
Bounded expansion: Introduction

Marin Bougeret

JCALM 2016



Outline

1 Definitions and examples

2 Equivalent characterization of bounded expansion

3 A property on grad and top grad

4 A word on nowhere dense

2 / 46



Minors

H

G′ is a radius 2 witness of H

G

H ∈ G∇2 (even in G∇3/2)

H minor of G iff exists subgraph G ′ ⊆ G which is witness of H
G ′ witness of H iff exists partition of VG ′ into connected
V1, . . . ,VnH such that contracting G ′ gives H
H is a r shallow minor of G (H ∈ G∇r) iff exists subgraph
G ′ ⊆ G such that G ′ is a radius (dist in G [Vi ]) r witness of H
G ′ radius r witness of H iff in addition we have rad(Vi ) ≤ r
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Minors

HG

H ∈ G∇2 (even in G∇3/2)
G′ is a radius 2 witness of H

In the witness, we can suppose that
Vi are rooted trees
at most one external edge between any pair {Vi ,Vj}
all leaves are incident to an external edge
H ∈ G∇r ⇔ trees of height ≤ r

H ∈ G∇(r − 1
2) iff H ∈ G∇r and no external edge between to

leaves both at distance r of their root 4 / 46



Topological minors

H ∈ G∇̃2G

H topological minor of G iff exists subgraph G ′ ⊆ G such that
G ′ is a subdivision of H (⇔ ∃v1, . . . , vnH in VG such that
{vi , vj} ∈ EH ⇒ ∃ path Pi ,j between vi and vj , where Pi ,j are
verte disjoint paths)
H r top. shallow minor of G (H ∈ G∇̃r) iff exists subgraph
G ′ ⊆ G G ′ is a ≤ 2r subdivision of H (path of length
≤ 2r + 1)
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Minor Vs Topological minor

G∇̃0 = G∇0 = subgraphs of G
G∇̃r ⊆ G∇r
beeing a topological minor is not a well quasi ordering relation

2r + 1 edges

Vi

Vj
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Grad and Top grad

Greatest reduced average degree: ∇r (G ) = maxH∈G∇r
mH
nH

Top. Greatest reduced average deg: ∇̃r (G ) = maxH∈G∇̃r
mH
nH

Thank you Felix Reidl!

∇r (G ) is the maximum external edges in a radius r witness G ′

∇0(G ) = ∇̃0(G ) = mad(G)
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Equivalence beetween grad and top grad

Corollary 4.1 of [dM+12]

For any G and r , ∇̃r (G ) ≤ ∇r (G ) ≤ 4(4∇̃r (G ))(r+1)2
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Bounded Expansion (BE)

Definitions
C∇r =

⋃
G∈C G∇r

∇r (C) = sup
G∈C

(∇r (G ))

A class C is BE iff there exists a function c <∞ such that ∀r ,
∇r (C) ≤ c(r) (or ∇̃r (C) ≤ c ′(r)).

C is BE iff ∃c such that ∀r , ∀G ∈ C, ∀G0 ∈ G∇r , mG0 ≤ c(r)nG0

. . .

G

G0

G∇r

C

C∇r

mG0
≤ c(r)nG0
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Bounded Expansion (BE): examples

Remark
BE ⇒ ∇0(C) ≤ c(0)⇒ for any G : constant mad(G ) ⇔ constant
degeneracy ⇒ χ(G ) constant

Examples of BE class

constant ∆ (∇r (G ) ≤ ∆r+1)
H minor free ⇒ : implies KnH minor free, and thus for any
minor G , mG ≤ f (nH)nG (and thus c(r) is even a constant)

⇒ (and thus planar graphs, bounded treewidth graphs are BE)
bounded stack number, bounded queue number (see [dM+12])
bounded crossing number
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Examples

A graph G has crossing number cr(G ) = k iff it can be drawn
in the plane such that there is at most k crossing on each edge.
Let C = {G |cr(G ) ≤ k}. C has BE
Let H ∈ G∇̃r . H has at most cr ′ = k(2r + 1) crossing per
edge.
thus m′ ≤ f (r)n′, and ∇̃r (G ) ≤ f (r), and ∇r (G ) ≤ g(r)
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The most beautiful slide

There are MANY characterizations of BE (Thm 13.2 in [dM+12])
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Characterization of BE with weak coloring

Consider a permutation π of the vertices of a graph G

vu

u is weakly 4 accessible from v

We say that u is weakly r -accessible from v iff u < v and there
exists a u − v path P of length at most r with u < min(P)

We denote Nπ
r (v) = {u weakly r -accessible from v} the

number of "backward" neighbors
We denote colπr (G ) = maxv Nπ

r (v) + 1 .
The weak r -coloring number of G is wcolr (G ) = minπ colπr (G ).
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Characterization of BE with weak coloring

Example of G with wcolr (G ) = k .

v

at most k − 1 weakly accesible vertices from v

Observe that χ(G ) ≤ wcol1(G )
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Characterization of BE with weak coloring

A class C have bounded generalized colouring number iff for any r ,
there exists c(r) such that wcolr (G ) ≤ c(r) for any G ∈ C.

Theorem (in [Zhu09])

BE ⇔ bounded generalized colouring number

Remarks:
Goal ∀r ∇r (G ) ≤ c(r) ⇔ ∀r ′ wcolr ′(G ) ≤ c ′(r ′)
For example for (r , r ′) = (0, 1):

∇0(G ) = mad(G)
2 cst, and thus ⇔ G has cst-degeneracy

it remains to check that wcol1(G ) cst ⇔ G has cst-degeneracy
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Characterization of BE with weak coloring

Proof of ⇐
Vi

Vj

vi

vje

e

. . .
. . .

H

goal: ∇r (G ) ≤ c(r)

let H ∈ G∇r such that mH
nH

= ∇r (G )

let G ′ be a witness of H: G ′ = {V1, . . . ,VH} where Vi are
trees of height ≤ r
suppose there is an external edge e = {Vi ,Vj}
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Characterization of BE with weak coloring

Proof of ⇐
Vi

Vj

vi

vje

e

. . .
. . .

H

mij

Pij

mij vjvi

this implies that there is in G a path Pij of length at most
2r + 1 between vi and vj
let mij be the minimum (in the best π) vertices of Pij
mij is weakly 2r + 1-accessible from vi and from vj
orient e toward the Vl not containing mij
now, given a Vj : each in arc means one disctinct
2r + 1-accessible vertex
each Vj has indegree at most wcol2r+1(G )
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Characterization of BE with low tree-depth coloring

The tree-depth td(G ) of a connected graph G is the minimum
height of a rooted tree T such that G ⊆ clos(T ) (clos(T ) = T+
add an edge between any vertice and its ancestors)

4

2

1 3

6

5 7

7654321

td(P7) ≤ 3
edges in T are not necessarily edges in G
tw(G ) ≤ pw(G ) ≤ td(G ): pw decomposition from T : 421,
423, 465, 467
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Characterization of BE with low tree-depth coloring

1 3

4 1

2 42

3

r

T2 T3T1

no edge in G between Ti and Tj :
td(Kn) = n
the root of T separates Ti : the CC of G \ {r} lie inside the Ti
we could have several CC in a Ti , but not interesting when
minimizing the height of T

⇒ the Ti correspond exactly to the CC of G \ {r}
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Characterization of BE with low tree-depth coloring

Tree-depth of path

td(Pn) = dlog2(n + 1)e

r

P1 P2

let T with root r such that Pn ⊆ clos(T )

td(Pn) ≥ 1 + max(td(P1), td(P2))

⇒ choose r at the center of the path
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Characterization of BE with low tree-depth coloring

Tree-depth coloring for a graph
Motivation: coloring G such that every p color classes induce
a "simple" graph
χp(G ) minimum number of colors such that each i ≤ p parts
induce a graph with tree-depth at most i
χ1(G ) = χ(G )

χ2(G ) = χs(G ): star coloring: proper coloring and every two
parts induces a star forest

Low tree-depth coloring for a class
A class C has low tree-depth coloring iff ∃ function c such that ∀p,
∀G ∈ C, χp(G ) ≤ c(p)
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Characterization of BE with low tree-depth coloring

Succession of results described in [NdM08]

Minor closed class has low tree-width coloring

Minor closed class has low tree-depth coloring

Theorem [NdM08]

BE class has low tree-width coloring (in fact iff!)

Let us prove the easy part of the last result:

Theorem 4

∇r (G ) ≤ (2r + 1)
( 2r+2
χ2r+2(G)

)
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Characterization of BE with low tree-depth coloring

Let H ∈ G∇r such that mH
nH

= ∇r (G )

Let G ′ be a witness of H: G ′ = {V1, . . . ,VH} where Vi are
trees of height ≤ r
Let N = χ2r+2(G ), I be a subset of 2r + 2 colors among N
Let {EI} be the external edges whose corresponding path Pij
(of length of at most 2r + 2 vertices) uses only colors of I
We will prove that |EI | ≤ 2r + 1

I
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Characterization of BE with low tree-depth coloring

let GI be the graph induced by vertices of color I
td(GI ) ≤ 2r + 2
let e ∈ EI between Vi and Vj

let Pij be the corresponding path between vi and vj , and mij
be the highest vertex in this path
orient e towards Vl not containing mij

⇒ each Vj has in-degree at most 2r + 1 as each in arc
corresponds to a distinct ancestor or vj

GI mij

vjvi
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Characterization of BE with χ

We define χ(G∇̃r) and χ(C∇̃r) = sup
G∈C

(χ(G∇̃r)).

Proposition 5.5 in [dM+12]

C BE ⇔ ∃c such that ∀r , χ(C∇̃r) ≤ c(r)
(⇔ ∃c such that ∀r , χ(C∇r) ≤ c(r))

In fact, we will prove the following property.

Proposition 4.4 in [dM+12]

χ(G∇̃r) ≤ 2(∇̃r (G )) + 1 and ∇̃r (G ) = O((χ(G∇̃(2r + 1
2))4)
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Characterization of BE with χ

Proposition 4.4 in [dM+12]

χ(G∇̃r) ≤ 2(∇̃r (G )) + 1 and ∇̃r (G ) = O((χ(G∇̃(2r + 1
2))4)

Proof of the first inequality.

for r = 0 this can be rephrased as "any α degenerate graph
can be α + 1 colored".
let H ∈ G∇̃r
χ(H) ≤ mad(H) + 1 = 2∇̃0(H) + 1
as ∇̃0(H) ≤ ∇̃r (G ), done!
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Characterization of BE with χ

Proposition 4.4 in [dM+12]

χ(G∇̃r) ≤ 2(∇̃r (G )) + 1 and ∇̃r (G ) = O((χ(G∇̃(2r + 1
2))4)

Proof of the second one.
No hope to bound ∇̃r (G ) ≤ f (χ(G∇̃r)) (think of complete
bipartite, even for r = 0)
For r = 0: what contains G∇̃1

2?: graphs H whose
1-subdivision are subgraphs of G
For r = 0 the inequality says (we consider the contrapositive)
"if you have a lot of edges then you have one subgraph that is
a 1-subdivision of a graph H with large χ"
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Characterization of BE with χ

Proposition 4.4 in [dM+12]

χ(G∇̃r) ≤ 2(∇̃r (G )) + 1 and ∇̃r (G ) = O((χ(G∇̃(2r + 1
2))4)

Thus, we will prove the following Lemma.

Lemma 4.5 in [dM+12]

Let c ≥ 4, G with av degree d > 56(c − 1)2 log(c−1)
log(c)−log(c−1) . Then

G contains a subgraph G ′ that is the 1-subdivision of a graph with
chromatic number c .

This implies the result we want:
Let H ∈ G∇̃r such that mH/nH = ∇̃r (G )

Lemma 4.5 says dav (H) ≥ (c − 1)4 ⇒ χ(H∇̃1
2) ≥ c , so

dav (H) ≤ χ(H∇̃1
2)4

however H∇̃1
2 ⊆ G∇̃(2r + 1

2), so χ(H∇̃1
2) ≤ χ(G∇̃(2r + 1

2)).
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Characterization of BE with χ

H ′ ∈ H∇̃1
2 in H in G

2r+1

H ′ ∈ G∇̃x with 2x+ 1 = 4r + 2

This implies the result we want as:
Let H ∈ G∇̃r such that mH/nH = ∇̃r (G )

Proposition 4.4 says dav (H) ≥ (c − 1)4 ⇒ χ(H∇̃1
2) ≥ c , so

dav (H) ≤ χ(H∇̃1
2)4

however H∇̃1
2 ⊆ G∇̃(2r + 1

2), so χ(H∇̃1
2) ≤ χ(G∇̃(2r + 1

2)).
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Characterization of BE with χ

Proof of large av deg⇒ contains G ′: a 1-sub of a graph with χ ≥ c

There exists a bipartite subgraph G1 = (A,B) ⊆ G with ad
degree d

2 , and G2 ⊆ G1 with min degree D ≥ d
2 , and G3 ⊆ G2

with vertices of B having degree exactly D

χ(H) ≤ c− 1

A

G′

D

B
G3
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Characterization of BE with χ

Proof of large av deg⇒ contains G ′: a 1-sub of a graph with χ ≥ c

By contradiction: suppose that ∀G ′ ⊆ G3 s.t. sub(H) = G ′,
χ(H) ≤ c − 1.
We forget H and say that G ′ has a "coloring" with c − 1
colors, where "coloring" means coloring only vertices in A s.t..
Let S be the subraphs of G3 where vertices of B have degree 2
In particular, ∀G ′ ∈ S have a "coloring" with c − 1 colors
Idea: if c − 1 is to small (1 for example!) and D is big:
contradiction

χ(H) ≤ c− 1

A

G′

D

B
G3
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Characterization of BE with χ

Proof of large av deg⇒ contains G ′: a 1-sub of a graph with χ ≥ c

Let NS = |S|
Let Nc = (c − 1)|A| be the number of coloring of A
Let Nmax be the maximum number of graphs of S that can be
colored with a fixed coloring φ of A
as all graphs of S can be colored, NS ≤ NCNmax

(c− 1)|A| colorings of A

S

graphs that can be "colored" with φNmax

φ
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Characterization of BE with χ

Proof of large av deg⇒ contains G ′: a 1-sub of a graph with χ ≥ c

Let NS = |S| =
(2
D

)|B|
Let Nmax ≤ (

( 2
c−1

)
( D
c−1)2)|B|

Now, writing NS ≤ NCNmax leads to a contradiction .. if |B||A| is
large enough

B

D

A
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Characterization of BE with χ
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(2
D

)|B|
Let Nmax ≤ (

( 2
c−1

)
( D
c−1)2)|B|
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c− 1

c− 1

B

D

A
1
1

2

2
D
c−1
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Equivalence beetween grad and top grad

Corollary 4.1 of [dM+12]

For any G and r , ∇̃r (G ) ≤ ∇r (G ) ≤ 4(4∇̃r (G ))(r+1)2

In fact, we will prove the following theorem.

Thm 3.9 in [Dvo07]

Let r , d ≥ 1, p = 4(4d)(r+1)2 . If ∇r (G ) ≥ p, then G contains a
subgraph F ′ that is a ≤ 2r subdivision of a graph F with minimum
degree d .

Theorem 2 says: if ∇r (G ) ≥ p, then ∇̃r (G ) ≥ d , and thus implies
Theorem 1.
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Equivalence beetween grad and top grad

Lemma in [Dvo07]

Let G ′ be a radius r witness with min degree (of the
corresponding contracted graph) is d .

Let d1 = (d
2 )

1
r+1 .

There exists a radius r witness G ′ ⊆ G with min degree (of
the corresponding contracted graph) is d1, such that the
degree in G ′ of each center vi ∈ Vi is also at least d1.
Moreover there is no useless leaf in G ′.

Lemma says by loosing a factor r+1
√
. on the density of the minor,

we can assume that the centers of the witness have large degree.

36 / 46



Equivalence beetween grad and top grad

d(vi) = 4 < d1

Proof
while there exists a center vi ∈ G with d(vi ) < d1

remove vi and adjacent edges and recursively remove useless
leaves (this can decrease degree of other vj)
define new trees corresponding to Vi \ {vi}
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Equivalence beetween grad and top grad

d(vi) = 4 < d1

Proof
When we stop, the remaining graph G ′ is non empty:

let k be the initial # trees in G , e ≥ d
2 k be # external edges

in G
when removing vi , its degree is at most d1 ⇒ at most d1x
external edges removed, where x = # suppressed vertices
we bound x by looking what happen to a given tree
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Equivalence beetween grad and top grad

Proof
Upper bound on x :

all the suppressed vertices belongs to the red subtree of degree
at most d1 and height at most r ⇒ x < kd r

1

we take d1 such that kd r+1
1 < d

2 k
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Equivalence beetween grad and top grad

d(vi) = 4 < d1

Proof
When we stop, G ′ satisfies the two claimed properties:

all centers vi have d(vi ) = dint + dext ≥ d1

there is no useless leaf, implying that each of the dint subtrees
"produces" at least one external edge
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Equivalence beetween grad and top grad

Back to Thm 3.9

Let r , d ≥ 1, p = 4(4d)(r+1)2 . If ∇r (G ) ≥ p, then G contains a
subgraph F ′ that is a ≤ 2r subdivision of a graph F with minimum
degree d .

Sketch of proof

∇r (G ) ≥ p implies G contains a subgraph G1 which is a radius
r witness of min degree (in the contracted) p
using previous lemma, let G2 ⊆ G1 be a radius r witness of
min degree (in the contracted) d1, such that the degree in G ′

of each center vi ∈ Vi is also at least d1
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Equivalence beetween grad and top grad

d(vi) large

get a subdivided graph G ′ ⊆ G2 by keeping one external edge
out of each subtree (and its corresponding path to the root)
if you can indeed save these external edges:

large degree of center implies that we get many edges
the corresponding subgraph G ′ is a subdivided graph

Problems
the other vertex of each edge may not be saved
if the subtrees are very leafy, we have to bound the loss 42 / 46
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Nowhere Dense (ND)

Definition
A class C is ND iff ∃c such that ∀r , ω(C∇r) ≤ c(r)

BE ⊆ ND (for BE we even require χ(C∇r) ≤ c(r))
there exists several equivalent definitions of ND (Thm 13.2 in
[dM+12]).
in terms of number of edges: C is ND iff ∃c such that ∀r ,
∀G ∈ C, ∀H ∈ G∇r , mH ≤ n1+fr (nH)

H (with fr = on(1))
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Examples

Example of a class C ND but no BE (p105 [dM+12])

We want C such that for r ≥ r0 graphs of C∇r have big χ and
small ω (Erdös classes).
Let C = {k cages (k-regular graphs with girth=k), k ≥ 0})
C is not BE are graphs do not have constant degeneracy
C is ND:

Assume Kn ∈ C∇r , let us wound n ≤ f (r)
Let G ∈ C such that Kn ∈ G∇r
K3 ∈ G∇r ⇒ there exists a cycle of length at most
3(2r + 1)⇒ g(G ) ≤ 3(2r + 1)
n − 1 ≤ ∆(G∇r) ≤ ∆(G )r+1
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