Getting negative approximabiliy results for your favorite problem: a tutorial

Marin Bougeret

Outline

(1) Tools
(2) Examples
(3) A word on structural approximation theory

Context/Notations

- NPO: "standard" opt problems (VC, TSP, MAX SAT..). In particular:
- given input I of $\Pi \in N P O$, poly to decide if a string s is a solution and to compute its value $m(I, s)$ (denoted $m(s)$)
- can be max or min problem
- opt (I) denote the optimal value
- given min problem Π, a poly algorithm A has ratio $\rho \geq 1$ iff $\forall I, A(I) \leq \rho(I) \operatorname{opt}(I)\left(A(I) \geq \frac{\text { opt }(I)}{\rho(I)}\right.$ for max problem)
- basic classes of problems:

PTAS (for any $\epsilon>0$ ratio $(1+\epsilon)) \subseteq A P X$ (ratio c where c is a constant) \subseteq NPO

Situation of interest here

- given $\Pi \in N P O$, how getting negative approximability results for Π ? (no ratio ρ (in poly time) unless ..)
- structural theory of approximability
- approximability preserving reduction: a tutorial

Answer

As expected: by providing reductions:

- chose a Π^{\prime} hard to approximate (no ρ^{\prime} for Π^{\prime} unless ..)
- find a reduction $\Pi^{\prime} \leq_{R} \Pi$ that "preserves value of solutions"
- deduce ρ for $\Pi \Rightarrow \rho^{\prime}$ for Π^{\prime}, and thus no ρ for Π unless ..

Introduction

- what does "preserves value of solutions" mean ?
- different scenarios are possible

- which condition \mathcal{C} the reduction should satisfy to transmit a given ratio ?
- let's check exisiting tools

Introduction

- what does "preserves value of solutions" mean ?
- different scenarios are possible

- which condition \mathcal{C} the reduction should satisfy to transmit a given ratio ?
- let's check exisiting tools
- what does "preserves value of solutions" mean ?
- different scenarios are possible

- which condition \mathcal{C} the reduction should satisfy to transmit a given ratio ?
- let's check exisiting tools

Tool 1: Gap reduction

Tools: gap reduction Vs approx. preserving reduction

Tool 1: Gap reduction

Tools: gap reduction Vs approx. preserving reduction

Gap reduction

- extremely natural (\mathcal{C} is natural), powerful (derive no PTAS, no APX..), widely used tool
\Rightarrow no need to do a tutorial :)
ATTENTION CORRIGER LA DEF For the sake of completeness: given input (I, k)
- classical $\Pi_{\text {dec }}$: decide if $\operatorname{Opt}(I) \geq k$ or $\operatorname{Opt}(I)<k$
- $\Pi_{\rho-\text { gap }}$: decide if $\operatorname{Opt}(I) \geq k$ or $\operatorname{Opt}(I) \leq \frac{k}{\rho(I)}$
- the classical karp reduction between $\Pi_{d e c}^{\prime}$ and $\Pi_{d e c}$ is replaced by a karp reduction between $\Pi_{\rho^{\prime}-\text { gap }}^{\prime}$ and $\Pi_{\rho-\text { gap }}$
- thus, proving an innapproimability result $=$ proving that $\Pi_{\rho-\text { gap }}$ is hard (and thus no ratio $\rho-\epsilon$)

Moreover, thanks to PCP theory, there is a lot of candidate source problems whose hardness is known for a large gap.

Tool 2: Approximation preserving reduction (short guide in [Cre97])

Tool 2: Approximation preserving reduction (short guide in [Cre97])

Red.	Ref.	Additional parameters	$\begin{aligned} & \text { Constraints } \\ & \text { to be satisfied } \end{aligned}$	Membership preserved
Strict	[34]		$R_{A}(x, g(x, y)) \leq R_{B}(f(x), y)$	all
$\leq A$	[34]	function c	$R_{B}(f(x), y) \leq r \Rightarrow R_{A}(x, g(x, y)) \leq c(r)$	APX
$\leq \mathrm{P}$	[34]	function c	$R_{B}(f(x), y) \leq c(r) \Rightarrow R_{A}(x, g(x, y)) \leq r$	PTAS
$\leq \mathrm{c}$	[41]	constant α	$R_{A}(x, g(x, y)) \leq \alpha R_{B}(f(x), y)$	APX
\leq L	[36]	constants α, β	$\begin{gathered} \operatorname{opt}_{B}(f(x)) \leq \alpha \operatorname{opt}_{A}(x) \\ E_{A}(x, g(x, y)) \leq \beta E_{B}(f(x), y) \end{gathered}$	PTAS APX $_{\text {if type }}^{A}=$ min
$\leq s$	[13]		$\begin{aligned} \operatorname{opt}_{B}(f(x)) & =\operatorname{opt}_{A}(x) \\ \mathrm{m}_{A}(x, g(x, y)) & =\mathrm{m}_{B}(f(x), y) \end{aligned}$	all
\leq E	[29]	polynomial p constant β	$\begin{gathered} \operatorname{opt}_{B}(f(x)) \leq p(\|x\|) \operatorname{opt}_{A}(x) \\ R_{A}(x, g(x, y)) \leq 1+\beta\left(R_{B}(f(x), y)-1\right) \end{gathered}$	all
$\leq \mathrm{PTAS}$	[18]	ratio r	$R_{B}(f(x, r), y) \leq c(r) \Rightarrow R_{A}(x, g(x, y, r)) \leq r$	PTAS
$\leq \mathrm{AP}$	[15]	constant α	$R_{B}(f(x, r), y) \leq r \Rightarrow R_{A}(x, g(x, y, r)) \leq 1+\alpha(r-1)$	all

Tool 2: Approximation preserving reduction (short guide in [Cre97])

Red.	Ref.	Additional parameters	$\begin{aligned} & \text { Constraints } \\ & \text { to be satisfied } \end{aligned}$	Membership preserved
Strict	[34]		$R_{A}(x, g(x, y)) \leq R_{B}(f(x), y)$	all
$\leq A$	[34]	function c	$R_{B}(f(x), y) \leq r \Rightarrow R_{A}(x, g(x, y)) \leq c(r)$	APX
$\leq \mathrm{P}$	[34]	function c	$R_{B}(f(x), y) \leq c(r) \Rightarrow R_{A}(x, g(x, y)) \leq r$	PTAS
$\leq \mathrm{c}$	[41]	constant α	$R_{A}(x, g(x, y)) \leq \alpha R_{B}(f(x), y)$	APX
\leq L	[36]	constants α, β	$\begin{gathered} \operatorname{opt}_{B}(f(x)) \leq \alpha \operatorname{opt}_{A}(x) \\ E_{A}(x, g(x, y)) \leq \beta E_{B}(f(x), y) \end{gathered}$	PTAS APX $_{\text {if type }}^{A}=$ min
$\leq s$	[13]		$\begin{aligned} \operatorname{opt}_{B}(f(x)) & =\operatorname{opt}_{A}(x) \\ \mathrm{m}_{A}(x, g(x, y)) & =\mathrm{m}_{B}(f(x), y) \end{aligned}$	all
\leq E	[29]	polynomial p constant β	$\begin{gathered} \operatorname{opt}_{B}(f(x)) \leq p(\|x\|) \operatorname{opt}_{A}(x) \\ R_{A}(x, g(x, y)) \leq 1+\beta\left(R_{B}(f(x), y)-1\right) \end{gathered}$	all
$\leq \mathrm{PTAS}$	[18]	ratio r	$R_{B}(f(x, r), y) \leq c(r) \Rightarrow R_{A}(x, g(x, y, r)) \leq r$	PTAS
$\leq \mathrm{AP}$	[15]	constant α	$R_{B}(f(x, r), y) \leq r \Rightarrow R_{A}(x, g(x, y, r)) \leq 1+\alpha(r-1)$	all

And this is why we will talk about it!

Tools: gap reduction Vs approx. preserving reduction

- in all reduction we must provide a pair (f, g) where f maps instances, g backward maps solutions, both polynomial
- then, depending on the reduction (previous slide) (f, g) must satisfy additional properties.. which are not very "natural"

Unlike Karp or param. reduction, f only depends on I $(f(I, k))$.

Example: L reduction (Given Π_{1} and Π_{2} in $N P O$, max or min)

$\Pi_{1} \leq_{L} \Pi_{2}$ iff \exists poly (f, g) and $\alpha_{1}, \alpha_{2}>0 \mid \forall I_{1}, \forall s$ solution of $f\left(I_{1}\right)$:

- opt $t_{\Pi_{2}}\left(f\left(I_{1}\right)\right) \leq \alpha_{1}$ opt $t_{\pi_{1}}\left(I_{1}\right)$
- $\left|m_{1}(g(s))-o p t_{\pi_{1}}\left(I_{1}\right)\right| \leq \alpha_{2}\left|m_{2}(s)-o p t_{\pi_{2}}\left(f\left(I_{1}\right)\right)\right|$

Conclusion

- previous reductions have interest for structural theory
- but given П, and a target class (no PTAS) painful to try each of these reductions

Condition \mathcal{C}

- In practice, what do we (I? :) do once our reduction f from Π_{1} to Π_{2} is defined (even before knowing if we look for gap, or \leq_{*}):
- given a "good" solution s_{1} of I_{1} we show that a "good" solution s_{2} exists for $f\left(l_{1}\right)$
- given a "good" solution s_{2} of $f\left(l_{1}\right)$ we show that a "good" solution s_{1} exists for I_{1}

Definition of \mathcal{C} for two min problems

f verifies \mathcal{C} for function c_{1} and c_{2} iff $\left(l_{2}=f\left(l_{1}\right)\right)$:
$\forall t, \exists s_{1}$ sol of $I_{1} \mid m_{1}\left(s_{1}\right) \leq c_{1}(t) \Leftrightarrow \exists s_{2}$ sol of $I_{2} \mid m_{2}\left(s_{2}\right) \leq c_{2}(t)$

Definition of \mathcal{C} is adapted for any combination of min/max problem by replacing \leq by \geq

If even have a poly function that computes s_{1} from s_{2} (fixme other idrectio important ?) case 2 will imply L reduction Otherwise, the statement is equivalent with " $O P T_{1}<=\ldots<=>O P T_{2}<=$...".

Case 1 (Karp reduction)
$\forall t \exists s_{1}$ for I_{1} st. $m_{1}\left(s_{1}\right) \leq c_{1} \Leftrightarrow \exists s_{2}$ for l_{2} st. $m_{2}\left(s_{2}\right) \leq c_{2}$
Case 2
$\forall t \exists s_{1}$ for l_{1} st. $m_{1}\left(s_{1}\right) \leq p+\alpha t \Leftrightarrow \exists s_{2}$ for I_{2} st. $m_{2}\left(s_{2}\right) \leq t$ (with possibly $\exists c$ st. $p \leq c \times o p t_{1}\left(I_{1}\right)$)

Case 3
$\forall t \exists s_{1}$ for I_{1} st. $m_{1}\left(s_{1}\right) \leq t \Leftrightarrow \exists s_{2}$ for l_{2} st. $m_{2}\left(s_{2}\right) \leq p+\alpha t$ (with possibly $\exists c$ st. $p \leq c \times o p t_{1}\left(I_{1}\right)$)

- Why these particular functions c_{i} ?: these cases occur in a lot of reductions
- In particular, many L reductions (to show no PTAS) are implicitely proved by using Case 3
- Do not list all the implications for all cases (like "with these values of $\alpha, p, \min / \mathrm{max}$ problems, case * implies a * reduction") but:
(1) try to prove the equivalence for a pair $c_{1}(t)$ and $c_{2}(t)$
(2) then check: if I have ρ_{2} for Π_{2}, then I have $\rho_{1}=$.. for Π_{1}

Example: consequences of Case 3

Case 3

$\forall t \exists s_{1}$ for I_{1} st. $m_{1}\left(s_{1}\right) \leq t \Leftrightarrow \exists s_{2}$ for I_{2} st. $m_{2}\left(s_{2}\right) \leq p+\alpha t$ (with possibly $\exists c$ st. $p \leq \operatorname{copt}_{1}\left(I_{1}\right)$)

- Suppose I have a ρ_{2} approximate solution algorithm A_{2}.
- Given input I_{1}, let $I_{2}=f\left(I_{1}\right)$ and $s_{2}=A_{2}\left(I_{2}\right)$.

$$
\begin{aligned}
s_{2} & \leq \quad \rho_{2} O P T\left(l_{2}\right) \\
s_{1} \leq \frac{s_{2}-p}{\alpha} & \leq \frac{\rho_{2}\left(p+\alpha O P T\left(l_{1}\right)\right)-p}{\alpha} \\
& \leq \rho_{2} O P T\left(l_{1}\right)+p \frac{\rho_{2}-1}{\alpha}
\end{aligned}
$$

Thus, if $\exists c$ such that $p \leq \operatorname{cOPT}\left(l_{1}\right)$ (which is standard):

- PTAS for Π_{2} implies PTAS for Π_{1}
- $\mathrm{APX} \Pi_{2}$ implies $\mathrm{APX} \Pi_{1}$ (with a different ratio)

If we even want to benefit from structural theory, we can even observe that Case 3 implies a L-reduction. Thus if Π_{1} is complete for L-reduction, so is Π_{2}

Gap vs reduction verfying \mathcal{C}

Suppose that we reduce from $V C$ to our min problem Π, and that we have the two following reductions.

Reduction f_{1} (gap)

f_{1} maps any input (I, k) of $\operatorname{Dec}_{V C}$ to an input I^{\prime} of Π such that

- $V C(I) \leq k \Rightarrow \operatorname{opt}\left(I^{\prime}\right) \leq n+k$
- $V C(I) \geq k+1 \Rightarrow \operatorname{opt}\left(I^{\prime}\right) \geq n+k+1$
(to be more formal we could say that f_{1} maps to an input $\left(I^{\prime}, k\right)$ of $g a p_{a, b} \Pi$ with $a\left(I^{\prime}, k\right)=n+k+1$ and $\left.b\left(I^{\prime}, k\right)=n+k\right)$

Reduction f_{2} (satisfying \mathcal{C})

f_{2} maps any input I of $V C$ to an input I^{\prime} of Π such that $\forall k, V C(I) \leq k \Leftrightarrow \operatorname{opt}\left(I^{\prime}\right) \leq n+k$ which is equivalent to: for any k,

- $V C(I) \leq k \Rightarrow \operatorname{opt}\left(I^{\prime}\right) \leq n+k$
- $V C(I) \geq k+1 \Rightarrow \operatorname{opt}\left(I^{\prime}\right) \geq n+k+1$

Gap vs reduction verfying \mathcal{C}

Reduction f_{1} (gap)

f_{1} maps any input (I, k) of $D e c V C$ to an input I^{\prime} of Π such that

- $V C(I) \leq k \Rightarrow \operatorname{opt}\left(I^{\prime}\right) \leq n+k$
- $V C(I) \geq k+1 \Rightarrow \operatorname{opt}\left(I^{\prime}\right) \geq n+k+1$

Reduction f_{2} (satisfying \mathcal{C})

f_{2} maps any input I of $V C$ to an input I^{\prime} of Π such that for any k,

- $V C(I) \leq k \Rightarrow \operatorname{opt}\left(I^{\prime}\right) \leq n+k$
- $V C(I) \geq k+1 \Rightarrow \operatorname{opt}\left(I^{\prime}\right) \geq n+k+1$

Looks the same .. but

- f_{1} implies: for any $\epsilon>0$, no algo that for any I^{\prime}, k has $\frac{a\left(I^{\prime}, k\right)}{b\left(I^{\prime}, k\right)}-\epsilon$ ratio .. which here give no $\left(1+\frac{1}{n+k}\right)-\epsilon$ (which only tells us no FPTAS)
- f_{2} implies no PTAS

Gap vs reduction verfying \mathcal{C}

So .. why is f_{2} more powerfull ?
Because f_{1} depends on k and f_{2} does not:

- given I, for each k, f_{1} produces an input I_{k}^{\prime} (gadgets may depend on k) such that previous equations are satisfied
- given I, f_{2} produces an input I^{\prime} such that previous equations are satisfied for any k

Outline

(1) Tools

(2) Examples
(3) A word on structural approximation theory

Vertex Cover in cubic graphs

$V C(\Delta)$: vertex cover pb in graphs of maximum degree Δ.

Known

$V C(4)$ does not admit a PTAS unless $\mathrm{P}=\mathrm{NP}$

Theorem [AK97]

VC(3) does not admit a PTAS unless $\mathrm{P}=\mathrm{NP}$.
\rightarrow We will prove this using case 3
We could also say (as case $3 \Rightarrow \leq_{L} \Rightarrow \leq_{\text {PTAS }}$):

Known

$V C(4)$ is APX-complete (for PTAS red)

Theorem

$V C(3)$ is APX-complete

Vertex Cover in cubic graphs

Proof: reduction from VC(4)

- let I_{1} be an instance of $V C(4)$
- we construct I_{2} as follows:

- let s be number of deg 4 vertices in I_{1}
- $\forall t, \exists S_{1}$ st $\left|S_{1}\right| \leq t \Leftrightarrow \exists S_{2}$ st $\left|S_{2}\right| \leq t+s$
\Rightarrow if $d(v) \leq 3$ take v in S_{2} iff $v \in S_{1}$
if $d(v)=4$ and $v \in S_{1}$ take $\left\{v_{1}, v_{2}\right\} \in S_{2}$
if $d(v)=4$ and $v \notin S_{1}$ take $\{u\} \in S_{2}$
- $\exists c$ st $s \leq \operatorname{cOPT}\left(\iota_{1}\right)$ as $\operatorname{OPT}\left(\iota_{1}\right) \geq \frac{n_{1}-1}{4} \geq \frac{s-1}{4}$

Max Cut

Theorem

Max Cut does not admit a PTAS unless $\mathrm{P}=\mathrm{NP}$.
\rightarrow We will prove this using case 3

Proof: reduction from MAX NAE 3SAT from [PY88]

MAX NAE 3SAT:

- input: n variables and m clauses on 3 variables (ex $\left.C_{\ell}=\bar{x}_{i} \vee x_{j} \vee x_{k}\right)$
- a clause is satisfied iff it has at least one true literal and at least one false literal (ex $x_{i}=f, x_{j}=t, x_{k}=t$ does not satisfy C_{ℓ}, but with $x_{k}=f$ it does)

Max Cut

Proof: from MAX NAE 3SAT to MAX CUT in multigraphs

- let l_{1} be an instance of MAX NAE 3SAT
- we construct I_{2} as follows (we first define a multigraph):

- for each variable x_{i} : create two vertices $v_{x_{i}}, v_{\bar{x}_{i}}$ with $2 k_{i}$ parallel edges (k_{i} is the total number of occurences of x_{i} and \bar{x}_{i})
- for each clause C_{ℓ} : add edges to create a triangle (ex for $C_{\ell}=\bar{x}_{i} \vee x_{j} \vee x_{k}$, add $\left.\left\{v_{\bar{x}_{i}}, v_{x_{j}}\right\},\left\{v_{x_{j}}, v_{x_{k}}\right\},\left\{v_{x_{k}}, v_{\bar{x}_{i}}\right\}\right)$
- $\forall t, \exists S_{1}$ st $\left|S_{1}\right| \geq t \Leftrightarrow \exists S_{2}$ st $\left|S_{2}\right| \geq 2 t+2 k$ (where $\left.k=\sum_{i=1}^{n} k_{i}\right)$
\Rightarrow each variables adds $2 k_{i}$ edges, each satisfied clause adds 2 edges

Max Cut

Proof: from MAX NAE 3SAT to MAX CUT in multigraphs

- $\forall t, \exists S_{1}$ st $\left|S_{1}\right| \geq t \Leftrightarrow \exists S_{2}$ st $\left|S_{2}\right| \geq 2 t+2 k$ (where $\left.k=\sum_{i=1}^{n} k_{i}\right)$
\Leftarrow Let A, B be a partition of V.
- for every i, it is always better to have $v_{x_{i}}$ and $v_{\bar{x}_{i}}$ in differents parts: we get $2 k$ edges
- then, each triangle either contributes to 0 or 2 edges
- $\exists c$ st $2 k \leq \operatorname{cOPT}\left(l_{1}\right)$ as $k=\sum_{i=1}^{n} k_{i} \leq 3 m$ and $\operatorname{OPT}\left(I_{1}\right) \geq \frac{3 m}{4}$ (fron random assignement)

Thus, MAX CUT in multigraphs does not admit a PTAS unless $\mathrm{P}=\mathrm{NP}$.

Max Cut

Proof: from MAX CUT in multigraphs to MAX CUT

- let I_{1} be an instance of MAX CUT in multigraphs with m_{1} edges
- we construct I_{2} of MAX CUT by replacing each edge $e=\{u, v\}$ by a path $P_{e}=\left\{u, a_{e}, b_{e}, v\right\}$
- $\forall t, \exists S_{1}$ st $\left|S_{1}\right| \geq t \Leftrightarrow \exists S_{2}$ st $\left|S_{2}\right| \geq t+2 m_{1}$ (where m_{1} is the number of edges of the mutligraph)
\Rightarrow For each edge in the cut in S_{1} we get 3 edges in S_{2}, and for the other edges we get 2 edges. Thus, $\left|S_{2}\right| \geq 3 t+2\left(m_{1}-t\right)$
\Leftarrow Same argument
- $\exists c$ st $2 m_{1} \leq \operatorname{cOPT}\left(I_{1}\right)$ as $\operatorname{OPT}\left(I_{1}\right) \geq \frac{m_{1}}{2}$ (fron random assignement)

Max 3 SAT(B): using expander

Theorem

Max 3SAT(B) (where each literal appears in at most B clauses) does not admit a PTAS unless $\mathrm{P}=\mathrm{NP}$.
\rightarrow We will prove this using case 3

Proof: from MAX 3SAT to MAX 3SAT(B) (from [PY88])

- let I_{1} be an instance of MAX 3SAT with n variables and m clauses. Wlog let us suppose that each literal appears (total number of positive and negative apparaitions) c times.
- let us recall the classical Karp reduction:
- for each variable x_{i} introduce c variables $x_{i}^{1}, \ldots, x_{i}^{c}$, and add $2 c$ clauses $x_{i}^{1} \Leftrightarrow x_{i}^{2}, \ldots, x_{i}^{c} \Leftrightarrow x_{i}^{1}$
- use now copies in the original clauses ($x_{i} \vee \bar{x}_{j} \vee x_{k}$ becomes $\left.x_{i}^{u_{1}} \vee x_{k}^{\bar{u}_{2}} \vee x_{l}^{u_{3}}\right)$

Max 3 SAT(B): using expander

Proof of the classical Karp reduction

- let G_{c} be the corresponding graph with c vertices $\left\{x_{i}^{1}, \ldots, x_{i}^{c}\right\}$ and $m_{G_{c}}=c$ following edges: add $\left\{x_{i}^{u}, x_{i}^{v}\right\}$ iff there is a clause with $x_{i}^{u} \Leftrightarrow x_{i}^{v}$ (G_{c} is a cycle)
- if all the x_{i}^{ℓ} have the same truth value, we get $2 m_{G_{c}}$ satisfied clauses from the variable gadget
- thus: $\exists S_{1}$ st $\left|S_{1}\right|=m \Leftrightarrow \exists S_{2}$ st $\left|S_{2}\right|=m+2 n m_{G_{c}}$

Max 3 SAT(B): using expander

Why does it fail for case 3

- $\forall t, \exists S_{1}$ st $\left|S_{1}\right| \geq t \Leftarrow \exists S_{2}$ st $\left|S_{2}\right| \geq t+2 n m_{G_{c}}$ is wrong.
\Leftarrow Tentative proof. Suppose in a sol S_{2} that a variable i has n_{1} copies set to true and n_{2} to false, with $n_{1}+n_{2}=c$ and $n_{1} \leq n_{2}$.
- The truth values of x_{i}^{ℓ} defines a partition X_{1}, X_{2} and a cut of size x
- if we set the n_{1} copies to false we get $\operatorname{val}\left(S_{2}^{\prime}\right) \geq \operatorname{val}\left(S_{2}\right)-\left|X_{1}\right|+x$, and thus we need $x \geq\left|X_{1}\right|$.. not true when G_{c} is a cycle

Max 3 SAT(B): using expander

What do we need for G_{c}

- $\mathcal{O}(c)$ vertices are allowed, with c distinguished vertices (that will appear in the original clauses of MAX 3SAT)
- \forall partition X_{1}, X_{2}, at least $\min \left(s_{1}, s_{2}\right)$ edges in the cut where X_{i} contains s_{i} distinguished vertices
- maximum degree B (and thus we can't use a clique)

If we have such a G_{c}, we get our result for Max 3SAT(B):

- for each variable x_{i} introduce $n_{G_{c}}$ variables
- add equivalences between these variables according to G_{c}
- use the c distinguished copies in the original clauses (we get $m+2 n m_{G_{c}}$ clauses in the instance of Max 3SAT(B))

$$
x_{i} \vee \bar{x}_{j} \vee x_{k} \text { becomes } x_{i}^{2} \vee \overline{x_{j}^{1}} \vee x_{k}^{3}
$$

Max 3 SAT(B): using expander

What do we need for G_{c}

- $\mathcal{O}(c)$ vertices are allowed, with c distinguished vertices (that will appear in the original clauses of MAX 3SAT)
- \forall partition X_{1}, X_{2}, at least $\min \left(s_{1}, s_{2}\right)$ edges in the cut where X_{i} contains s_{i} distinguished vertices
- maximum degree B

If we have such a G_{c}, we get our result for Max 3 SAT(B):

- we get $\forall t, \exists S_{1}$ st $\left|S_{1}\right| \geq t \Leftrightarrow \exists S_{2}$ st $\left|S_{2}\right| \geq t+2 n m_{G_{c}}$ as it is always better to assign the same values to the $n_{G_{c}}$ copies of every variable
- $\exists c^{\prime}$ st $2 n m_{G_{c}} \leq c^{\prime} \operatorname{OPT}\left(I_{1}\right)$ as $n m_{G_{c}} \leq n \mathcal{O}(c) B, n c=3 m$, and $\operatorname{OPT}\left(I_{1}\right) \geq \frac{7 m}{8}$ (fron random assignement)

$$
x_{i} \vee \bar{x}_{j} \vee x_{k} \text { becomes } x_{i}^{2} \vee \bar{x}_{j}^{1} \vee x_{k}^{3}
$$

Max 3 SAT(B): using expander

Definition

A n vertices graph is a α-expander if every subset S of at most $\frac{n}{2}$ vertices is adj. to $\geq \alpha|S|$ vertices outside $S(\operatorname{cut}(S, V \backslash S) \geq \alpha|S|)$

Theorem

There exists a constant $\alpha>0$ such that for any n there is a α-expander on n vertices with maximum degree 3 .

Constructing G_{c}

- take c disjoint full binary trees with at least $\frac{1}{\alpha}$ leaves each
- connect their leaves in a cubic α expander
- mark the c roots as distinguished nodes

Max 3 SAT(B): using expander

Constructing G_{c}

- G has $\mathcal{O}(c)$ vertices
- G has constant degree
- let X_{1}, X_{2} a partition and $e=\operatorname{cut}\left(X_{1}, X_{2}\right)$ where X_{i} contains s_{i} distinguished nodes
- let $s_{i}=t_{i}+t_{i}^{\prime}$ with t_{i} the number of trees included in X_{i}
- $e \geq \frac{1}{\alpha}\left(\alpha \min \left(t_{1}, t_{2}\right)\right)+t_{1}^{\prime}+t_{2}^{\prime} \geq \min \left(t_{1}+t_{1}^{\prime}, t_{2}+t_{2}^{\prime}\right)$

$$
\begin{aligned}
& s_{1}=2 \text { with } t_{1}=1 \text { and } t_{1}^{\prime}=1 \\
& s_{2}=3 \text { with } t_{2}=2 \text { and } t_{2}^{\prime}=1
\end{aligned}
$$

Outline

(1) Tools

(2) Examples
(3) A word on structural approximation theory

A word on structural approximation theory

Example of results in structural theory

- Given a class \mathcal{C}, a problem Π (not necessarily in \mathcal{C}) and a reduction \leq_{R}, prove that Π is \mathcal{C}-complete for \leq_{R}.
One consequence: Π becomes a candidate to separate classes: if $\mathcal{C}^{\prime} \subseteq \mathcal{C}$ and \leq_{R} preserves \mathcal{C}^{\prime}, either $\Pi \notin \mathcal{C}^{\prime}$, either $\mathcal{C}^{\prime}=\mathcal{C}$.
- Or $\overline{\mathcal{C}^{\prime}}=\mathcal{C}$ where $\overline{\mathcal{C}^{\prime}}=\left\{\Pi\left|\exists \Pi^{\prime} \in \mathcal{C}^{\prime}\right| \Pi^{\prime} \leq_{R} \Pi\right\}$

A bit of history (from [AP05])
($\leq_{R}, \mathcal{C}^{\prime}, \mathcal{C}, \Pi$) means Π is \mathcal{C}-complete for \leq_{R} and \leq_{R} preserves \mathcal{C}^{\prime}

- (\leq_{s}, min $\left.-N P O, \operatorname{minWSAT}\right)$
- (\leq_{s}, , max $\left.-N P O, \max W S A T\right)$
- $\left(\leq_{A}, A P X, N P O, \Pi_{1}\right)$
- $\left(\leq_{P}, P T A S, A P X, \Pi_{2}\right)$
- $\left(\leq_{F}\right.$, FPTAS, PTAS, $\left.\Pi_{3}\right)$

However, Π_{i} are artificial problems. Are they classes where complete problems are natural ? Yes: MAX SNP

Max SNP

Definition [KMSV98]

MAX SNP is the class of NPO problems expressible as finding a S which maximizes the objective function

$$
f(I, S)=|\{x \mid \phi(I, S, x)\}|
$$

where $I=(U, P)$ denotes the input (consisting of a finite universe U and a finite set of bounded arity predicates P), and ϕ is a quantifier-free first order formula.

Example: MAX CUT \in MAX SNP

$f(I, S)=|\{\{u, v\} \mid u \in S \wedge v \notin S \wedge\{u, v\} \in E\}|$ where $I=G$ with $G=(V, E)$

Max SNP

Definition [KMSV98]

MAX SNP is the class of NPO problems expressible as finding a S which maximizes the objective function

$$
f(I, S)=|\{x \mid \phi(I, S, x)\}|
$$

where $I=(U, P)$ denotes the input (consisting of a finite universe U and a finite set of bounded arity predicates P), and ϕ is a quantifier-free first order formula.

Example: MAX 2 SAT \in MAX SNP

formulation not in MAX SNP:
$f(I, S)=|\{c \mid \exists x((\operatorname{Pos}(c, x) \wedge x \in S) \vee(\operatorname{Neg}(c, x) \wedge x \notin S))\}|$
where $I=(U, P)$ with $P=\{P o s, N e g\}$

Max SNP

Definition [KMSV98]

MAX SNP is the class of NPO problems expressible as finding a S which maximizes the objective function

$$
f(I, S)=|\{x \mid \phi(I, S, x)\}|
$$

where $I=(U, P)$ denotes the input (consisting of a finite universe U and a finite set of bounded arity predicates P), and ϕ is a quantifier-free first order formula.

Example: MAX 2 SAT \in MAX SNP

formulation in MAX SNP: $f(I, S)=\mid\left\{\left(\left(x_{1}, x_{2}\right) \mid\right.\right.$
$\left(\left(x_{1}, x_{2}\right) \in C_{0} \Rightarrow\left(x_{1} \in S \vee s_{2} \in S\right)\right) \wedge$
$\left(\left(x_{1}, x_{2}\right) \in C_{1} \Rightarrow\left(x_{1} \notin S \vee s_{2} \in S\right)\right) \wedge$
$\left.\left(\left(x_{1}, x_{2}\right) \in C_{2} \Rightarrow\left(x_{1} \notin S \vee s_{2} \notin S\right)\right)\right\} \mid$ where C_{i} is the set of predicates where the first i variables appear negatively and the $2-i$ others positively

Max SNP

Nice facts about Max SNP [PY88]

- MAX SNP \subseteq APX (and "easy" proof)
- MAX SNP has several natural complete problems (for \leq_{L}): MAX 3 SAT(B), MAX IS(B), . . (and "easy" proof of first problem hard, MAX 3SAT)

More: see for example [KMSV98].

- a personal roadmap given your favorite problem Π :
- if you want big inapproximability results, try gap reductions.

Candidates: IS, VC, Kdm, *SAT, ...

- if you want no PTAS, try to prove condition of case 3 (even if it could be used for other inapproximaility results).

Candidates : all problems on cubic graphs, **SAT, ...
Condition "extra add. factor $\leq c O p t_{1}(I)$ " often easy to get.

- approximation preserving reduction can be used for positive and negative results, but breaks the gap
- please help me finding L/PTAS reduction not using case 3
[AK97] Paola Alimonti and Viggo Kann.
Hardness of approximating problems on cubic graphs.
In Italian Conference on Algorithms and Complexity, pages 288-298. Springer, 1997.
[AP05] Giorgio Ausiello and Vangelis Paschos.
Approximability preserving reduction.

2005.

[Cre97] Pierluigi Crescenzi.
A short guide to approximation preserving reductions.
In Computational Complexity, 1997. Proceedings., Twelfth Annual IEEE Conference on (Formerly: Structure in Complexity Theory Conference), pages 262-273. IEEE, 1997.
[KMSV98] Sanjeev Khanna, Rajeev Motwani, Madhu Sudan, and Umesh Vazirani.
On syntactic versus computational views of approximability.
SIAM Journal on Computing, 28(1):164-191, 1998.
[PY88] Christos Papadimitriou and Mihalis Yannakakis.
Optimization, approximation, and complexity classes.
In Proceedings of the twentieth annual ACM symposium on Theory of computing, pages 229-234. ACM, 1988.

