On independent set on B_1 -EPG graphs

Marin Bougeret (Lirmm, Montpellier, France) Joint Work with S. Bessy, D.Goncalves, C. Paul

WAOA 2015

Onlindependent set on B_1 -EPG graphs

Marin Bougeret (Lirmm, Montpellier, France) Joint Work with S. Bessy, D.Goncalves, C. Paul

WAOA 2015

On independent set on B_1 -EPG graphs

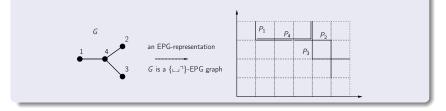
Marin Bougeret (Lirmm, Montpellier, France) Joint Work with S. Bessy, D.Goncalves, C. Paul

WAOA 2015

2 Approximability

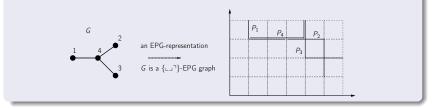
Definition of EPG-Graphs

- EPG (for Edge intersection graphs of Paths on a Grid) graphs introduced in [GLS09]
- In EPG-graph G = (V, E):
 - each vertex v corresponds to a path P_v
 - $\{u, v\} \in E$ iff P_u , P_v share a grid edge



Definition of EPG-Graphs

- EPG (for Edge intersection graphs of Paths on a Grid) graphs introduced in [GLS09]
- In EPG-graph G = (V, E):
 - each vertex v corresponds to a path P_v
 - $\{u, v\} \in E$ iff P_u , P_v share a grid edge

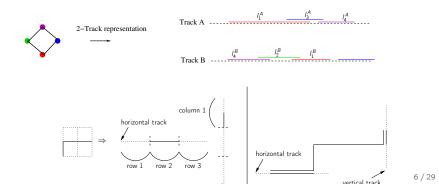


- *B_k*-EPG: graphs having a representation where every path has at most *k* bends
- X-EPG ⊆ B₁-EPG (with X ⊆ {[¬], ∟, ⊥}): paths can only have shapes in X

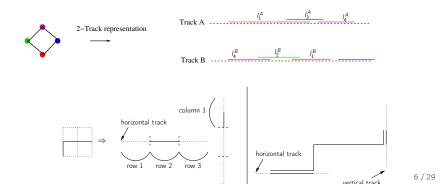
- max deg $\Delta \subseteq B_{\Delta}$ -EPG [HKU14]
- B_0 -EPG = interval graphs
- B_1 -EPG \subset 2-Track graphs \subset B_3 -EPG
- B_1 -EPG $K_{3,3}$ induced free, $K_{3,3} e$ induced free, $S_{n \ge 4}$ induced free [GLS09]

- max deg $\Delta \subseteq B_{\Delta}$ -EPG [HKU14]
- B_0 -EPG = interval graphs
- B_1 -EPG \subset 2-Track graphs \subset B_3 -EPG
- B_1 -EPG $K_{3,3}$ induced free, $K_{3,3} e$ induced free, $S_{n \ge 4}$ induced free [GLS09]

- max deg $\Delta \subseteq B_{\Delta}$ -EPG [HKU14]
- B₀-EPG = interval graphs
- B_1 -EPG \subset 2-Track graphs \subset B_3 -EPG
- B_1 -EPG $K_{3,3}$ induced free, $K_{3,3} e$ induced free, $S_{n \ge 4}$ induced free [GLS09]



- max deg $\Delta \subseteq B_{\Delta}$ -EPG [HKU14]
- B₀-EPG = interval graphs
- B_1 -EPG \subset 2-Track graphs \subset B_3 -EPG
- B_1 -EPG $K_{3,3}$ induced free, $K_{3,3} e$ induced free, $S_{n\geq 4}$ induced free [GLS09]

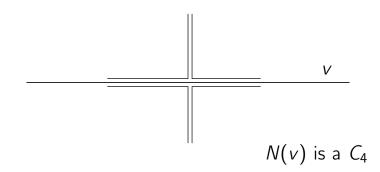


Bad news about B₁-EPG

- B_1 -EPG are not planar graphs ($K_n \in B_1$ -EPG)
- B_1 -EPG are not perfect graphs ($C_n \in B_1$ -EPG) (but G[N(v)] weakly chordal)
- *B*₁-EPG do not benefit from the many results on "intersection graph class" as two paths can cross without creating an edge

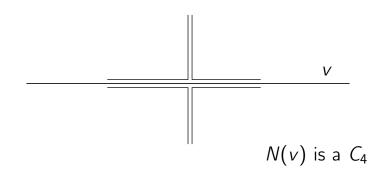
Bad news about B_1 -EPG

- B_1 -EPG are not planar graphs ($K_n \in B_1$ -EPG)
- B₁-EPG are not perfect graphs (C_n ∈ B₁-EPG) (but G[N(v)] weakly chordal)
- *B*₁-EPG do not benefit from the many results on "intersection graph class" as two paths can cross without creating an edge



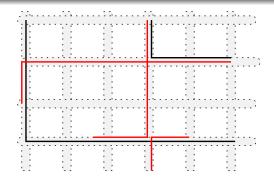
Bad news about B_1 -EPG

- B_1 -EPG are not planar graphs ($K_n \in B_1$ -EPG)
- B₁-EPG are not perfect graphs (C_n ∈ B₁-EPG) (but G[N(v)] weakly chordal)
- *B*₁-EPG do not benefit from the many results on "intersection graph class" as two paths can cross without creating an edge



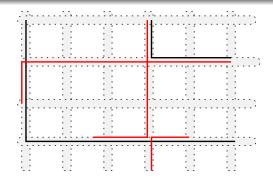
Motivation

- Considered problem: MIS (Maximum Independent Set) on *B*₁-EPG graphs (supposing a representation is given)
- In 2013, [EGM13] proved that MIS (and coloring) are NP-hard on *B*₁-EPG and admits a 4-approximation algorithm
- Can we say more ? (approximability and fixed parameter tractability with standard parameterization)



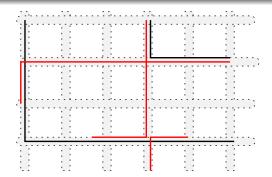
Motivation

- Considered problem: MIS (Maximum Independent Set) on *B*₁-EPG graphs (supposing a representation is given)
- In 2013, [EGM13] proved that MIS (and coloring) are NP-hard on *B*₁-EPG and admits a 4-approximation algorithm
- Can we say more ? (approximability and fixed parameter tractability with standard parameterization)



Motivation

- Considered problem: MIS (Maximum Independent Set) on *B*₁-EPG graphs (supposing a representation is given)
- In 2013, [EGM13] proved that MIS (and coloring) are NP-hard on *B*₁-EPG and admits a 4-approximation algorithm
- Can we say more ? (approximability and fixed parameter tractability with standard parameterization)



Introduction on EPG-Graphs

2 Approximability

Related work

- simple 4 approximation on B₁-EPG ([EGM13] or [BYHN⁺06])
- no PTAS for MIS on 2-Track as max deg Δ = 3 ⊆ 2-Track (recall B₁-EPG ⊂ 2-Track)

Related work

- simple 4 approximation on B₁-EPG ([EGM13] or [BYHN⁺06])
- no PTAS for MIS on 2-Track as max deg $\Delta = 3 \subseteq$ 2-Track (recall B_1 -EPG \subset 2-Track)

Related work

- simple 4 approximation on B₁-EPG ([EGM13] or [BYHN⁺06])
- no PTAS for MIS on 2-Track as max deg $\Delta = 3 \subseteq$ 2-Track (recall B_1 -EPG \subset 2-Track)

Our contributions

- no PTAS for MIS on {[¬]}-EPG, even if each path has its vertical part or its horizontal part of length at most 3
- PTAS for MIS on *B*₁-EPG when each path has its horizontal part at most *c*

Lemma: (no PTAS for $\{ \ulcorner, \urcorner \}$ -EPG)

There is a strict reduction from MAX-3-SAT(3) to { \lceil, \rceil }-EPG

Proof

Consider first the textbook reduction from MAX-3-SAT to MIS as :

- create one triangle for each clause
- add an edge between any occurrence of literal and its negation
- assignment satisfying t clauses \Leftrightarrow IS size t

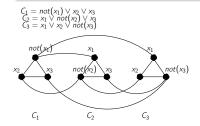
Lemma: (no PTAS for $\{ \ulcorner, \urcorner \}$ -EPG)

There is a strict reduction from MAX-3-SAT(3) to { \lceil, \rceil }-EPG

Proof

Consider first the textbook reduction from MAX-3-SAT to MIS as :

- create one triangle for each clause
- add an edge between any occurrence of literal and its negation
- assignment satisfying t clauses ⇔ IS size t



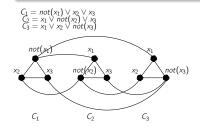
Lemma: (no PTAS for $\{ \ulcorner, \urcorner \}$ -EPG)

There is a strict reduction from MAX-3-SAT(3) to $\{ \lceil, \rceil \}$ -EPG

Proof

Consider first the textbook reduction from MAX-3-SAT to MIS as :

- create one triangle for each clause
- add an edge between any occurrence of literal and its negation
- assignment satisfying t clauses \Leftrightarrow IS size t



Lemma: (no PTAS for $\{ \ulcorner, \urcorner \}$ -EPG)

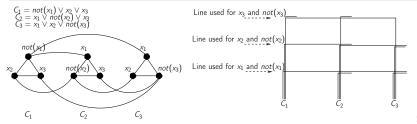
There is a strict reduction from MAX-3-SAT(3) to $\{ \lceil, \rceil \}$ -EPG

Proof

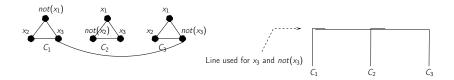
Consider first the textbook reduction from MAX-3-SAT to MIS as :

- create one triangle for each clause
- add an edge between any occurrence of literal and its negation
- assignment satisfying t clauses \Leftrightarrow IS size t

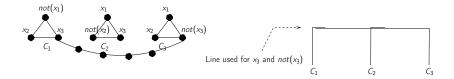
As we reduce from MAX-3-SAT(3), the graph is $\{ \lceil, \rceil \}$ -EPG



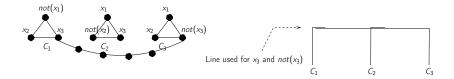
- Given the previous G, subdivide 4 times each "literral" edge to get a new graph G'
- G' can now be drawn as $\{ \ulcorner \}$ -EPG
- \exists indep. set. S in $G \Leftrightarrow \exists$ indep. set. S' in G' with |S'| = |S| + 2m
- As ∃c such that m ≤ cOpt(G), we get an AP-reduction for MIS from {[¬], [¬]}-EPG to {[¬]}-EPG



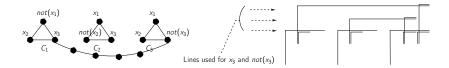
- Given the previous G, subdivide 4 times each "literral" edge to get a new graph G'
- G' can now be drawn as $\{ \ulcorner \}$ -EPG
- \exists indep. set. S in $G \Leftrightarrow \exists$ indep. set. S' in G' with |S'| = |S| + 2m
- As ∃c such that m ≤ cOpt(G), we get an AP-reduction for MIS from {[¬], [¬]}-EPG to {[¬]}-EPG



- Given the previous G, subdivide 4 times each "literral" edge to get a new graph G'
- G' can now be drawn as $\{ \ulcorner \}$ -EPG
- \exists indep. set. S in $G \Leftrightarrow \exists$ indep. set. S' in G' with |S'| = |S| + 2m
- As ∃c such that m ≤ cOpt(G), we get an AP-reduction for MIS from {[¬], [¬]}-EPG to {[¬]}-EPG

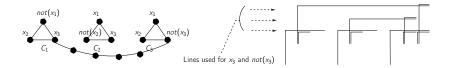


- Given the previous G, subdivide 4 times each "literral" edge to get a new graph G'
- G' can now be drawn as $\{ \ulcorner \}$ -EPG
- \exists indep. set. S in $G \Leftrightarrow \exists$ indep. set. S' in G' with |S'| = |S| + 2m
- As ∃c such that m ≤ cOpt(G), we get an AP-reduction for MIS from {[¬]}-EPG to {[¬]}-EPG



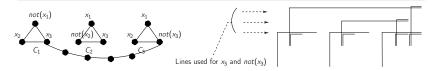
- Given the previous G, subdivide 4 times each "literral" edge to get a new graph G'
- G' can now be drawn as $\{ \ulcorner \}$ -EPG
- \exists indep. set. S in $G \Leftrightarrow \exists$ indep. set. S' in G' with |S'| = |S| + 2m

 As ∃c such that m ≤ cOpt(G), we get an AP-reduction for MIS from {[¬]}-EPG to {[¬]}-EPG



How removing one type of shape ?

- Given the previous G, subdivide 4 times each "literral" edge to get a new graph G'
- G' can now be drawn as $\{ \ulcorner \}$ -EPG
- \exists indep. set. *S* in *G* $\Leftrightarrow \exists$ indep. set. *S'* in *G'* with |S'| = |S| + 2m
- As ∃c such that m ≤ cOpt(G), we get an AP-reduction for MIS from {[¬], [¬]}-EPG to {[¬]}-EPG



Theorem

There is no PTAS for MIS on $\{ \ulcorner \}$ -EPG, even if each path has its vertical part or its horizontal part of length at most 3

Can we improve this when both parts have constant size ? No.

Theorem

There is PTAS for MIS on B_1 -EPG when each path has its horizontal part at most c (which remains NP-hard)

Proof

We will prove this using classical Baker shifting technique

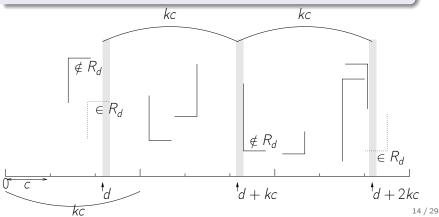
Positive result

• Let k be a large integer (goal: sol of size $|S| \ge |OPT|(1 - \frac{1}{k}))$

- Given $d \in [kc 1]$, let R_d be the set of paths whose horizontal part crosses the vertical strip d, d + kc, d + 2kc, ...
- Let $OPT_d = OPT \cap R_d$

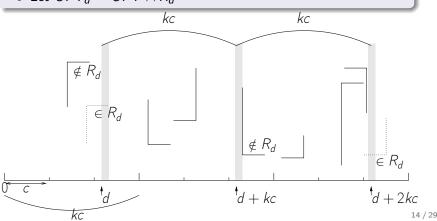
Positive result

- Let k be a large integer (goal: sol of size $|S| \ge |OPT|(1 \frac{1}{k}))$
- Given $d \in [kc 1]$, let R_d be the set of paths whose horizontal part crosses the vertical strip d, d + kc, d + 2kc, ...
- Let $OPT_d = OPT \cap R_d$



Positive result

- Let k be a large integer (goal: sol of size $|S| \ge |OPT|(1 \frac{1}{k}))$
- Given $d \in [kc 1]$, let R_d be the set of paths whose horizontal part crosses the vertical strip d, d + kc, d + 2kc, ...
- Let $OPT_d = OPT \cap R_d$



Lemma

$$\exists d_0 \text{ such that } |OPT_{d_0}| \leq \frac{1}{k} |OPT|$$

- $\sum_{d=0}^{kc-1} |OPT_d| \le c |OPT|$ (as each vertex belongs to at most c different R_d)
- as $|OPT_{d_0}|kc \leq \sum_{d=0}^{kc-1} |OPT_d|$, we get the result

Proof

Back to the PTAS proof:

- thus, for each d we solve the problem optimally on $G \setminus R_d$, and we output A: the best of these solutions
- Previous Lemma $\Rightarrow |A| \ge (1 \frac{1}{k})|OPT|$

Proof

Back to the PTAS proof:

- thus, for each d we solve the problem optimally on $G \setminus R_d$, and we output A: the best of these solutions
- Previous Lemma $\Rightarrow |A| \ge (1 \frac{1}{k})|OPT|$

Proof

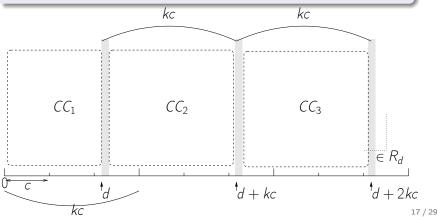
It remains to solve the problem optimally on $G \setminus R_d$:

- $G \setminus R_d$ has several connected component CC_l , where each component is drawn on a grid of constant width kc
- we solve optimally on each CC_1 using a dyn. prog. algorithm

Proof

It remains to solve the problem optimally on $G \setminus R_d$:

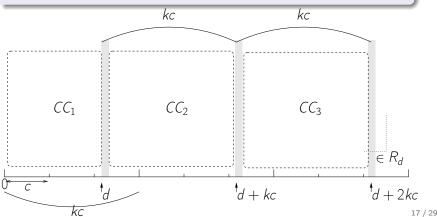
- $G \setminus R_d$ has several connected component CC_I , where each component is drawn on a grid of constant width kc
- we solve optimally on each CC_1 using a dyn. prog. algorithm



Proof

It remains to solve the problem optimally on $G \setminus R_d$:

- $G \setminus R_d$ has several connected component CC_I , where each component is drawn on a grid of constant width kc
- we solve optimally on each CC_1 using a dyn. prog. algorithm



Introduction on EPG-Graphs

2 Approximability

We consider the problem $OPT \le k$? parameterized by k. Question: is this problem FPT ? (*i.e.* can be solved in f(k)poly(n))

We consider the problem $OPT \le k$? parameterized by k. Question: is this problem FPT ? (*i.e.* can be solved in f(k)poly(n))

Related work

 B_1 -EPG \subset 2-Track \subset B_3 -EPG + MIS is W_1 -hard on unit 2-Track [Jia10] \Rightarrow MIS is W_1 -hard on B_3 -EPG

We consider the problem $OPT \le k$? parameterized by k. Question: is this problem FPT ? (*i.e.* can be solved in f(k)poly(n))

Related work

 B_1 -EPG \subset 2-Track \subset B_3 -EPG + MIS is W_1 -hard on unit 2-Track [Jia10] \Rightarrow MIS is W_1 -hard on B_3 -EPG

Our contributions

- MIS is FPT on $\{ \llcorner, \lrcorner, \ulcorner \}$ -EPG
- MIS is W1-hard on B2-EPG

We consider the problem $OPT \le k$? parameterized by k. Question: is this problem FPT ? (*i.e.* can be solved in f(k)poly(n))

Related work

 B_1 -EPG \subset 2-Track \subset B_3 -EPG + MIS is W_1 -hard on unit 2-Track [Jia10] \Rightarrow MIS is W_1 -hard on B_3 -EPG

Our contributions

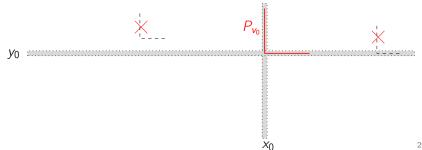
- MIS is FPT on $\{ \llcorner, \lrcorner, \ulcorner \}$ -EPG
- MIS is W1-hard on B2-EPG

We will prove that MIS is FPT on $\{ {}_{{}_{\sim}} \}$ -EPG using a branching algorithm.

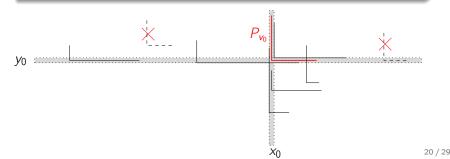
Definition

Given a path P, let cor(P) = (x, y) be the coordinates of the corner of P in the grid (orienting as usual $\uparrow_{v} \rightarrow_{x}$)

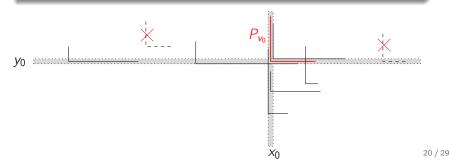
- Let P_{v0} (cor(P_{v0}) = (x₀, y₀)): a path whose corner is "top-right most" (highest line of the grid, and then the right most)
- Suppose |OPT| = k
- We know that $\exists P_{v^*} \in N[P_{v_0}] \cap OPT \ (cor(P_{v^*}) = (x^*, y^*))$
- Let us find this P_{v^*} (or a $P' \in OPT'$) using at most f(k) branches



- Let P_{v0} (cor(P_{v0}) = (x₀, y₀)): a path whose corner is "top-right most" (highest line of the grid, and then the right most)
- Suppose |OPT| = k
- We know that $\exists P_{v^*} \in N[P_{v_0}] \cap OPT \ (cor(P_{v^*}) = (x^*, y^*))$
- Let us find this P_{v^*} (or a $P' \in OPT'$) using at most f(k) branches



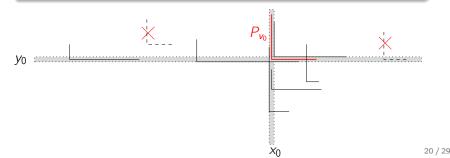
- Let P_{v0} (cor(P_{v0}) = (x₀, y₀)): a path whose corner is "top-right most" (highest line of the grid, and then the right most)
- Suppose |OPT| = k
- We know that $\exists P_{v^*} \in N[P_{v_0}] \cap OPT (cor(P_{v^*}) = (x^*, y^*))$
- Let us find this P_{v^*} (or a $P' \in OPT'$) using at most f(k) branches



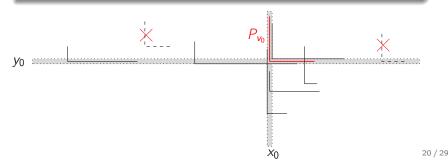
Proof

- Let P_{v0} (cor(P_{v0}) = (x₀, y₀)): a path whose corner is "top-right most" (highest line of the grid, and then the right most)
- Suppose |OPT| = k
- We know that $\exists P_{v^*} \in N[P_{v_0}] \cap OPT$ $(cor(P_{v^*}) = (x^*, y^*))$

Let us find this P_{v*} (or a P' ∈ OPT') using at most f(k) branches

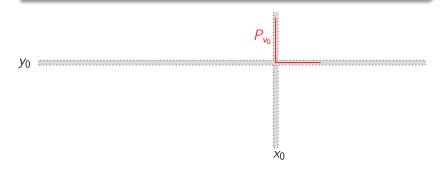


- Let P_{v0} (cor(P_{v0}) = (x₀, y₀)): a path whose corner is "top-right most" (highest line of the grid, and then the right most)
- Suppose |OPT| = k
- We know that $\exists P_{v^*} \in \mathit{N}[P_{v_0}] \cap \mathit{OPT}\ (\mathit{cor}(P_{v^*}) = (x^*, y^*))$
- Let us find this P_{v*} (or a P' ∈ OPT') using at most f(k) branches



Proof

- 1 $x^* = x_0$ and $y^* = y_0$: easy, take P_{v_0}
- 2 $x^* = x_0$ and $y^* < y_0$
- **3** $x^* < x_0$ and $y^* = y_0$

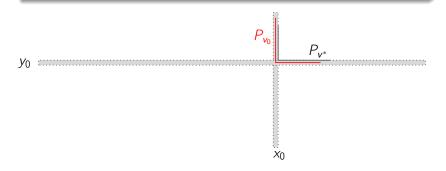


Proof

$$old y^*=x_0$$
 and $y^*=y_0$: easy, take P_{v_0}

②
$$x^* = x_0$$
 and $y^* < y_0$

3
$$x^* < x_0$$
 and $y^* = y_0$



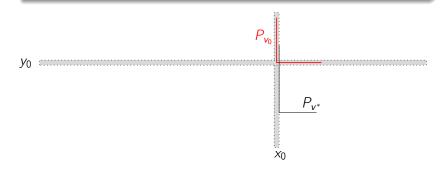
MIS is FPT on $\{ {}_{ }\}$ -EPG

Proof

$$old y^*=x_0$$
 and $y^*=y_0$: easy, take P_{v_0}

2
$$x^* = x_0$$
 and $y^* < y_0$

3
$$x^* < x_0$$
 and $y^* = y_0$

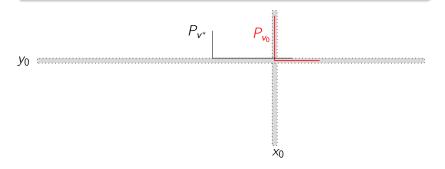


Proof

$${f 0}~~x^*=x_0$$
 and $y^*=y_0$: easy, take P_{v_0}

2
$$x^* = x_0$$
 and $y^* < y_0$

3
$$x^* < x_0$$
 and $y^* = y_0$



Proof

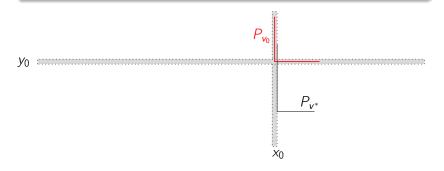
We branch on the following cases:

$${f 0}~~x^*=x_0$$
 and $y^*=y_0$: easy, take P_{v_0}

2
$$x^* = x_0$$
 and $y^* < y_0$

3
$$x^* < x_0$$
 and $y^* = y_0$

Let us only treat case 2 here (case 3 works similarly)

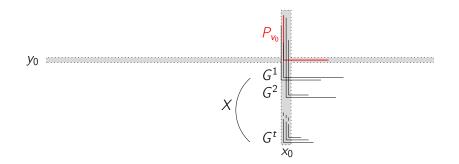


Proof

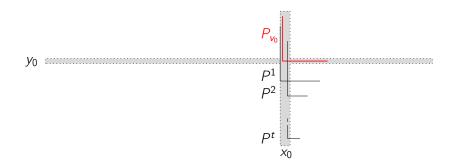
• Let X be the "vertical" neighbors of P_{v_0} $(P_{v^*} \in X)$.

• Let partition
$$X = G^1 \cup G^2 .. \cup G^t$$

• Sufficient to keep the left most path P^i in each G^i



- Let X be the "vertical" neighbors of P_{v_0} $(P_{v^*} \in X)$.
- Let partition $X = G^1 \cup G^2 .. \cup G^t$
- Sufficient to keep the left most path P^i in each G^i



Proof

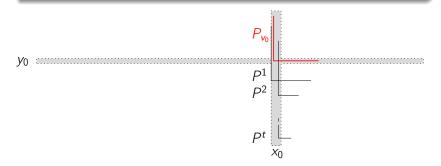
Now, two cases are possible

•
$$P_{v^*} \in \{P^1, \ldots, P^k\}$$
: easy, guess which P^i to take

2
$$P_{v^*} \in \{P^{k+1}, \dots, P^t\}$$
:

 as |OPT| = k, there exists Pⁱ ∈ {P¹,..., P^k} such that there is no P' ∈ OPT in the "horizontal line" of Pⁱ

guess this P' and take it



Proof

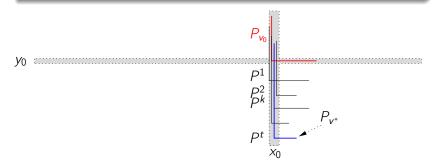
Now, two cases are possible

•
$$P_{v^*} \in \{P^1, \dots, P^k\}$$
: easy, guess which P^i to take

2
$$P_{v^*} \in \{P^{k+1}, \ldots, P^t\}$$
:

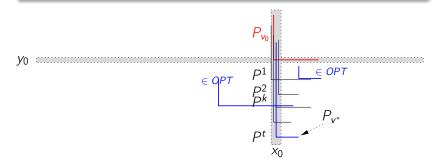
as |OPT| = k, there exists Pⁱ ∈ {P¹,..., P^k} such that there is no P' ∈ OPT in the "horizontal line" of Pⁱ

• guess this *Pⁱ* and take it



Proof

Now, two cases are possible



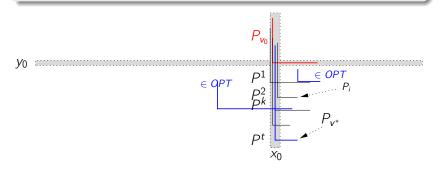
Proof

Now, two cases are possible

•
$$P_{v^*} \in \{P^1, \ldots, P^k\}$$
: easy, guess which P^i to take

2
$$P_{v^*} \in \{P^{k+1}, \dots, P^t\}$$
:

- as |OPT| = k, there exists $P^i \in \{P^1, \dots, P^k\}$ such that there is no $P' \in OPT$ in the "horizontal line" of P^i
- guess this Pⁱ and take it



- MIS is FPT on {∟}-EPG as we can find a P_{v*} ∈ OPT using at most f(k) branches
- The previous appproach doesn't work (even for 2 shapes)..
- but we use the same kind of arguments to prove that MIS is FPT with 3 shapes

- MIS is FPT on {∟}-EPG as we can find a P_{v*} ∈ OPT using at most f(k) branches
- The previous appproach doesn't work (even for 2 shapes)..
- but we use the same kind of arguments to prove that MIS is FPT with 3 shapes

- MIS is FPT on {∟}-EPG as we can find a P_{v*} ∈ OPT using at most f(k) branches
- The previous appproach doesn't work (even for 2 shapes)..
- but we use the same kind of arguments to prove that MIS is FPT with 3 shapes

- MIS is FPT on {∟}-EPG as we can find a P_{v*} ∈ OPT using at most f(k) branches
- The previous appproach doesn't work (even for 2 shapes)..
- but we use the same kind of arguments to prove that MIS is FPT with 3 shapes

Negative results

• MIS is W1-hard on B2-EPG

Approximability

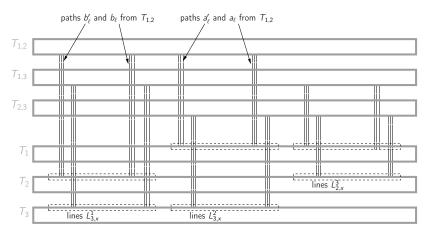
- No PTAS unless P = NP
- PTAS when one side is always small
- Simple 4 approximation
- Open: c < 4 approximation ?

Fixed parameter tractability

- FPT with 3 shapes
- W₁-hard on B₂-EPG
- Open: FPT on *B*₁-EPG ?

Thank you for your attention ! ...

MIS is W_1 -hard on B_2 -EPG as:



[BYHN⁺06] Reuven Bar-Yehuda, Magnús M Halldórsson, Joseph Seffi Naor, Hadas Shachnai, and Irina Shapira. Scheduling split intervals. SIAM J. Comput., 36(1):1-15, 2006. [EGM13] Dror Epstein, MartinCharles Golumbic, and Gila Morgenstern. Approximation algorithms for b_1 -epg graphs. In WADS 2013: Algorithms and Data Structures, volume 8037 of Lecture Notes in Computer Science, pages 328–340, Springer Berlin Heidelberg, 2013. [GLS09] Martin Charles Golumbic, Marina Lipshteyn, and Michal Stern. Edge intersection graphs of single bend paths on a grid. Networks, 54(3):130-138, 2009. [HKU14] Daniel Heldt, Kolja Knauer, and Torsten Ueckerdt. Edge-intersection graphs of grid paths: The bend-number. Discrete Applied Mathematics, 167(0):144 - 162, 2014. [Jia10] Minghui Jiang. On the parameterized complexity of some optim ization problems related to multiple-interval graphs. Theoretical Computer Science, 411:4253-4262, 2010.

Why does it fail for 2 shapes ?



$$P_{v^*} \in \{P_{k+1}, \dots, P_t\}$$

but we cannot restructure OPT to chose one of the $\{P_1, \dots, P_k\}$