Bounded expansion: Introduction

Marin Bougeret

JCALM 2016

Definitions and examples

- 2 Equivalent characterization of bounded expansion
- A property on grad and top grad
- A word on nowhere dense

Minors

- *H* minor of *G* iff exists subgraph $G' \subseteq G$ which is witness of *H*
- G' witness of H iff exists partition of $V_{G'}$ into connected V_1, \ldots, V_{n_H} such that contracting G' gives H
- *H* is a *r* shallow minor of *G* ($H \in G \nabla r$) iff exists subgraph $G' \subseteq G$ such that *G'* is a radius (dist in $G[V_i]$) *r* witness of *H*
- G' radius r witness of H iff in addition we have $rad(V_i) \leq r$

Minors

In the witness, we can suppose that

- V_i are rooted trees
- at most one external edge between any pair $\{V_i, V_j\}$
- all leaves are incident to an external edge
- $H \in G \nabla r \Leftrightarrow \text{trees of height} \leq r$

 $H \in G\nabla(r - \frac{1}{2})$ iff $H \in G\nabla r$ and no external edge between to leaves both at distance r of their root

Topological minors

- *H* topological minor of *G* iff exists subgraph $G' \subseteq G$ such that G' is a subdivision of H ($\Leftrightarrow \exists v_1, \ldots, v_{n_H}$ in V_G such that $\{v_i, v_j\} \in E_H \Rightarrow \exists$ path $P_{i,j}$ between v_i and v_j , where $P_{i,j}$ are verte disjoint paths)
- *H r* top. shallow minor of *G* ($H \in G\tilde{\nabla}r$) iff exists subgraph $G' \subseteq G$ *G'* is a $\leq 2r$ subdivision of *H* (path of length $\leq 2r + 1$)

Minor Vs Topological minor

•
$$G\tilde{\nabla}0 = G\nabla 0 = \text{subgraphs of } G$$

•
$$G\tilde{\nabla}r \subseteq G\nabla r$$

• beeing a topological minor is not a well quasi ordering relation

Grad and Top grad

- Greatest reduced average degree: $\nabla_r(G) = \max_{H \in G \nabla r} \frac{m_H}{n_H}$
- Top. Greatest reduced average deg: $\tilde{\nabla}_r(G) = \max_{H \in G \tilde{\nabla}r} \frac{m_H}{n_H}$

Thank you Felix Reidl!

∇_r(G) is the maximum external edges in a radius r witness G'
 ∇₀(G) = ∇̃₀(G) = mad(G)/2

7/46

Corollary 4.1 of [dM⁺12]

For any G and r, $\tilde{ abla}_r(G) \leq abla_r(G) \leq 4(4\tilde{ abla}_r(G))^{(r+1)^2}$

Bounded Expansion (BE)

Definitions

- $C\nabla r = \bigcup_{G \in C} G\nabla r$
- $\nabla_r(\mathcal{C}) = \sup_{G \in \mathcal{C}} (\nabla_r(G))$
- A class C is BE iff there exists a function $c < \infty$ such that $\forall r$, $\nabla_r(C) \leq c(r)$ (or $\tilde{\nabla}_r(C) \leq c'(r)$).

 $\mathcal C$ is BE iff $\exists c$ such that $\forall r, \forall G \in \mathcal C, \forall G_0 \in G \nabla r, \ m_{G_0} \leq c(r) n_{G_0}$

Remark

 $\mathsf{BE} \Rightarrow \nabla_0(\mathcal{C}) \leq c(0) \Rightarrow \text{ for any } G: \text{ constant } mad(G) \Leftrightarrow \text{ constant } degeneracy \Rightarrow \chi(G) \text{ constant }$

Examples of BE class

• constant
$$\Delta$$
 $(\nabla_r(G) \leq \Delta^{r+1})$

- *H* minor free \Rightarrow : implies K_{n_H} minor free, and thus for any minor *G*, $m_G \leq f(n_H)n_G$ (and thus c(r) is even a constant)
- \Rightarrow (and thus planar graphs, bounded treewidth graphs are BE)
 - bounded stack number, bounded queue number (see [dM+12])
 - bounded crossing number

• A graph G has crossing number cr(G) = k iff it can be drawn in the plane such that there is at most k crossing on each edge.

• Let
$$C = \{G | cr(G) \leq k\}$$
. C has BE

- Let $H \in G\tilde{\nabla}r$. *H* has at most cr' = k(2r+1) crossing per edge.
- thus $m' \leq f(r)n'$, and $\tilde{
 abla}_r(G) \leq f(r)$, and $abla_r(G) \leq g(r)$

2 Equivalent characterization of bounded expansion

- 3 A property on grad and top grad
- 4 word on nowhere dense

There are MANY characterizations of BE (Thm 13.2 in [dM⁺12])

Consider a permutation π of the vertices of a graph G

u is weakly 4 accessible from v

- We say that u is weakly r-accessible from v iff u < v and there exists a u v path P of length at most r with u < min(P)
- We denote N^π_r(v) = {u weakly r-accessible from v} the number of "backward" neighbors
- We denote $col_r^{\pi}(G) = \max_v N_r^{\pi}(v) + 1$.
- The weak *r*-coloring number of *G* is $wcol_r(G) = \min_{\pi} col_r^{\pi}(G)$.

Example of G with $wcol_r(G) = k$.

at most k-1 weakly accesible vertices from \boldsymbol{v}

Observe that $\chi(G) \leq wcol_1(G)$

A class C have bounded generalized colouring number iff for any r, there exists c(r) such that $wcol_r(G) \leq c(r)$ for any $G \in C$.

Theorem (in [Zhu09])

 $BE \Leftrightarrow bounded \ generalized \ colouring \ number$

Remarks:

• Goal
$$\forall r \
abla_r(G) \leq c(r) \Leftrightarrow \forall r' \ \textit{wcol}_{r'}(G) \leq c'(r')$$

- For example for (r, r') = (0, 1):
- $\nabla_0(G) = \frac{mad(G)}{2}$ cst, and thus $\Leftrightarrow G$ has cst-degeneracy
- it remains to check that $wcol_1(G)$ cst $\Leftrightarrow G$ has cst-degeneracy

Proof of \Leftarrow

- goal: $\nabla_r(G) \leq c(r)$
- let $H \in G \nabla r$ such that $\frac{m_H}{n_H} = \nabla_r(G)$
- let G' be a witness of H: $G' = \{V_1, \ldots, V_H\}$ where V_i are trees of height $\leq r$
- suppose there is an external edge $e = \{V_i, V_j\}$

Proof of \Leftarrow

- this implies that there is in G a path P_{ij} of length at most 2r + 1 between v_i and v_j
- let m_{ij} be the minimum (in the best π) vertices of P_{ij}
- m_{ij} is weakly 2r + 1-accessible from v_i and from v_j
- orient e toward the V_l not containing m_{ij}
- now, given a V_j : each in arc means one disctinct 2r + 1-accessible vertex
- each V_j has indegree at most wcol_{2r+1}(G)

Proof of \Leftarrow

- this implies that there is in G a path P_{ij} of length at most 2r + 1 between v_i and v_j
- let m_{ij} be the minimum (in the best π) vertices of P_{ij}
- m_{ij} is weakly 2r + 1-accessible from v_i and from v_j
- orient e toward the V_l not containing m_{ij}
- now, given a V_j : each in arc means one disctinct 2r + 1-accessible vertex
- each V_j has indegree at most wcol_{2r+1}(G)

The tree-depth td(G) of a connected graph G is the minimum height of a rooted tree T such that $G \subseteq clos(T)$ (clos(T) = T+ add an edge between any vertice and its ancestors)

- $td(P_7) \le 3$
- edges in T are not necessarily edges in G
- $tw(G) \le pw(G) \le td(G)$: pw decomposition from T: 421, 423, 465, 467

- no edge in G between T_i and T_j :
 - $td(K_n) = n$
 - the root of T separates T_i : the CC of $G \setminus \{r\}$ lie inside the T_i
 - we could have several CC in a T_i , but not interesting when minimizing the height of T
 - \Rightarrow the T_i correspond exactly to the CC of $G \setminus \{r\}$

Tree-depth of path

 $td(P_n) = \lceil log_2(n+1) \rceil$

- let T with root r such that $P_n \subseteq clos(T)$
- $td(P_n) \ge 1 + \max(td(P_1), td(P_2))$
- \Rightarrow choose *r* at the center of the path

Tree-depth coloring for a graph

- Motivation: coloring G such that every p color classes induce a "simple" graph
- *χ_p(G)* minimum number of colors such that each *i* ≤ *p* parts
 induce a graph with tree-depth at most *i*

•
$$\chi_1(G) = \chi(G)$$

 χ₂(G) = χ_s(G): star coloring: proper coloring and every two parts induces a star forest

Low tree-depth coloring for a class

A class C has low tree-depth coloring iff \exists function c such that $\forall p$, $\forall G \in C$, $\chi_p(G) \leq c(p)$

Succession of results described in [NdM08]

Minor closed class has low tree-width coloring

Minor closed class has low tree-depth coloring

Theorem [NdM08]

BE class has low tree-width coloring (in fact iff!)

Let us prove the easy part of the last result:

Theorem 4

$$\nabla_r(G) \leq (2r+1)\binom{2r+2}{\chi_{2r+2}(G)}$$

- Let $H \in G \nabla r$ such that $\frac{m_H}{n_H} = \nabla_r(G)$
- Let G' be a witness of H: $G' = \{V_1, \ldots, V_H\}$ where V_i are trees of height $\leq r$
- Let $N = \chi_{2r+2}(G)$, I be a subset of 2r + 2 colors among N
- Let {E_I} be the external edges whose corresponding path P_{ij} (of length of at most 2r + 2 vertices) uses only colors of I
- We will prove that $|E_I| \leq 2r + 1$

- let G_I be the graph induced by vertices of color I
- $td(G_I) \le 2r + 2$
- let $e \in E_I$ between V_i and V_j
- let P_{ij} be the corresponding path between v_i and v_j , and m_{ij} be the highest vertex in this path
- orient e towards V_l not containing m_{ij}
- \Rightarrow each V_j has in-degree at most 2r + 1 as each in arc corresponds to a distinct ancestor or v_j

We define
$$\chi(G\tilde{\nabla}r)$$
 and $\chi(C\tilde{\nabla}r) = \sup_{G\in\mathcal{C}}(\chi(G\tilde{\nabla}r)).$

Proposition 5.5 in [dM⁺12]

 $\begin{array}{l} \mathcal{C} \ \mathsf{BE} \Leftrightarrow \exists c \ \mathsf{such} \ \mathsf{that} \ \forall r, \ \chi(\mathcal{C} \tilde{\nabla} r) \leq c(r) \\ (\Leftrightarrow \exists c \ \mathsf{such} \ \mathsf{that} \ \forall r, \ \chi(\mathcal{C} \nabla r) \leq c(r)) \end{array}$

In fact, we will prove the following property.

Proposition 4.4 in [dM⁺12]

 $\chi(G\tilde{
abla} r) \leq 2(\tilde{
abla}_r(G)) + 1 ext{ and } \tilde{
abla}_r(G) = \mathcal{O}((\chi(G\tilde{
abla}(2r + rac{1}{2}))^4)$

Proposition 4.4 in [dM⁺12]

$$\chi(G ilde{
abla} r) \leq 2(ilde{
abla}_r(G)) + 1 ext{ and } ilde{
abla}_r(G) = \mathcal{O}((\chi(G ilde{
abla}(2r+rac{1}{2}))^4)$$

Proof of the first inequality.

- for r = 0 this can be rephrased as "any α degenerate graph can be $\alpha + 1$ colored".
- let $H \in G\tilde{\nabla}r$
- $\chi(H) \leq mad(H) + 1 = 2\tilde{\nabla}_0(H) + 1$
- as $ilde{
 abla}_0(H) \leq ilde{
 abla}_r(G)$, done!

Proposition 4.4 in [dM⁺12]

$$\chi(G\tilde{
abla} r) \leq 2(\tilde{
abla}_r(G)) + 1 ext{ and } \tilde{
abla}_r(G) = \mathcal{O}((\chi(G\tilde{
abla}(2r+rac{1}{2}))^4))$$

Proof of the second one.

- For r = 0: what contains G∇
 ¹/₂?: graphs H whose 1-subdivision are subgraphs of G
- For r = 0 the inequality says (we consider the contrapositive) "if you have a lot of edges then you have one subgraph that is a 1-subdivision of a graph H with large χ"

Proposition 4.4 in [dM⁺12]

$$\chi(G ilde{
abla} r) \leq 2(ilde{
abla}_r(G)) + 1 ext{ and } ilde{
abla}_r(G) = \mathcal{O}((\chi(G ilde{
abla}(2r+rac{1}{2}))^4)$$

Thus, we will prove the following Lemma.

Lemma 4.5 in [dM⁺12]

Let $c \ge 4$, G with av degree $d > 56(c-1)^2 \frac{\log(c-1)}{\log(c) - \log(c-1)}$. Then G contains a subgraph G' that is the 1-subdivision of a graph with chromatic number c.

This implies the result we want:

- Let $H \in G \tilde{
 abla} r$ such that $m_H/n_H = \tilde{
 abla}_r(G)$
- Lemma 4.5 says $d_{av}(H) \ge (c-1)^4 \Rightarrow \chi(H\tilde{\nabla}\frac{1}{2}) \ge c$, so $d_{av}(H) \le \chi(H\tilde{\nabla}\frac{1}{2})^4$
- however $H\tilde{\nabla}\frac{1}{2} \subseteq G\tilde{\nabla}(2r+\frac{1}{2})$, so $\chi(H\tilde{\nabla}\frac{1}{2}) \leq \chi(G\tilde{\nabla}(2r+\frac{1}{2}))$.

This implies the result we want as:

- Let $H \in G \tilde{
 abla} r$ such that $m_H/n_H = \tilde{
 abla}_r(G)$
- Proposition 4.4 says $d_{av}(H) \ge (c-1)^4 \Rightarrow \chi(H\tilde{\nabla}\frac{1}{2}) \ge c$, so $d_{av}(H) \le \chi(H\tilde{\nabla}\frac{1}{2})^4$
- however $H\tilde{\nabla}\frac{1}{2} \subseteq G\tilde{\nabla}(2r+\frac{1}{2})$, so $\chi(H\tilde{\nabla}\frac{1}{2}) \leq \chi(G\tilde{\nabla}(2r+\frac{1}{2}))$.

Proof of large av deg \Rightarrow contains G': a 1-sub of a graph with $\chi \geq c$

• There exists a bipartite subgraph $G_1 = (A, B) \subseteq G$ with ad degree $\frac{d}{2}$, and $G_2 \subseteq G_1$ with min degree $D \geq \frac{d}{2}$, and $G_3 \subseteq G_2$ with vertices of B having degree exactly D

Proof of large av deg \Rightarrow contains G': a 1-sub of a graph with $\chi \ge c$

• By contradiction: suppose that $\forall G' \subseteq G_3 \text{ s.t. } sub(H) = G', \chi(H) \leq c - 1.$

We forget H and say that G' has a "coloring" with c - 1 colors, where "coloring" means coloring only vertices in A s.t..

- Let S be the subraphs of G_3 where vertices of B have degree 2
- In particular, $orall G' \in \mathcal{S}$ have a "coloring" with c-1 colors
- Idea: if c 1 is to small (1 for example!) and D is big: contradiction

Proof of large av deg \Rightarrow contains G': a 1-sub of a graph with $\chi \ge c$

- Let $N_S = |\mathcal{S}|$
- Let $N_c = (c-1)^{|A|}$ be the number of coloring of A
- Let N_{max} be the maximum number of graphs of S that can be colored with a fixed coloring ϕ of A

• as all graphs of ${\cal S}$ can be colored, $N_{\cal S} \leq N_{\cal C} N_{max}$

Proof of large av deg \Rightarrow contains G': a 1-sub of a graph with $\chi \ge c$

• Let
$$N_S = |S| = {\binom{2}{D}}^{|B|}$$

• Let
$$N_{max} \leq ({2 \choose c-1})({D \over c-1})^2)^{|B|}$$

• Now, writing $N_S \leq N_C N_{max}$ leads to a contradiction .. if $\frac{|B|}{|A|}$ is large enough

Proof of large av deg \Rightarrow contains G': a 1-sub of a graph with $\chi \ge c$

• Let
$$N_S = |\mathcal{S}| = {2 \choose D}^{|B|}$$

• Let
$$N_{max} \leq ({2 \choose c-1})({D \over c-1})^2)^{|B|}$$

• Now, writing $N_S \leq N_C N_{max}$ leads to a contradiction .. if $\frac{|B|}{|A|}$ is large enough

- Definitions and examples
- 2 Equivalent characterization of bounded expansion
- 3 A property on grad and top grad
- A word on nowhere dense

Corollary 4.1 of [dM⁺12]

For any G and r,
$$ilde{
abla}_r(G) \leq
abla_r(G) \leq 4(4 ilde{
abla}_r(G))^{(r+1)^2}$$

In fact, we will prove the following theorem.

Thm 3.9 in [Dvo07]

Let $r, d \ge 1$, $p = 4(4d)^{(r+1)^2}$. If $\nabla_r(G) \ge p$, then G contains a subgraph F' that is a $\le 2r$ subdivision of a graph F with minimum degree d.

Theorem 2 says: if $\nabla_r(G) \ge p$, then $\tilde{\nabla}_r(G) \ge d$, and thus implies Theorem 1.

Lemma in [Dvo07]

• Let G' be a radius r witness with min degree (of the corresponding contracted graph) is d.

• Let
$$d_1 = (\frac{d}{2})^{\frac{1}{r+1}}$$
.

There exists a radius r witness G' ⊆ G with min degree (of the corresponding contracted graph) is d₁, such that the degree in G' of each center v_i ∈ V_i is also at least d₁. Moreover there is no useless leaf in G'.

Lemma says by loosing a factor r+1. on the density of the minor, we can assume that the centers of the witness have large degree.

Proof

- while there exists a center $v_i \in G$ with $d(v_i) < d_1$
 - remove v_i and adjacent edges and recursively remove useless leaves (this can decrease degree of other v_j)
 - define new trees corresponding to $V_i \setminus \{v_i\}$

Proof

When we stop, the remaining graph G' is non empty:

- let k be the initial # trees in G, e ≥ ^d/₂k be # external edges in G
- when removing v_i , its degree is at most $d_1 \Rightarrow$ at most d_1x external edges removed, where x = # suppressed vertices
- we bound x by looking what happen to a given tree

Proof

- all the suppressed vertices belongs to the red subtree of degree at most d₁ and height at most r ⇒ x < kd₁^r
- we take d_1 such that $kd_1^{r+1} < \frac{d}{2}k$

Proof

- all the suppressed vertices belongs to the red subtree of degree at most d₁ and height at most r ⇒ x < kd₁^r
- we take d_1 such that $kd_1^{r+1} < \frac{d}{2}k$

Proof

- all the suppressed vertices belongs to the red subtree of degree at most d₁ and height at most r ⇒ x < kd₁^r
- we take d_1 such that $kd_1^{r+1} < \frac{d}{2}k$

Proof

- all the suppressed vertices belongs to the red subtree of degree at most d₁ and height at most r ⇒ x < kd₁^r
- we take d_1 such that $kd_1^{r+1} < \frac{d}{2}k$

Proof

- all the suppressed vertices belongs to the red subtree of degree at most d₁ and height at most r ⇒ x < kd₁^r
- we take d_1 such that $kd_1^{r+1} < \frac{d}{2}k$

Proof

- all the suppressed vertices belongs to the red subtree of degree at most d₁ and height at most r ⇒ x < kd₁^r
- we take d_1 such that $kd_1^{r+1} < \frac{d}{2}k$

Proof

- all the suppressed vertices belongs to the red subtree of degree at most d₁ and height at most r ⇒ x < kd₁^r
- we take d_1 such that $kd_1^{r+1} < \frac{d}{2}k$

Proof

When we stop, G' satisfies the two claimed properties:

- all centers v_i have $d(v_i) = d_{int} + d_{ext} \ge d_1$
- there is no useless leaf, implying that each of the *d_{int}* subtrees "produces" at least one external edge

Back to Thm 3.9

Let $r, d \ge 1$, $p = 4(4d)^{(r+1)^2}$. If $\nabla_r(G) \ge p$, then G contains a subgraph F' that is a $\le 2r$ subdivision of a graph F with minimum degree d.

Sketch of proof

- $\nabla_r(G) \ge p$ implies G contains a subgraph G_1 which is a radius r witness of min degree (in the contracted) p
- using previous lemma, let $G_2 \subseteq G_1$ be a radius r witness of min degree (in the contracted) d_1 , such that the degree in G' of each center $v_i \in V_i$ is also at least d_1

- get a subdivided graph $G' \subseteq G_2$ by keeping one external edge out of each subtree (and its corresponding path to the root)
- if you can indeed save these external edges:
 - large degree of center implies that we get many edges
 - the corresponding subgraph G' is a subdivided graph

Problems

- the other vertex of each edge may not be saved
- if the subtrees are very leafy, we have to bound the loss

- Definitions and examples
- 2 Equivalent characterization of bounded expansion
- 3 A property on grad and top grad
- 4 A word on nowhere dense

Definition

- A class C is ND iff $\exists c$ such that $\forall r, \omega(C\nabla r) \leq c(r)$
 - BE \subseteq ND (for BE we even require $\chi(\mathcal{C}\nabla r) \leq c(r)$)
 - there exists several equivalent definitions of ND (Thm 13.2 in [dM⁺12]).
 - in terms of number of edges: C is ND iff $\exists c$ such that $\forall r$, $\forall G \in C$, $\forall H \in G \nabla r$, $m_H \leq n_H^{1+f_r(n_H)}$ (with $f_r = o_n(1)$)

Example of a class C ND but no BE (p105 [dM⁺12])

- We want C such that for $r \ge r_0$ graphs of $C\nabla r$ have big χ and small ω (Erdös classes).
- Let $C = \{k \text{ cages } (k \text{-regular graphs with girth} = k), k \ge 0\})$
- $\bullet \ \mathcal{C}$ is not BE are graphs do not have constant degeneracy
- C is ND:
 - Assume $K_n \in C\nabla r$, let us wound $n \leq f(r)$
 - Let $G \in \mathcal{C}$ such that $K_n \in G \nabla r$
 - $K_3 \in G \nabla r \Rightarrow$ there exists a cycle of length at most $3(2r+1) \Rightarrow g(G) \leq 3(2r+1)$
 - $n-1 \leq \Delta(G\nabla r) \leq \Delta(G)^{r+1}$

[dM ⁺ 12]	Patrice Ossona de Mendez et al. Sparsity: graphs, structures, and algorithms, volume 28. Springer Science & Business Media, 2012.
[Dvo07]	Zdenek Dvorák. Asymptotical structure of combinatorial objects. Charles University, Faculty of Mathematics and Physics, 2007.
[NdM08]	Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded expansion i. decompositions. European Journal of Combinatorics, 29(3):760–776, 2008.
[Zhu09]	Xuding Zhu. Colouring graphs with bounded generalized colouring number. Discrete Mathematics, 309(18):5562–5568, 2009.

46 / 46