The guess approximation technique and its application to the Discrete Resource Sharing Scheduling Problem

Marin Bougeret, Pierre-François Dutot, Denis Trystram

Laboratoire LIG

MAPSP 2009

1 Brief overview of classical *PTAS* design techniques

2 The guess approximation technique

3 Application to the DRSSP

- Presentation of the problem
- A first approximation scheme
- Improved scheme with guess approximation

1 Brief overview of classical *PTAS* design techniques

2 The guess approximation technique

3 Application to the DRSSP

- Presentation of the problem
- A first approximation scheme
- Improved scheme with guess approximation

4 Discussion

The main techniques..

Some of the main classical *PTAS* design techniques [3] [4]:

- structuring the input
- structuring the output ("extending partial small size solutions")
- structuring the execution of an algorithm ("trimmed algorithm")
- oracle based approach
- ...

Oracle based approach

- define the guess G: choose an "interesting" property P
- ask a question Q(I) to the oracle
- the oracle provides an answer $r^* \in R$ (s t. $P(Q(I), r^*)$ is true)
- find a solution using the guess: A provides $S(r^*) \leq \rho Opt$
- take the best: try all the possible answers and select the best of all the S(r), r ∈ R

Oracle based approach

- define the guess G: choose an "interesting" property P
- ask a question Q(I) to the oracle
- the oracle provides an answer $r^* \in R$ (s t. $P(Q(I), r^*)$ is true)
- find a solution using the guess: A provides $S(r^*) \leq \rho Opt$
- take the best: try all the possible answers and select the best of all the S(r), r ∈ R

Oracle based approach

- define the guess G: choose an "interesting" property P
- ask a question Q(I) to the oracle
- the oracle provides an answer $r^* \in R$ (s t. $P(Q(I), r^*)$ is true)
- find a solution using the guess: A provides $S(r^*) \leq
 ho Opt$
- take the best: try all the possible answers and select the best of all the S(r), r ∈ R

Oracle based approach

- define the guess G: choose an "interesting" property P
- ask a question Q(I) to the oracle
- the oracle provides an answer $r^* \in R$ (s t. $P(Q(I), r^*)$ is true)
- find a solution using the guess: A provides $S(r^*) \leq \rho Opt$
- take the best: try all the possible answers and select the best of all the S(r), r ∈ R

Oracle based approach

- define the guess G: choose an "interesting" property P
- ask a question Q(I) to the oracle
- the oracle provides an answer $r^* \in R$ (s t. $P(Q(I), r^*)$ is true)
- find a solution using the guess: A provides $S(r^*) \leq \rho Opt$
- take the best: try all the possible answers and select the best of all the S(r), r ∈ R

Oracle based approach

The obtained algorithm (without oracle):

• is a ρ approximation

• has a computational complexity in $O(t_A * 2^{|r^*|})$

Generally, we can choose $|r^*|$ (leading to different ρ), leading to classical approximation schemes.

Brief overview of classical PTAS design techniques

2 The guess approximation technique

3 Application to the DRSSP

- Presentation of the problem
- A first approximation scheme
- Improved scheme with guess approximation

4 Discussion

Definition

- idea(1): outline approximation schemes = structuring the input + asking question [1]
- idea(2): guess approximation = approximate the guess itself !

Definition

- idea(1): outline approximation schemes = structuring the input + asking question [1]
- idea(2): guess approximation = approximate the guess itself !

Definition

- idea(1): outline approximation schemes = structuring the input + asking question [1]
- idea(2): guess approximation = approximate the guess itself !

Definition

- idea(1): outline approximation schemes = structuring the input + asking question [1]
- idea(2): guess approximation = approximate the guess itself !

Consequences

The obtained algorithm (without oracle):

- \bullet is a ρ' approximation
- has a computational complexity in $O(t_A * 2^{|f(r^*)|})$

Here, we can control the complexity by adjusting:

- the length of the needed oracle answer
- the roughness of the contraction

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

Brief overview of classical PTAS design techniques

2 The guess approximation technique

3 Application to the DRSSP

- Presentation of the problem
- A first approximation scheme
- Improved scheme with guess approximation

4 Discussion

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

Discrete Resource Sharing Scheduling Problem (DRSSP)

Input

- a set of n instances l_j, a set of k heuristics h_i, m resources to share
- a cost matrix (C_{ij}) which gives the time needed for any heuristic h_i to solve any instance l_j with 1 resource (+ linear assumption)

Output

An allocation of the resources $S = (S_1, \ldots, S_k)$ such that

• $S_i \in \mathbb{N}^*$ (continuous version in [2])

•
$$\sum_{i=1}^{k} S_i = m$$

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

Discrete Resource Sharing Scheduling Problem (DRSSP)

Input

- a set of *n* instances *l_j*, a set of *k* heuristics *h_i*, *m* resources to share
- a cost matrix (*C_{ij}*) which gives the time needed for any heuristic *h_i* to solve any instance *I_j* with 1 resource (+ linear assumption)

Output

An allocation of the resources $S = (S_1, \ldots, S_k)$ such that:

• $S_i \in \mathbb{N}^*$ (continuous version in [2])

•
$$\sum_{i=1}^k S_i = m$$

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

Objective function:
$$\sum_{j=1}^{n} \min_{1 \le i \le k} \left\{ \frac{C(h_i, l_j)}{S_i} \right\}$$

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

Objective function:
$$\sum_{j=1}^{n} \min_{1 \le i \le k} \left\{ \frac{C(h_i, l_j)}{S_i} \right\}$$

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

Objective function:
$$\sum_{j=1}^{n} \min_{1 \le i \le k} \left\{ \frac{C(h_i, l_j)}{S_i} \right\}$$

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

Objective function:
$$\sum_{j=1}^{n} \min_{1 \le i \le k} \left\{ \frac{C(h_i, l_j)}{S_i} \right\}$$

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

Objective function:
$$\sum_{j=1}^{n} \min_{1 \le i \le k} \left\{ \frac{C(h_i, l_j)}{S_i} \right\}$$

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

Definition of the algorithm

MA : the "core" algorithm

- mean allocation algorithm (*MA*): allocates $\lfloor \frac{m}{k} \rfloor$ resources to each heuristic.
- *MA* is a *k* approximation.

MA with oracle : MA'

- we choose $g \in \{1, \ldots, k\}$, which parameterizes the length of the oracle response
- we consider the following MA^r algorithm (given any guess $r = [(i_1, \ldots, i_g), (r_1, \ldots, r_g)])$:
 - allocate r_j processors to heuristic $h_{i_j}, j \in \{1, \dots, g\}$
 - applies MA on the k' others heuristics with the m' remaining processors

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

Definition of the algorithm

MA : the "core" algorithm

- mean allocation algorithm (*MA*): allocates $\lfloor \frac{m}{k} \rfloor$ resources to each heuristic.
- *MA* is a *k* approximation.

MA with oracle : MA^r

- we choose g ∈ {1,...,k}, which parameterizes the length of the oracle response
- we consider the following MA^r algorithm (given any guess $r = [(i_1, \ldots, i_g), (r_1, \ldots, r_g)])$:
 - allocate r_j processors to heuristic $h_{i_j}, j \in \{1, \dots, g\}$
 - applies *MA* on the *k'* others heuristics with the *m'* remaining processors

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

MA^r with the "good" property

What is the most "important" subset of g heuristics ?

- those that have the largest number of allocated resources
- Ithose that have the fewest number of allocated resources
- those that have the largest "useful" computation time

Proposition

When asking to the oracle the allocation of the g heuristics which verify property 3

•
$$MA^r$$
 is a $\frac{k}{g+1}$ approximation

• complexity of $MA^r \approx (km)^g$

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

MA^r with the "good" property

What is the most "important" subset of g heuristics ?

- those that have the largest number of allocated resources
- It those that have the fewest number of allocated resources
- those that have the largest "useful" computation time

Proposition

When asking to the oracle the allocation of the g heuristics which verify property 3

- MA^r is a $\frac{k}{g+1}$ approximation
- complexity of $MA^r \approx (km)^g$

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

What could be approximated here?

Notice that the oracle provides two types of information:

- a set of index of heuristics (hard to "contract")
- a set of number of allocated processors (easy to "contract")

We need to define f such that

• $|f(r^*)| << |r^*|$

• the approximation ratio using $f(r^*)$ is not degraded too much Thus we contract the vector (r_1^*, \ldots, r_g^*) . Let $(\tilde{r_1}^*, \ldots, \tilde{r_g}^*) = f(r_1^*, \ldots, r_g^*)$.

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

What could be approximated here?

Notice that the oracle provides two types of information:

- a set of index of heuristics (hard to "contract")
- \bullet a set of number of allocated processors (easy to "contract") We need to define f such that
 - $|f(r^*)| << |r^*|$
 - the approximation ratio using $f(r^*)$ is not degraded too much

Thus we contract the vector (r_1^*, \ldots, r_g^*) . Let $(\tilde{r_1}^*, \ldots, \tilde{r_g}^*) = f(r_1^*, \ldots, r_g^*)$.

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

What could be approximated here?

Notice that the oracle provides two types of information:

- a set of index of heuristics (hard to "contract")
- a set of number of allocated processors (easy to "contract") We need to define *f* such that
 - $|f(r^*)| << |r^*|$
 - the approximation ratio using $f(r^*)$ is not degraded too much

Thus we contract the vector (r_1^*, \ldots, r_g^*) . Let $(\tilde{r_1}^*, \ldots, \tilde{r_g}^*) = f(r_1^*, \ldots, r_g^*)$.

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

What could be approximated here?

Notice that the oracle provides two types of information:

- a set of index of heuristics (hard to "contract")
- a set of number of allocated processors (easy to "contract") We need to define *f* such that
 - $|f(r^*)| << |r^*|$

• the approximation ratio using $f(r^*)$ is not degraded too much Thus we contract the vector (r_1^*, \ldots, r_g^*) . Let $(\tilde{r_1}^*, \ldots, \tilde{r_g}^*) = f(r_1^*, \ldots, r_g^*)$.

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

How defining the \tilde{r}_i^* ?

We need:

- $\tilde{r}_i^* \leq r_i^*$
- if r_i^* is small, we must have $\tilde{r}_i^* \approx r_i^*$

Thus, we only keep the j_1 most significant bit of the r_i^* .

- let $r_i^* = a_i 2^{e_i} + b_i$
- we define $\tilde{r}_i^* = a_i 2^{e_i}$

Then, $|\tilde{r}_i^*| = \log(a_i) + \log(e_i) \leq j_1 + \log(\log(m)).$

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

How defining the \tilde{r}_i^* ?

We need:

- $\tilde{r}_i^* \leq r_i^*$
- if r_i^* is small, we must have $\tilde{r}_i^* \approx r_i^*$

Thus, we only keep the j_1 most significant bit of the r_i^* .

- let $r_i^* = a_i 2^{e_i} + b_i$
- we define $\tilde{r}_i^* = a_i 2^{e_i}$

Then, $|\tilde{r}_i^*| = \log(a_i) + \log(e_i) \leq j_1 + \log(\log(m)).$

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

New ratio using $f(r^*)$

The ratio is directly linked to $\frac{r_i^*}{\tilde{r}_i}$. For a given guessed heuristic *i*:

- if $r_i^* \leq 2^{j_1} 1$, $\tilde{r}_i^* = r_i$
- if $r_i^* \ge 2^{j_1}, \frac{r_i^*}{\tilde{r}_i^*} = \frac{a_i 2^{e_i} + b_i}{a_i 2^{e_i}} = 1 + \frac{2^{e_i}}{a_i 2^{e_i}} \le 1 + \frac{1}{2^{j_1 1}} = \beta$

Proposition

- MA^r is a $\beta + \frac{k-g}{g+1}(2-\beta) \le \beta + \frac{k-g}{g+1}$ approximation
- new complexity of $MA^r \approx (k2^{j_1}log(m))^g$ (Versus $(km)^g$)

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

New ratio using $f(r^*)$

The ratio is directly linked to $\frac{r_i^*}{\tilde{r}_i}$. For a given guessed heuristic *i*:

• if
$$r_i^* \le 2^{j_1} - 1$$
, $\tilde{r_i}^* = r_i$

• if
$$r_i^* \ge 2^{j_1}, \frac{r_i^*}{\tilde{r_i}^*} = \frac{a_i 2^{e_i} + b_i}{a_i 2^{e_i}} = 1 + \frac{2^{e_i}}{a_i 2^{e_i}} \le 1 + \frac{1}{2^{j_1 - 1}} = \beta$$

Proposition

- MA^r is a $\beta + \frac{k-g}{g+1}(2-\beta) \le \beta + \frac{k-g}{g+1}$ approximation
- new complexity of $MA^r \approx (k2^{j_1}log(m))^g$ (Versus $(km)^g$)

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

New ratio using $f(r^*)$

The ratio is directly linked to $\frac{r_i^*}{\tilde{r}_i}$. For a given guessed heuristic *i*:

• if
$$r_i^* \le 2^{j_1} - 1$$
, $\tilde{r_i}^* = r_i$

• if
$$r_i^* \ge 2^{j_1}, \frac{r_i^*}{r_i^{**}} = \frac{a_i 2^{e_i} + b_i}{a_i 2^{e_i}} = 1 + \frac{2^{e_i}}{a_i 2^{e_i}} \le 1 + \frac{1}{2^{j_1 - 1}} = \beta$$

Proposition

- MA^r is a $\beta + \frac{k-g}{g+1}(2-\beta) \le \beta + \frac{k-g}{g+1}$ approximation
- new complexity of $MA^r \approx (k2^{j_1}log(m))^g$ (Versus $(km)^g$)

Presentation of the problem A first approximation scheme Improved scheme with guess approximation

New ratio using $f(r^*)$

The ratio is directly linked to $\frac{r_i^*}{\tilde{r}_i}$. For a given guessed heuristic *i*:

• if
$$r_i^* \le 2^{j_1} - 1$$
, $\tilde{r_i}^* = r_i$

• if
$$r_i^* \ge 2^{j_1}, \frac{r_i^*}{r_i^{**}} = \frac{a_i 2^{e_i} + b_i}{a_i 2^{e_i}} = 1 + \frac{2^{e_i}}{a_i 2^{e_i}} \le 1 + \frac{1}{2^{j_1 - 1}} = \beta$$

Proposition

- MA^r is a $\beta + \frac{k-g}{g+1}(2-\beta) \le \beta + \frac{k-g}{g+1}$ approximation
- new complexity of $MA^r \approx (k2^{j_1}log(m))^g$ (Versus $(km)^g$)

Brief overview of classical PTAS design techniques

2 The guess approximation technique

3 Application to the DRSSP

- Presentation of the problem
- A first approximation scheme
- Improved scheme with guess approximation

Outline

- does this technique lead to classical approximation schemes ?
- could we use the particular contraction function we introduced here for other problems ?
- are there some problems where this technique seems hard to apply ?
- can we get *FPTAS* for strongly *NP* complete problems

Outline

- does this technique lead to classical approximation schemes ?
- could we use the particular contraction function we introduced here for other problems ?
- are there some problems where this technique seems hard to apply ?
- can we get *FPTAS* for strongly *NP* complete problems

Outline

- does this technique lead to classical approximation schemes ?
- could we use the particular contraction function we introduced here for other problems ?
- are there some problems where this technique seems hard to apply ?
- can we get *FPTAS* for strongly *NP* complete problems

Outline

- does this technique lead to classical approximation schemes ?
- could we use the particular contraction function we introduced here for other problems ?
- are there some problems where this technique seems hard to apply ?
- can we get *FPTAS* for strongly *NP* complete problems

Thank you for your attention !!

Bibliography

[1] L. A. Hall and D. B. Shmoys.

Approximation schemes for constrained scheduling problems. pages 134–139, 1989.

- [2] T. Sayag, S. Fine, and Y. Mansour. Combining multiple heuristics. 2006.
- P. Schuurman and G. J. Woeginger. Approximation schemes - a tutorial. In *Lectures on Scheduling*, 2000.
- [4] H. Shachnai and T. Tamir.

Polynomial time approximation schemes - a survey. Handbook of Approximation Algorithms and Metaheuristics, Chapman & Hall, Boca Raton, 2007.