allowed, with ¢ distinguished vertices (that
will appear in the original clauses of MAX 3SAT)

@ V partition Xi, Xo, at least min(s;, s2) edges in the cut where
X; contains s; distinguished vertices

@ maximum degree B

If we have such a G, we get our result for Max 3SAT(B):

o we get Vt, 351 st [S1]| > t < Sy st [Sp| > t+ 2nmg, as it is
always better to assign the same values to the ng, copies of
every variable

e Ic’ st 2nmg, < 'OPT(l) as nmg, < nO(c)B, nc = 3m, and
OPT(h) > 1 (fron random assignement)

x; V & V), becomes T,? vV .l'> V- rf

2 o ik L 1h
G, with ¢ =5 Z 5! @ LAy

alwdulad Cvayed et el P
- 00000 oo eeoe e
O(c) vertices

=,

30/ 40

Max 3 SAT(B): using expander

Definition

A n vertices graph is a a-expander if every subset S of at most §
vertices is adj. to > «|S]| vertices outside S (cut(S, V' \ S) > «lS|)

4

Theorem

There exists a constant a > 0 such that for any n there is a
a-expander on n vertices with maximum degree 3.

| A\

Constructing G

o take c disjoint full binary trees with at least é leaves each
@ connect their leaves in a cubic o expander

o mark the c roots as distinguished nodes

1 22 -3 1 c
ZV ‘L-A ll z! 1‘1
Jf}x .4/;‘. ./f.}. A ./1’5& o expander on £ vertices

L eaves
a

31/40

Max 3 SAT(B): using expander

Constructing G

o G has O(c) vertices
@ G has constant degree

o let Xi, Xy a partition and e = cut(Xi, X2) where X; contains
s; distinguished nodes
o let s; = t; + t/ with t; the number of trees included in X;
o e> L(amin(ty, 1)) + t{ + th > min(ty + t], &2 + 1)

/? sp=2witht;=Tandt) =1
;: ;E ,E ,h ,}x sp=3withtp=2and t) =1

7 at least = X amin(ty, o) edges

32/40

© A word on structural approximation theory

33/40

A word on structural approximation theory
Example of results in structural theory

@ Given a class C, a problem I (not necessarily in C) and a
reduction <g, prove that I is C-complete for <g.
One consequence: 1 becomes a candidate to separate classes:
if C' C C and <pg preserves C' , either 1 ¢ C’, either C' = C.

o Or C' =C where C' = {N|3Infec | <gN}
A bit of history (from [AP05])
(<gr,C’,C,M) means I is C-complete for <g and <g preserves C’
o (<s,,min— NPO, minWSAT)
o (<s,,max — NPO, maxWSAT)
o (<a,APX,NPO, ;)
o (<p,PTAS,APX,I,)
o (<g, FPTAS, PTAS,3)

A

A\

However, I1; are artificial problems. Are they classes where
complete problems are natural ? Yes: MAX SNP 34/ 40

Max SNP

Definition [KMSV98]

MAX SNP is the class of NPO problems expressible as finding a S
which maximizes the objective function

F(1,5) = {x | o(1, 5, %)}

where | = (U, P) denotes the input (consisting of a finite universe
U and a finite set of bounded arity predicates P), and ¢ is a
quantifier-free first order formula.

| \

Example: MAX CUT € MAX SNP

f(1,S)=|{{u,v}|ueSAve¢ SA{u v} e E} where | =G
with G = (V,E)

35 /40

Max SNP

Definition [KMSV98]

MAX SNP is the class of NPO problems expressible as finding a S
which maximizes the objective function

F(1,5) = {x 1 o1, 5, %)}

where | = (U, P) denotes the input (consisting of a finite universe
U and a finite set of bounded arity predicates P), and ¢ is a
quantifier-free first order formula.

Example: MAX 2 SAT € MAX SNP

formulation not in MAX SNP:
f(1,S) = |{c| Ix((Pos(c,x) ANx € S) V (Neg(c,x) Ax ¢ S))}|
where | = (U, P) with P = {Pos, Neg}

36 /40

Max SNP

MAX SNP is the class of NPO problems expressible as finding a S
which maximizes the objective function

F(1,5) = {x 1 o1, 5, %)}

where | = (U, P) denotes the input (consisting of a finite universe
U and a finite set of bounded arity predicates P), and ¢ is a
quantifier-free first order formula.

Example: MAX 2 SAT € MAX SNP

formulation in MAX SNP: £(/,S) = [{((x1, x2) |

((Xl,Xz) € G => (X1 eSVs e 5))/\
(x,x)eCG=(x1¢SVseS))A

((x1,x) € = (x1 ¢ SV s, ¢ S))}| where G is the set of
predicates where the first / variables appear negatively and the 2 —/
others positively

| A

87 / 40

Max SNP

Nice facts about Max SNP [PY88]

e MAX SNP C APX (and "easy" proof)

@ MAX SNP has several natural complete problems (for <;):
MAX 3 SAT(B), MAX IS(B), ... (and "easy" proof of first
problem hard, MAX 3SAT)

More: see for example [KMSV98].

38 /40

Conclusion

@ a personal roadmap given your favorite problem I:
o if you want big inapproximability results, try gap reductions.
Candidates: IS, VC, Kdm, *SAT, ...

o if you want no PTAS, try to prove condition of case 3 (even if
it could be used for other inapproximaility results).

Candidates : all problems on cubic graphs, **SAT, ...
Condition "extra add. factor < cOpti(/)" often easy to get.
@ approximation preserving reduction can be used for positive
and negative results, but breaks the gap

@ please help me finding L/PTAS reduction not using case 3

39 /40

Bibliography

[AKo97]

[APO5]

[Creo7]

[KMSV98]

[PY88]

Paola Alimonti and Viggo Kann.
Hardness of approximating problems on cubic graphs.
In Italian Conference on Algorithms and Complexity, pages 288—-298. Springer, 1997.

Giorgio Ausiello and Vangelis Paschos.
Approximability preserving reduction.
2005.

Pierluigi Crescenzi.

A short guide to approximation preserving reductions.

In Computational Complexity, 1997. Proceedings., Twelfth Annual IEEE Conference on
(Formerly: Structure in Complexity Theory Conference), pages 262-273. |IEEE, 1997.

Sanjeev Khanna, Rajeev Motwani, Madhu Sudan, and Umesh Vazirani.
On syntactic versus computational views of approximability.
SIAM Journal on Computing, 28(1):164-191, 1998.

Christos Papadimitriou and Mihalis Yannakakis.

Optimization, approximation, and complexity classes.

In Proceedings of the twentieth annual ACM symposium on Theory of computing, pages
229-234. ACM, 1988.

40/ 40

	Tools
	Examples
	A word on structural approximation theory

