Bounded expansion: Introduction

Marin Bougeret

JCALM 2016

Outline

(1) Definitions and examples
(2) Equivalent characterization of bounded expansion
(3) A property on grad and top grad

4 A word on nowhere dense

Minors

G^{\prime} is a radius 2 witness of H
$H \in G \nabla 2($ even in $G \nabla 3 / 2)$

- H minor of G iff exists subgraph $G^{\prime} \subseteq G$ which is witness of H
- G^{\prime} witness of H iff exists partition of $V_{G^{\prime}}$ into connected $V_{1}, \ldots, V_{n_{H}}$ such that contracting G^{\prime} gives H
- H is a r shallow minor of $G(H \in G \nabla r)$ iff exists subgraph $G^{\prime} \subseteq G$ such that G^{\prime} is a radius (dist in $\left.G\left[V_{i}\right]\right) r$ witness of H
- G^{\prime} radius r witness of H iff in addition we have $\operatorname{rad}\left(V_{i}\right) \leq r$

Minors

In the witness, we can suppose that

- V_{i} are rooted trees
- at most one external edge between any pair $\left\{V_{i}, V_{j}\right\}$
- all leaves are incident to an external edge
- $H \in G \nabla r \Leftrightarrow$ trees of height $\leq r$
$H \in G \nabla\left(r-\frac{1}{2}\right)$ iff $H \in G \nabla r$ and no external edge between to leaves both at distance r of their root

Topological minors

G

$H \in G \tilde{\nabla} 2$

- H topological minor of G iff exists subgraph $G^{\prime} \subseteq G$ such that G^{\prime} is a subdivision of $H\left(\Leftrightarrow \exists v_{1}, \ldots, v_{n_{H}}\right.$ in V_{G} such that $\left\{v_{i}, v_{j}\right\} \in E_{H} \Rightarrow \exists$ path $P_{i, j}$ between v_{i} and v_{j}, where $P_{i, j}$ are verte disjoint paths)
- $H r$ top. shallow minor of $G(H \in G \tilde{\nabla} r)$ iff exists subgraph $G^{\prime} \subseteq G G^{\prime}$ is a $\leq 2 r$ subdivision of H (path of length $\leq 2 r+1)$

Minor Vs Topological minor

- $G \tilde{\nabla} 0=G \nabla 0=$ subgraphs of G
- $G \tilde{\nabla} r \subseteq G \nabla r$
- beeing a topological minor is not a well quasi ordering relation

Grad and Top grad

- Greatest reduced average degree: $\nabla_{r}(G)=\max _{H \in G \nabla r} \frac{m_{H}}{n_{H}}$
- Top. Greatest reduced average deg: $\tilde{\nabla}_{r}(G)=\max _{H \in G \tilde{\nabla} r} \frac{m_{H}}{n_{H}}$

Thank you Felix ReidI!

$$
\nabla_{r}(G)=\max _{H \in G \nabla r} \frac{|E(H)|}{|V(H)|}
$$

- $\nabla_{r}(G)$ is the maximum external edges in a radius r witness G^{\prime}
- $\nabla_{0}(G)=\tilde{\nabla}_{0}(G)=\frac{\operatorname{mad}(G)}{2}$

Equivalence beetween grad and top grad

Corollary 4.1 of $\left[\mathrm{dM}^{+} 12\right]$

For any G and $r, \tilde{\nabla}_{r}(G) \leq \nabla_{r}(G) \leq 4\left(4 \tilde{\nabla}_{r}(G)\right)^{(r+1)^{2}}$

Bounded Expansion (BE)

Definitions

- $\mathcal{C} \nabla r=\bigcup_{G \in \mathcal{C}} G \nabla r$
- $\nabla_{r}(\mathcal{C})=\sup _{G \in \mathcal{C}}\left(\nabla_{r}(G)\right)$
- A class \mathcal{C} is BE iff there exists a function $c<\infty$ such that $\forall r$, $\nabla_{r}(\mathcal{C}) \leq c(r)\left(\right.$ or $\left.\tilde{\nabla}_{r}(\mathcal{C}) \leq c^{\prime}(r)\right)$.
\mathcal{C} is BE iff $\exists c$ such that $\forall r, \forall G \in \mathcal{C}, \forall G_{0} \in G \nabla r, m_{G_{0}} \leq c(r) n_{G_{0}}$

Bounded Expansion (BE): examples

Remark

$\mathrm{BE} \Rightarrow \nabla_{0}(\mathcal{C}) \leq c(0) \Rightarrow$ for any G : constant $\operatorname{mad}(G) \Leftrightarrow$ constant degeneracy $\Rightarrow \chi(G)$ constant

Examples of BE class

- constant $\Delta\left(\nabla_{r}(G) \leq \Delta^{r+1}\right)$
- H minor free \Rightarrow : implies $K_{n_{H}}$ minor free, and thus for any minor $G, m_{G} \leq f\left(n_{H}\right) n_{G}$ (and thus $c(r)$ is even a constant)
\Rightarrow (and thus planar graphs, bounded treewidth graphs are BE)
- bounded stack number, bounded queue number (see [dM $\left.{ }^{+} 12\right]$)
- bounded crossing number

Examples

- A graph G has crossing number $\operatorname{cr}(G)=k$ iff it can be drawn in the plane such that there is at most k crossing on each edge.
- Let $\mathcal{C}=\{G \mid c r(G) \leq k\} . \mathcal{C}$ has BE
- Let $H \in G \tilde{\nabla} r$. H has at most $c r^{\prime}=k(2 r+1)$ crossing per edge.
- thus $m^{\prime} \leq f(r) n^{\prime}$, and $\tilde{\nabla}_{r}(G) \leq f(r)$, and $\nabla_{r}(G) \leq g(r)$

Outline

(1) Definitions and examples

(2) Equivalent characterization of bounded expansion
(3) A property on grad and top grad

4 A word on nowhere dense

There are MANY characterizations of BE (Thm 13.2 in [dM ${ }^{+}$12])

Characterization of BE with weak coloring

Consider a permutation π of the vertices of a graph G

u is weakly 4 accessible from v

- We say that u is weakly r-accessible from v iff $u<v$ and there exists a $u-v$ path P of length at most r with $u<\min (P)$
- We denote $N_{r}^{\pi}(v)=\{u$ weakly r-accessible from $v\}$ the number of "backward" neighbors
- We denote coll $l_{r}^{\pi}(G)=\max _{v} N_{r}^{\pi}(v)+1$.
- The weak r-coloring number of G is $\operatorname{wcol}_{r}(G)=\min _{\pi} \operatorname{col}_{r}^{\pi}(G)$.

Characterization of BE with weak coloring

Example of G with wcol $_{r}(G)=k$.

Observe that $\chi(G) \leq w^{\prime} \mathcal{l}_{1}(G)$

Characterization of BE with weak coloring

A class \mathcal{C} have bounded generalized colouring number iff for any r, there exists $c(r)$ such that wcol $_{r}(G) \leq c(r)$ for any $G \in \mathcal{C}$.

Theorem (in [Zhu09])

$B E \Leftrightarrow$ bounded generalized colouring number
Remarks:

- Goal $\forall r \nabla_{r}(G) \leq c(r) \Leftrightarrow \forall r^{\prime} w^{\prime} \mathcal{I N}_{r^{\prime}}(G) \leq c^{\prime}\left(r^{\prime}\right)$
- For example for $\left(r, r^{\prime}\right)=(0,1)$:
- $\nabla_{0}(G)=\frac{\operatorname{mad}(G)}{2}$ cst, and thus $\Leftrightarrow G$ has cst-degeneracy
- it remains to check that $w c o l_{1}(G)$ cst $\Leftrightarrow G$ has cst-degeneracy

Characterization of BE with weak coloring

Proof of \Leftarrow

- goal: $\nabla_{r}(G) \leq c(r)$
- let $H \in G \nabla r$ such that $\frac{m_{H}}{n_{H}}=\nabla_{r}(G)$
- let G^{\prime} be a witness of $H: G^{\prime}=\left\{V_{1}, \ldots, V_{H}\right\}$ where V_{i} are trees of height $\leq r$
- suppose there is an external edge $e=\left\{V_{i}, V_{j}\right\}$

Characterization of BE with weak coloring

Proof of \Leftarrow

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc_{m_{i j}}^{\circ} \bigcirc \bigcirc \vee_{i} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \vee_{j} \bigcirc$

- this implies that there is in G a path $P_{i j}$ of length at most $2 r+1$ between v_{i} and v_{j}
- let $m_{i j}$ be the minimum (in the best π) vertices of $P_{i j}$
- $m_{i j}$ is weakly $2 r+1$-accessible from v_{i} and from v_{j}
- orient e toward the V_{l} not containing $m_{i j}$
- now, given a V_{j} : each in arc means one disctinct $2 r+1$-accessible vertex
- each V_{j} has indegree at most $w c o l_{2 r+1}(G)$

Characterization of BE with weak coloring

Proof of \Leftarrow

H

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc_{i j} \bigcirc \bigcirc_{v_{i}} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \vee_{j} \bigcirc$

- this implies that there is in G a path $P_{i j}$ of length at most $2 r+1$ between v_{i} and v_{j}
- let $m_{i j}$ be the minimum (in the best π) vertices of $P_{i j}$
- $m_{i j}$ is weakly $2 r+1$-accessible from v_{i} and from v_{j}
- orient e toward the V_{l} not containing $m_{i j}$
- now, given a V_{j} : each in arc means one disctinct $2 r+1$-accessible vertex
- each V_{j} has indegree at most $w c o l_{2 r+1}(G)$

Characterization of BE with low tree-depth coloring

The tree-depth $\operatorname{td}(G)$ of a connected graph G is the minimum height of a rooted tree T such that $G \subseteq \operatorname{clos}(T)(\operatorname{clos}(T)=T+$ add an edge between any vertice and its ancestors)

- $\operatorname{td}\left(P_{7}\right) \leq 3$
- edges in T are not necessarily edges in G
- $t w(G) \leq p w(G) \leq t d(G): p w ~ d e c o m p o s i t i o n ~ f r o m ~ T: 421, ~$ 423, 465, 467

Characterization of BE with low tree-depth coloring

- no edge in G between T_{i} and T_{j} :
- $t d\left(K_{n}\right)=n$
- the root of T separates T_{i} : the CC of $G \backslash\{r\}$ lie inside the T_{i}
- we could have several CC in a T_{i}, but not interesting when minimizing the height of T
\Rightarrow the T_{i} correspond exactly to the CC of $G \backslash\{r\}$

Characterization of BE with low tree-depth coloring

Tree-depth of path
 $t d\left(P_{n}\right)=\left\lceil\log _{2}(n+1)\right\rceil$

- let T with root r such that $P_{n} \subseteq \operatorname{clos}(T)$
- $\operatorname{td}\left(P_{n}\right) \geq 1+\max \left(t d\left(P_{1}\right), t d\left(P_{2}\right)\right)$
\Rightarrow choose r at the center of the path

Characterization of BE with low tree-depth coloring

Tree-depth coloring for a graph

- Motivation: coloring G such that every p color classes induce a "simple" graph
- $\chi_{p}(G)$ minimum number of colors such that each $i \leq p$ parts induce a graph with tree-depth at most i
- $\chi_{1}(G)=\chi(G)$
- $\chi_{2}(G)=\chi_{s}(G)$: star coloring: proper coloring and every two parts induces a star forest

Low tree-depth coloring for a class
A class \mathcal{C} has low tree-depth coloring iff \exists function c such that $\forall p$, $\forall G \in \mathcal{C}, \chi_{p}(G) \leq c(p)$

Characterization of BE with low tree-depth coloring

Succession of results described in [NdM08]
Minor closed class has low tree-width coloring

Minor closed class has low tree-depth coloring

Theorem [NdM08]

BE class has low tree-width coloring (in fact iff!)
Let us prove the easy part of the last result:

Theorem 4

$\nabla_{r}(G) \leq(2 r+1)\binom{2 r+2}{\chi 2 r+2(G)}$

Characterization of BE with low tree-depth coloring

- Let $H \in G \nabla r$ such that $\frac{m_{H}}{n_{H}}=\nabla_{r}(G)$
- Let G^{\prime} be a witness of $H: G^{\prime}=\left\{V_{1}, \ldots, V_{H}\right\}$ where V_{i} are trees of height $\leq r$
- Let $N=\chi_{2 r+2}(G)$, I be a subset of $2 r+2$ colors among N
- Let $\left\{E_{l}\right\}$ be the external edges whose corresponding path $P_{i j}$ (of length of at most $2 r+2$ vertices) uses only colors of I
- We will prove that $\left|E_{I}\right| \leq 2 r+1$

Characterization of BE with low tree-depth coloring

- let G_{I} be the graph induced by vertices of color I
- $\operatorname{td}\left(G_{l}\right) \leq 2 r+2$
- let $e \in E_{l}$ between V_{i} and V_{j}
- let $P_{i j}$ be the corresponding path between v_{i} and v_{j}, and $m_{i j}$ be the highest vertex in this path
- orient e towards V_{l} not containing $m_{i j}$
\Rightarrow each V_{j} has in-degree at most $2 r+1$ as each in arc corresponds to a distinct ancestor or v_{j}

Characterization of BE with χ

We define $\chi(G \tilde{\nabla} r)$ and $\chi(\mathcal{C} \tilde{\nabla} r)=\sup _{G \in \mathcal{C}}(\chi(G \tilde{\nabla} r))$.

Proposition 5.5 in $\left[\mathrm{dM}^{+}\right.$12]

$\mathcal{C} \mathrm{BE} \Leftrightarrow \exists c$ such that $\forall r, \chi(\mathcal{C} \tilde{\nabla} r) \leq c(r)$

$$
(\Leftrightarrow \exists c \text { such that } \forall r, \chi(\mathcal{C} \nabla r) \leq c(r))
$$

In fact, we will prove the following property.
Proposition 4.4 in [dM $\left.{ }^{+} 12\right]$
$\chi(G \tilde{\nabla} r) \leq 2\left(\tilde{\nabla}_{r}(G)\right)+1$ and $\tilde{\nabla}_{r}(G)=\mathcal{O}\left(\left(\chi\left(G \tilde{\nabla}\left(2 r+\frac{1}{2}\right)\right)^{4}\right)\right.$

Characterization of BE with χ

Proposition 4.4 in [dM ${ }^{+}$12]
$\chi(G \tilde{\nabla} r) \leq 2\left(\tilde{\nabla}_{r}(G)\right)+1$ and $\tilde{\nabla}_{r}(G)=\mathcal{O}\left(\left(\chi\left(G \tilde{\nabla}\left(2 r+\frac{1}{2}\right)\right)^{4}\right)\right.$
Proof of the first inequality.

- for $r=0$ this can be rephrased as "any α degenerate graph can be $\alpha+1$ colored".
- let $H \in G \tilde{\nabla} r$
- $\chi(H) \leq \operatorname{mad}(H)+1=2 \tilde{\nabla}_{0}(H)+1$
- as $\tilde{\nabla}_{0}(H) \leq \tilde{\nabla}_{r}(G)$, done!

Characterization of BE with χ

Proposition 4.4 in [dM $\left.{ }^{+} 12\right]$
$\chi(G \tilde{\nabla} r) \leq 2\left(\tilde{\nabla}_{r}(G)\right)+1$ and $\tilde{\nabla}_{r}(G)=\mathcal{O}\left(\left(\chi\left(G \tilde{\nabla}\left(2 r+\frac{1}{2}\right)\right)^{4}\right)\right.$
Proof of the second one.

- No hope to bound $\tilde{\nabla}_{r}(G) \leq f(\chi(G \tilde{\nabla} r))$ (think of complete bipartite, even for $r=0$)
- For $r=0$: what contains $G \tilde{\nabla} \frac{1}{2}$?: graphs H whose 1-subdivision are subgraphs of G
- For $r=0$ the inequality says (we consider the contrapositive) "if you have a lot of edges then you have one subgraph that is a 1-subdivision of a graph H with large $\chi^{\prime \prime}$

Characterization of BE with χ

Proposition 4.4 in [dM $\left.{ }^{+} 12\right]$
$\chi(G \tilde{\nabla} r) \leq 2\left(\tilde{\nabla}_{r}(G)\right)+1$ and $\tilde{\nabla}_{r}(G)=\mathcal{O}\left(\left(\chi\left(G \tilde{\nabla}\left(2 r+\frac{1}{2}\right)\right)^{4}\right)\right.$
Thus, we will prove the following Lemma.

Lemma 4.5 in [dM ${ }^{+}$12]

Let $c \geq 4, G$ with av degree $d>56(c-1)^{2} \frac{\log (c-1)}{\log (c)-\log (c-1)}$. Then G contains a subgraph G^{\prime} that is the 1 -subdivision of a graph with chromatic number c.

This implies the result we want:

- Let $H \in G \tilde{\nabla} r$ such that $m_{H} / n_{H}=\tilde{\nabla}_{r}(G)$
- Lemma 4.5 says $d_{a v}(H) \geq(c-1)^{4} \Rightarrow \chi\left(H \tilde{\nabla} \frac{1}{2}\right) \geq c$, so $d_{a v}(H) \leq \chi\left(H \tilde{\nabla} \frac{1}{2}\right)^{4}$
- however $H \tilde{\nabla} \frac{1}{2} \subseteq G \tilde{\nabla}\left(2 r+\frac{1}{2}\right)$, so $\chi\left(H \tilde{\nabla} \frac{1}{2}\right) \leq \chi\left(G \tilde{\nabla}\left(2 r+\frac{1}{2}\right)\right)$.

Characterization of BE with χ

$$
H^{\prime} \in H \tilde{\nabla} \frac{1}{2}
$$

$$
\text { in } H
$$

$$
\text { in } G
$$

$$
H^{\prime} \in G \tilde{\nabla} x \text { with } 2 x+1=4 r+2
$$

This implies the result we want as:

- Let $H \in G \tilde{\nabla} r$ such that $m_{H} / n_{H}=\tilde{\nabla}_{r}(G)$
- Proposition 4.4 says $d_{a v}(H) \geq(c-1)^{4} \Rightarrow \chi\left(H \tilde{\nabla} \frac{1}{2}\right) \geq c$, so $d_{a v}(H) \leq \chi\left(H \tilde{\nabla} \frac{1}{2}\right)^{4}$
- however $H \tilde{\nabla} \frac{1}{2} \subseteq G \tilde{\nabla}\left(2 r+\frac{1}{2}\right)$, so $\chi\left(H \tilde{\nabla} \frac{1}{2}\right) \leq \chi\left(G \tilde{\nabla}\left(2 r+\frac{1}{2}\right)\right)$.

Characterization of BE with χ

Proof of large av deg \Rightarrow contains G^{\prime} : a 1-sub of a graph with $\chi \geq c$

- There exists a bipartite subgraph $G_{1}=(A, B) \subseteq G$ with ad degree $\frac{d}{2}$, and $G_{2} \subseteq G_{1}$ with min degree $D \geq \frac{d}{2}$, and $G_{3} \subseteq G_{2}$ with vertices of B having degree exactly D

$$
B
$$

Characterization of BE with χ

Proof of large av deg \Rightarrow contains G^{\prime} : a 1-sub of a graph with $\chi \geq c$

- By contradiction: suppose that $\forall G^{\prime} \subseteq G_{3}$ s.t. $\operatorname{sub}(H)=G^{\prime}$, $\chi(H) \leq c-1$.
We forget H and say that G^{\prime} has a "coloring" with $c-1$ colors, where "coloring" means coloring only vertices in A s.t..
- Let \mathcal{S} be the subraphs of G_{3} where vertices of B have degree 2
- In particular, $\forall G^{\prime} \in \mathcal{S}$ have a "coloring" with $c-1$ colors
- Idea: if $c-1$ is to small (1 for example!) and D is big: contradiction

Characterization of BE with χ

Proof of large av $\operatorname{deg} \Rightarrow$ contains G^{\prime} : a 1-sub of a graph with $\chi \geq c$

- Let $N_{S}=|\mathcal{S}|$
- Let $N_{c}=(c-1)^{|A|}$ be the number of coloring of A
- Let $N_{\text {max }}$ be the maximum number of graphs of \mathcal{S} that can be colored with a fixed coloring ϕ of A
- as all graphs of \mathcal{S} can be colored, $N_{S} \leq N_{C} N_{\max }$

$$
(c-1)^{|A|} \text { colorings of } A
$$

Characterization of BE with χ

Proof of large av deg \Rightarrow contains G^{\prime} : a 1-sub of a graph with $\chi \geq c$

- Let $N_{S}=|\mathcal{S}|=\binom{2}{D}^{|B|}$
- Let $N_{\max } \leq\left(\binom{2}{c-1}\left(\frac{D}{c-1}\right)^{2}\right)^{|B|}$
- Now, writing $N_{S} \leq N_{C} N_{\text {max }}$ leads to a contradiction .. if $\frac{|B|}{|A|}$ is large enough

Characterization of BE with χ

Proof of large av deg \Rightarrow contains G^{\prime} : a 1-sub of a graph with $\chi \geq c$

- Let $N_{S}=|\mathcal{S}|=\binom{2}{D}^{|B|}$
- Let $N_{\max } \leq\left(\binom{2}{c-1}\left(\frac{D}{c-1}\right)^{2}\right)^{|B|}$
- Now, writing $N_{S} \leq N_{C} N_{\max }$ leads to a contradiction .. if $\frac{|B|}{|A|}$ is large enough

Outline

(1) Definitions and examples

(2) Equivalent characterization of bounded expansion
(3) A property on grad and top grad

4 A word on nowhere dense

Equivalence beetween grad and top grad

Corollary 4.1 of [dM ${ }^{+}$12]

For any G and $r, \tilde{\nabla}_{r}(G) \leq \nabla_{r}(G) \leq 4\left(4 \tilde{\nabla}_{r}(G)\right)^{(r+1)^{2}}$
In fact, we will prove the following theorem.

Thm 3.9 in [Dvo07]

Let $r, d \geq 1, p=4(4 d)^{(r+1)^{2}}$. If $\nabla_{r}(G) \geq p$, then G contains a subgraph F^{\prime} that is a $\leq 2 r$ subdivision of a graph F with minimum degree d.

Theorem 2 says: if $\nabla_{r}(G) \geq p$, then $\tilde{\nabla}_{r}(G) \geq d$, and thus implies Theorem 1.

Equivalence beetween grad and top grad

Lemma in [Dvo07]

- Let G^{\prime} be a radius r witness with min degree (of the corresponding contracted graph) is d.
- Let $d_{1}=\left(\frac{d}{2}\right)^{\frac{1}{r+1}}$.
- There exists a radius r witness $G^{\prime} \subseteq G$ with min degree (of the corresponding contracted graph) is d_{1}, such that the degree in G^{\prime} of each center $v_{i} \in V_{i}$ is also at least d_{1}. Moreover there is no useless leaf in G^{\prime}.

Lemma says by loosing a factor $\sqrt[r+1]{ }$ on the density of the minor, we can assume that the centers of the witness have large degree.

Equivalence beetween grad and top grad

Proof

- while there exists a center $v_{i} \in G$ with $d\left(v_{i}\right)<d_{1}$
- remove v_{i} and adjacent edges and recursively remove useless leaves (this can decrease degree of other v_{j})
- define new trees corresponding to $V_{i} \backslash\left\{v_{i}\right\}$

Equivalence beetween grad and top grad

Proof

When we stop, the remaining graph G^{\prime} is non empty:

- let k be the initial \# trees in $G, e \geq \frac{d}{2} k$ be \# external edges in G
- when removing v_{i}, its degree is at most $d_{1} \Rightarrow$ at most $d_{1} x$ external edges removed, where $x=\#$ suppressed vertices
- we bound x by looking what happen to a given tree

Equivalence beetween grad and top grad

Proof

Upper bound on x :

- all the suppressed vertices belongs to the red subtree of degree at most d_{1} and height at most $r \Rightarrow x<k d_{1}^{r}$
- we take d_{1} such that $k d^{r+1}<\frac{d}{2} k$

Equivalence beetween grad and top grad

Proof

Upper bound on x :

- all the suppressed vertices belongs to the red subtree of degree at most d_{1} and height at most $r \Rightarrow x<k d_{1}^{r}$
- we take d_{1} such that $k d^{r+1}<\frac{d}{2} k$

Equivalence beetween grad and top grad

Proof

Upper bound on x :

- all the suppressed vertices belongs to the red subtree of degree at most d_{1} and height at most $r \Rightarrow x<k d_{1}^{r}$
- we take d_{1} such that $k d_{1}^{r+1}<\frac{d}{2} k$

Equivalence beetween grad and top grad

Proof

Upper bound on x :

- all the suppressed vertices belongs to the red subtree of degree at most d_{1} and height at most $r \Rightarrow x<k d_{1}^{r}$
- we take d_{1} such that $k d_{1}^{r+1}<\frac{d}{2} k$

Equivalence beetween grad and top grad

Proof

Upper bound on x :

- all the suppressed vertices belongs to the red subtree of degree at most d_{1} and height at most $r \Rightarrow x<k d_{1}^{r}$
- we take d_{1} such that $k d_{1}^{r+1}<\frac{d}{2} k$

Equivalence beetween grad and top grad

Proof

Upper bound on x :

- all the suppressed vertices belongs to the red subtree of degree at most d_{1} and height at most $r \Rightarrow x<k d_{1}^{r}$
- we take d_{1} such that $k d_{1}^{r+1}<\frac{d}{2} k$

Equivalence beetween grad and top grad

Proof

Upper bound on x :

- all the suppressed vertices belongs to the red subtree of degree at most d_{1} and height at most $r \Rightarrow x<k d_{1}^{r}$
- we take d_{1} such that $k d_{1}^{r+1}<\frac{d}{2} k$

Equivalence beetween grad and top grad

Proof

When we stop, G^{\prime} satisfies the two claimed properties:

- all centers v_{i} have $d\left(v_{i}\right)=d_{i n t}+d_{e x t} \geq d_{1}$
- there is no useless leaf, implying that each of the $d_{i n t}$ subtrees "produces" at least one external edge

Equivalence beetween grad and top grad

Back to Thm 3.9

Let $r, d \geq 1, p=4(4 d)^{(r+1)^{2}}$. If $\nabla_{r}(G) \geq p$, then G contains a subgraph F^{\prime} that is a $\leq 2 r$ subdivision of a graph F with minimum degree d.

Sketch of proof

- $\nabla_{r}(G) \geq p$ implies G contains a subgraph G_{1} which is a radius r witness of min degree (in the contracted) p
- using previous lemma, let $G_{2} \subseteq G_{1}$ be a radius r witness of min degree (in the contracted) d_{1}, such that the degree in G^{\prime} of each center $v_{i} \in V_{i}$ is also at least d_{1}

Equivalence beetween grad and top grad

- get a subdivided graph $G^{\prime} \subseteq G_{2}$ by keeping one external edge out of each subtree (and its corresponding path to the root)
- if you can indeed save these external edges:
- large degree of center implies that we get many edges
- the corresponding subgraph G^{\prime} is a subdivided graph

Problems

- the other vertex of each edge may not be saved
- if the subtrees are very leafy, we have to bound the loss

Outline

(1) Definitions and examples

(2) Equivalent characterization of bounded expansion
(3) A property on grad and top grad

4 A word on nowhere dense

Definition

A class \mathcal{C} is ND iff $\exists c$ such that $\forall r, \omega(\mathcal{C} \nabla r) \leq c(r)$

- $\mathrm{BE} \subseteq \mathrm{ND}$ (for BE we even require $\chi(\mathcal{C} \nabla r) \leq c(r)$)
- there exists several equivalent definitions of ND (Thm 13.2 in $\left.\left[\mathrm{dM}^{+} 12\right]\right)$.
- in terms of number of edges: \mathcal{C} is ND iff $\exists c$ such that $\forall r$, $\forall G \in \mathcal{C}, \forall H \in G \nabla r, m_{H} \leq n_{H}^{1+f_{r}\left(n_{H}\right)}$ (with $\left.f_{r}=o_{n}(1)\right)$

Examples

Example of a class \mathcal{C} ND but no BE (p105 [dM $\left.\left.{ }^{+} 12\right]\right)$

- We want \mathcal{C} such that for $r \geq r_{0}$ graphs of $\mathcal{C} \nabla r$ have big χ and small ω (Erdös classes).
- Let $\mathcal{C}=\{k$ cages (k-regular graphs with girth $=k$), $k \geq 0\}$)
- \mathcal{C} is not BE are graphs do not have constant degeneracy
- \mathcal{C} is ND:
- Assume $K_{n} \in \mathcal{C} \nabla r$, let us wound $n \leq f(r)$
- Let $G \in \mathcal{C}$ such that $K_{n} \in G \nabla r$
- $K_{3} \in G \nabla r \Rightarrow$ there exists a cycle of length at most

$$
\begin{aligned}
& 3(2 r+1) \Rightarrow g(G) \leq 3(2 r+1) \\
& -n-1 \leq \Delta(G \nabla r) \leq \Delta(G)^{r+1}
\end{aligned}
$$

Bibliography

[dM ${ }^{+}$12] Patrice Ossona de Mendez et al. Sparsity: graphs, structures, and algorithms, volume 28. Springer Science \& Business Media, 2012.
[Dvo07] Zdenek Dvorák.
Asymptotical structure of combinatorial objects.
Charles University, Faculty of Mathematics and Physics, 2007.
[NdM08] Jaroslav Nešetřil and Patrice Ossona de Mendez.
Grad and classes with bounded expansion i. decompositions.
European Journal of Combinatorics, 29(3):760-776, 2008.
[Zhu09] Xuding Zhu.
Colouring graphs with bounded generalized colouring number.
Discrete Mathematics, 309(18):5562-5568, 2009.

