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Definition of EPG-Graphs

EPG (for Edge intersection graphs of Paths on a Grid) graphs
introduced in [GLS09]
In EPG-graph G = (V ,E ):

each vertex v corresponds to a path Pv
{u, v} ∈ E iff Pu, Pv share a grid edge

3

41

2
an EPG-representation

G is a {xyq}-EPG graph

P1
P2

P3

P4
G

Bk -EPG: graphs having a representation where every path has
at most k bends
X -EPG ⊆ B1-EPG (with X ⊆ {p, q, x, y}): paths can only
have shapes in X
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Properties of EPG-Graphs

Class inclusions
max deg ∆ ⊆ B∆-EPG [HKU14]
B0-EPG = interval graphs
B1-EPG ⊂ 2-Track graphs ⊂ B3-EPG
B1-EPG K3,3 induced free, K3,3 − e induced free, Sn≥4 induced
free [GLS09]

2−Track representation
Track A

Track B
IB
4 IB

1IB
2

IA
1 IA

3 IA
4

row 2 row 3

horizontal track

vertical track

horizontal track

vertical track

⇒

column 1

row 1

a

6 / 29



Properties of EPG-Graphs

Class inclusions
max deg ∆ ⊆ B∆-EPG [HKU14]
B0-EPG = interval graphs
B1-EPG ⊂ 2-Track graphs ⊂ B3-EPG
B1-EPG K3,3 induced free, K3,3 − e induced free, Sn≥4 induced
free [GLS09]

2−Track representation
Track A

Track B
IB
4 IB

1IB
2

IA
1 IA

3 IA
4

row 2 row 3

horizontal track

vertical track

horizontal track

vertical track

⇒

column 1

row 1

a

6 / 29



Properties of EPG-Graphs

Class inclusions
max deg ∆ ⊆ B∆-EPG [HKU14]
B0-EPG = interval graphs
B1-EPG ⊂ 2-Track graphs ⊂ B3-EPG
B1-EPG K3,3 induced free, K3,3 − e induced free, Sn≥4 induced
free [GLS09]

2−Track representation
Track A

Track B
IB
4 IB

1IB
2

IA
1 IA

3 IA
4

row 2 row 3

horizontal track

vertical track

horizontal track

vertical track

⇒

column 1

row 1

a

6 / 29



Properties of EPG-Graphs

Class inclusions
max deg ∆ ⊆ B∆-EPG [HKU14]
B0-EPG = interval graphs
B1-EPG ⊂ 2-Track graphs ⊂ B3-EPG
B1-EPG K3,3 induced free, K3,3 − e induced free, Sn≥4 induced
free [GLS09]

2−Track representation
Track A

Track B
IB
4 IB

1IB
2

IA
1 IA

3 IA
4

row 2 row 3

horizontal track

vertical track

horizontal track

vertical track

⇒

column 1

row 1

a

6 / 29



Properties of EPG-Graphs

Bad news about B1-EPG
B1-EPG are not planar graphs (Kn ∈ B1-EPG)
B1-EPG are not perfect graphs (Cn ∈ B1-EPG) (but G [N(v)]
weakly chordal)
B1-EPG do not benefit from the many results on "intersection
graph class" as two paths can cross without creating an edge

N(v) is a C4

v
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Motivation

Considered problem: MIS (Maximum Independent Set) on
B1-EPG graphs (supposing a representation is given)
In 2013, [EGM13] proved that MIS (and coloring) are NP-hard
on B1-EPG and admits a 4-approximation algorithm
Can we say more ? (approximability and fixed parameter
tractability with standard parameterization)
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Outline approximability

Related work

simple 4 approximation on B1-EPG ([EGM13] or [BYHN+06])
no PTAS for MIS on 2-Track as max deg ∆ = 3 ⊆ 2-Track
(recall B1-EPG ⊂ 2-Track)

Our contributions
no PTAS for MIS on {p}-EPG, even if each path has its
vertical part or its horizontal part of length at most 3
PTAS for MIS on B1-EPG when each path has its horizontal
part at most c
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Negative result

Lemma: (no PTAS for {p, q}-EPG)
There is a strict reduction from MAX-3-SAT(3) to {p, q}-EPG

Proof
Consider first the textbook reduction from MAX-3-SAT to MIS as :

create one triangle for each clause
add an edge between any occurrence of literal and its negation
assignment satisfying t clauses ⇔ IS size t

As we reduce from MAX-3-SAT(3), the graph is {p, q}-EPG

C1 C2 C3

C1 = not(x1) ∨ x2 ∨ x3
C2 = x1 ∨ not(x2) ∨ x3
C3 = x1 ∨ x2 ∨ not(x3)

x1 x1not(x1)

x3x2 x3not(x2) not(x3)x2

11 / 29
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Negative result

How removing one type of shape ?
Given the previous G , subdivide 4 times each "literral" edge to
get a new graph G ′

G ′ can now be drawn as {p}-EPG
∃ indep. set. S in G ⇔ ∃ indep. set. S ′ in G ′ with
|S ′| = |S |+ 2m
As ∃c such that m ≤ cOpt(G ), we get an AP-reduction for
MIS from {p, q}-EPG to {p}-EPG

C1 C2 C3

Line used for x3 and not(x3)

C1 C2 C3

x1 x1not(x1)

x3x2 x3not(x2) not(x3)x2
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Theorem
There is no PTAS for MIS on {p}-EPG, even if each path has its
vertical part or its horizontal part of length at most 3

12 / 29



Negative result

Can we improve this when both parts have constant size ? No.

Theorem
There is PTAS for MIS on B1-EPG when each path has its
horizontal part at most c (which remains NP-hard)

Proof
We will prove this using classical Baker shifting technique

13 / 29



Positive result

Proof

Let k be a large integer (goal: sol of size |S | ≥ |OPT |(1− 1
k ))

Given d ∈ [kc − 1], let Rd be the set of paths whose horizontal
part crosses the vertical strip d , d + kc , d + 2kc , ..
Let OPTd = OPT ∩ Rd

/∈ Rd

kc kc

/∈ Rd

kc

∈ Rd

∈ Rd

d + kc d + 2kcd
0 c
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Positive result

Lemma

∃d0 such that |OPTd0 | ≤ 1
k |OPT |

Proof∑kc−1
d=0 |OPTd | ≤ c |OPT | (as each vertex belongs to at most

c different Rd )
as |OPTd0 |kc ≤

∑kc−1
d=0 |OPTd |, we get the result

15 / 29



Positive result

Proof
Back to the PTAS proof:

thus, for each d we solve the problem optimally on G \ Rd ,
and we output A: the best of these solutions
Previous Lemma ⇒ |A| ≥ (1− 1

k )|OPT |

16 / 29
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Positive result

Proof
It remains to solve the problem optimally on G \ Rd :

G \ Rd has several connected component CCl , where each
component is drawn on a grid of constant width kc
we solve optimally on each CCl using a dyn. prog. algorithm

kc kc

kc

∈ Rd

d + kc d + 2kcd
0

CC1 CC2 CC3

c
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Outline fixed parameter tractability

We consider the problem OPT ≤ k? parameterized by k .
Question: is this problem FPT ? (i.e. can be solved in f (k)poly(n))

Related work
B1-EPG ⊂ 2-Track ⊂ B3-EPG + MIS is W1-hard on unit 2-Track
[Jia10] ⇒ MIS is W1-hard on B3-EPG

Our contributions
MIS is FPT on {x, y, p}-EPG
MIS is W1-hard on B2-EPG

We will prove that MIS is FPT on {x}-EPG using a branching
algorithm.

Definition
Given a path P , let cor(P) = (x , y) be the coordinates of the
corner of P in the grid (orienting as usual ↑y →x)

19 / 29
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MIS is FPT on {x}-EPG

Proof
Let Pv0 (cor(Pv0) = (x0, y0)): a path whose corner is
"top-right most" (highest line of the grid, and then the right
most)
Suppose |OPT | = k
We know that ∃Pv∗ ∈ N[Pv0 ] ∩ OPT (cor(Pv∗) = (x∗, y∗))
Let us find this Pv∗ (or a P ′ ∈ OPT ′) using at most f (k)
branches

y0

x0

Pv0

20 / 29
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MIS is FPT on {x}-EPG

Proof
We branch on the following cases:

1 x∗ = x0 and y∗ = y0: easy, take Pv0
2 x∗ = x0 and y∗ < y0

3 x∗ < x0 and y∗ = y0

Let us only treat case 2 here (case 3 works similarly)

y0

x0

Pv0

21 / 29
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MIS is FPT on {x}-EPG

Proof
Let X be the "vertical" neighbors of Pv0 (Pv∗ ∈ X ).
Let partition X = G 1 ∪ G 2.. ∪ G t

Sufficient to keep the left most path P i in each G i

X

y0

x0

Pv0

G 1

G 2

G t

22 / 29
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MIS is FPT on {x}-EPG

Proof
Now, two cases are possible

1 Pv∗ ∈ {P1, . . . ,Pk}: easy, guess which P i to take
2 Pv∗ ∈ {Pk+1, . . . ,Pt}:

as |OPT | = k , there exists P i ∈ {P1, . . . ,Pk} such that there
is no P ′ ∈ OPT in the "horizontal line" of P i

guess this P i and take it

y0

x0

Pv0

P1

P2

P t
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Conclusion on FPT

Positive results
MIS is FPT on {x}-EPG as we can find a Pv∗ ∈ OPT using at
most f (k) branches
The previous appproach doesn’t work (even for 2 shapes)..
but we use the same kind of arguments to prove that MIS is
FPT with 3 shapes

Negative results
MIS is W1-hard on B2-EPG
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Conclusion

Approximability
No PTAS unless P = NP
PTAS when one side is always small
Simple 4 approximation
Open: c < 4 approximation ?

Fixed parameter tractability
FPT with 3 shapes
W1-hard on B2-EPG
Open: FPT on B1-EPG ?
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Thank you for your attention ! ...
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MIS is W1-hard on B2-EPG as:
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Why does it fail for 2 shapes ?

Pv∗ ∈ {Pk+1, . . . ,Pt}
but we cannot restructure OPT to chose one of the {P1, . . . ,Pk}

P4

P3

Pv0

P1

Pk = P2

Pv∗
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