A fast 5/2 approximation for hierarchical scheduling

Marin Bougeret, Pierre-Francois Dutot, Christina Otte, Klaus
Jansen and Denis Trystram

LIG laboratory (MOAIS Team), Grenoble, France

1/27

@ Introduction
© State of art
© Main ideas of the g approximation

@ Finishing the proof

Introduction

@ Introduction

Introduction
Context
?

\AG w cerees
\ B 4 \

g
7] i

f

L -

4/27

Introduction

Problem statement

Multiple Cluster Scheduling Problem (MCSP):
Input:

@ k clusters (cluster Cl; owns m; machines)

Objective:

N

5/27

Introduction

Problem statement

Multiple Cluster Scheduling Problem (MCSP):
Input:

@ k clusters (cluster Cl; owns m; machines)

@ n independent parallel jobs (job J; requires g; machines on
the same cluster during p; units of time)

Objective:

N

C/3 E | "

Conax

Introduction

Problem statement

Multiple Cluster Scheduling Problem (MCSP):

Input:

@ k clusters (cluster Cl; owns m; machines)

@ n independent parallel jobs (job J; requires g; machines on
the same cluster during p; units of time)

Objective:

@ schedule all the jobs minimizing the makespan Cpax

ch ri

C/3 E

Conax

I m

Introduction

Motivation of the Multiple Cluster model

What means this model ?

@ parallel job = schedule of sequential jobs with dependencies
without communication costs

6/27

Introduction

Motivation of the Multiple Cluster model

What means this model ?

@ parallel job = schedule of sequential jobs with dependencies
without communication costs

6/27

Introduction

Motivation of the Multiple Cluster model

What means this model ?
@ parallel job = schedule of sequential jobs with dependencies
without communication costs
= communication costs between machines of the same cluster
are neglected

LS

6/27

Introduction

Motivation of the Multiple Cluster model

What means this model ?

@ parallel job = schedule of sequential jobs with dependencies
without communication costs

= communication costs between machines of the same cluster
are neglected

= communication costs between machines of different clusters
are unbounded, hence the constraint of using gj machines of
the same cluster when scheduling one job

I e

6/27

State of art

© State of art

State of art

Related problems

e parallel (rigid) job scheduling

@ Rectangle packing =
parallel(rigid) job continuous
scheduling

machine 4
machine 3
machine 2
machine 1

machine 4
machine 3
machine 2
machine 1

State of art

Related problems

- . . ma:h!ne4
o parallel (rigid) job scheduling s
machine 1

@ Rectangle packing = .
parallel(rigid) job continuous mechine3
scheduling

machine 1

@ Algorithms for non continuous case generally not apply to
continuous case but ..

State of art

Related problems

- . . ma:h!ne4
o parallel (rigid) job scheduling s
machine 1

@ Rectangle packing = .
parallel(rigid) job continuous mechine3
scheduling

machine 1

@ Algorithms for non continuous case generally not apply to
continuous case but ..

@ Approximation ratios for continuous case may not apply to non

contiguous case (as G, < CSo0F)

State of art

Related problems

- . . ma:h!ne4
o parallel (rigid) job scheduling s
machine 1

@ Rectangle packing = .
parallel(rigid) job continuous mechine3
scheduling

machine 1

@ Algorithms for non continuous case generally not apply to
continuous case but ..

@ Approximation ratios for continuous case may not apply to non
contiguous case (as Cj,, < CEont *)

@ However, approximation ratio for continuous case often apply
to non continuous case

State of art

Related problems

MCSP and strip packing

@ MCSP + continuous constraint = Multiple Strip Packing

9/27

State of art

Related problems

MCSP and strip packing

@ MCSP + continuous constraint = Multiple Strip Packing
@ For k = 1 Cluster :

9/27

State of art

Related problems

MCSP and strip packing

@ MCSP + continuous constraint = Multiple Strip Packing
@ For k = 1 Cluster :

o MCSP is classical parallel job scheduling
(List Scheduling ratio 2 — 1)

9/27

State of art

Related problems

MCSP and strip packing

@ MCSP + continuous constraint = Multiple Strip Packing
@ For k = 1 Cluster :

o MCSP is classical parallel job scheduling
(List Scheduling ratio 2 — 1)

e MCSP + continuous constraint = Strip Packing
(the 2 ratio required more efforts!)

9/27

State of art

Related problems

MCSP and strip packing

@ MCSP + continuous constraint = Multiple Strip Packing
@ For k = 1 Cluster :

o MCSP is classical parallel job scheduling
(List Scheduling ratio 2 — 1)

e MCSP + continuous constraint = Strip Packing
(the 2 ratio required more efforts!)

As shown in [STYO08] List Scheduling is arbitrarily bad on MCSP

9/27

State of art

Negative result for MCSP

@ MCSP is 2-inapproximable unless P = NP, even for k =2
clusters having the same size }

Using a gap reduction [Zhu06] from the 2-partition problem:

YES-Instance NO-Instance

C* =1 C:naw =2

max

10/27

State of art

Main positive results for MCSP

’ Ratio \ Remarks \ Hypothesis \ Source ‘
3 decentralized (and fast) [STYO08]
algorithm

State of art

Main positive results for MCSP

’ Ratio \ Remarks \ Hypothesis \ Source ‘
3 decentralized (and fast) [STYO08]
algorithm

State of art

Main positive results for MCSP

’ Ratio \ Remarks \ Hypothesis \ Source ‘
3 decentralized (and fast) [STYO08]
algorithm
2+ €

requires solving Q||Cmax | every job fits ev- | this pa-
with a ratio 1 + 5 erywhere, adapted | per
from [YHZ09]

State of art

Main positive results for MCSP

’ Ratio \ Remarks \ Hypothesis \ Source ‘

3 decentralized (and fast) [STYO08]

algorithm
2+e¢ :
requires solving Q||Cmax | every job fits ev- | this pa-
with a ratio 1 + 5 erywhere, adapted | per
from [YHZ09]

5

2 fast, also applies for con- | every job fits every- | this talk
tinuous case where

State of art

Main positive results for MCSP

’ Ratio \ Remarks \ Hypothesis \ Source ‘

3 decentralized (and fast) [STYO08]

algorithm
2+ € . i . . .
requires solving Q||Cmax | every job fits ev- | this pa-
with a ratio 1 + 5 erywhere, adapted | per
from [YHZ09]

5

2 fast, also applies for con- | every job fits every- | this talk
tinuous case where

Remark: Solving Q|| Cnax using a classical PTAS is in Q(n®?), as
our 3 approximation is in & knlog?(n)

Main ideas of the g approximation

© Main ideas of the g approximation

Main ideas of the g approximation

Using the dual approximation technique [HS87]

Specification

Given an input /, and a guess v of the optimal value, the algorithm:

o schedules | with Cpax < %
@ or REJECTS v, implying then that v < C}:

max

13 /27

Main ideas of the g approximation

Using the dual approximation technique [HS87]

Specification

Given an input /, and a guess v of the optimal value, the algorithm:

o schedules | with Cpax < %
e or REJECTS v, implying then that v < C .,

Thus, using a binary search on v on the interval [|0, npmax|] 3 Chax
we get a %—approximation

13 /27

Main ideas of the 3 approximation

2

Using the dual approximation technique

We fill the clusters from the smallest to the largest, trying to
schedule an "optimal work" in every cluster

work > myv

work > mpv

14 /27

Main ideas of the g approximation

Using the dual approximation technique

We fill the clusters from the smallest to the largest, trying to
schedule an "optimal work" in every cluster

Ml -
E e

Let W(X) = > :cx pjq; denote the work of the set of jobs X.

J

14 /27

Main ideas of the 3 approximation

2

Let us dream

Let us suppose that we have an algorithm Agejec such that:

Main ideas of the 3 approximation

2

Let us dream

Let us suppose that we have an algorithm Agejec such that:

o if there is enough remaining jobs I’ (I’ is the set of
unscheduled jobs)

Main ideas of the 3 approximation

2

Let us dream

Let us suppose that we have an algorithm Agejec such that:

o if there is enough remaining jobs I’ (I’ is the set of
unscheduled jobs)

o then Agecr returns X C I’ such that

Main ideas of the 3 approximation

2

Let us dream

Let us suppose that we have an algorithm Agejec such that:

o if there is enough remaining jobs I’ (I’ is the set of
unscheduled jobs)

o then Agecr returns X C I’ such that

o X can be scheduled in 2

Main ideas of the 3 approximation

2

Let us dream

Let us suppose that we have an algorithm Agejec such that:

o if there is enough remaining jobs I’ (I’ is the set of
unscheduled jobs)

o then Agecr returns X C I’ such that

o X can be scheduled in %~

2
] W(X) > m;v

Main ideas of the 3 approximation

2

Let us dream

Let us suppose that we have an algorithm Agejec such that:

o if there is enough remaining jobs I’ (I’ is the set of
unscheduled jobs)

o then Agecr returns X C I’ such that

o X can be scheduled in %~

2
] W(X) > m;v

Then we would directly have the g approximation.

Main ideas of the g approximation

Bad news

The previous algorithm does not exist:

N[

16 /27

Main ideas of the g approximation

Proposed solution

A weaker Aselect

Thus, Aseject requires constraints ensuring that such a X set exists.

17 /27

Main ideas of the g approximation

Proposed solution

A weaker Aselect
Thus, Aseject requires constraints ensuring that such a X set exists.

o instead of: if there is enough remaining jobs /I’ then Ageject
returns X as specified before

17 /27

Main ideas of the g approximation

Proposed solution

A weaker Aselect
Thus, Aseject requires constraints ensuring that such a X set exists.

o instead of: if there is enough remaining jobs /I’ then Ageject
returns X as specified before

@ we have: if C; then Ageec; returns X as specified before

17 /27

Main ideas of the g approximation

Proposed solution

A weaker Aselect
Thus, Aseject requires constraints ensuring that such a X set exists.

o instead of: if there is enough remaining jobs /I’ then Ageject
returns X as specified before

@ we have: if C; then Ageec; returns X as specified before

What we have to do is:

Main ideas of the g approximation

Proposed solution

A weaker Aselect
Thus, Aseject requires constraints ensuring that such a X set exists.

o instead of: if there is enough remaining jobs /I’ then Ageject
returns X as specified before

@ we have: if C; then Ageec; returns X as specified before

What we have to do is:
o define (4

Main ideas of the g approximation

Proposed solution

A weaker Aselect
Thus, Aseject requires constraints ensuring that such a X set exists.

o instead of: if there is enough remaining jobs /I’ then Ageject
returns X as specified before

@ we have: if C; then Ageec; returns X as specified before

What we have to do is:
o define (4

o if C; is true, prove that X can be scheduled in 52—"

Main ideas of the g approximation

Proposed solution

A weaker Aselect
Thus, Aseject requires constraints ensuring that such a X set exists.

o instead of: if there is enough remaining jobs /I’ then Ageject
returns X as specified before

@ we have: if C; then Ageec; returns X as specified before

What we have to do is:
o define (4

o if C; is true, prove that X can be scheduled in

5v
2

@ otherwise, prove that it is "obvious" to finish packing all the
jobs of I” in all the remaining empty clusters

Main ideas of the g approximation

e

All in all, the algorithm will behave as follows:

~lg
~lg

18 /27

Main ideas of the g approximation

e

All in all, the algorithm will behave as follows:

~lg
~lg

X/W(X) >
T

[

18 /27

Main ideas of the g approximation

e

All in all, the algorithm will behave as follows:

X/W(X) > mv

~lg
~lg

18 /27

Main ideas of the g approximation

e

All in all, the algorithm will behave as follows:

~lg
~lg

e

dim.

18 /27

Main ideas of the g approximation

e

All in all, the algorithm will behave as follows:

~lg

~lg

1

REJECT v
as W(l) > Zﬁ‘:l mjv

18 /27

Main ideas of the g approximation

e

All in all, the algorithm will behave as follows:

~lg
~lg

e

X/W(X) < mv

y/

18 /27

Main ideas of the g approximation

e

All in all, the algorithm will behave as follows:

~lg
~lg

e

X/W(X) < msv — - y

‘\ How to pack /’, knowing

that C is false ?

18 /27

Finishing the proof

@ Finishing the proof

19/27

Finishing the proof

Toward a "good" Aselect

An important tool for one strip:

Steinberg’s theorem [Ste97]

Steinberg's theorem applied in our case:
if a set X is such that W(X) < amjv, (a > 1), then X can be
scheduled (continuously) in a rectangular box of size m; x 2av.

20 /27

Finishing the proof

Toward a "good" Aselect

An important tool for one strip:

Steinberg’s theorem [Ste97]

Steinberg's theorem applied in our case:
if a set X is such that W(X) < amjv, (a > 1), then X can be
scheduled (continuously) in a rectangular box of size m; x 2av.

Remark: Can be proved using a List Scheduling algorithm (leading
however to a non-continuous schedule)

20 /27

Finishing the proof

Toward a "good" Aselect

An important tool for one strip:

Steinberg’s theorem [Ste97]

Steinberg's theorem applied in our case:
if a set X is such that W(X) < amjv, (a > 1), then X can be
scheduled (continuously) in a rectangular box of size m; x 2av.

Remark: Can be proved using a List Scheduling algorithm (leading
however to a non-continuous schedule)

We need the following definitions (given a cluster Cl;):
o let L = {Jy|pj > 5} (long jobs)
o let H; = {J,|q; > 5t} (high jobs)

20 /27

Finishing the proof

Toward a "good" Aselect

Given Cl; the current empty cluster (initially X = 0):

2v

sz

T2
<

JEN

21/27

Finishing the proof

Toward a "good" Aselect

Given Cl; the current empty cluster (initially X = 0):
@ add to X one rectangle of L N H; (the highest..)

2v

Sxx

T2
<

JEN

21/27

Finishing the proof

Toward a "good" Aselect

Given Cl; the current empty cluster (initially X = 0):
@ add to X one rectangle of L N H; (the highest..)

o if there are enough rectangles of H; \ L to reach 2v, add them
to X until reaching 2v (we will have > .y pj <)

SXEE
<=3

~r—

JEN

gy
N L]

21/27

Finishing the proof

Toward a "good" Aselect

Given Cl; the current empty cluster (initially X = 0):
@ add to X one rectangle of L N H; (the highest..)

o if there are enough rectangles of H; \ L to reach 2v, add them
to X until reaching 2v (we will have > .y pj <)

ENES
<=3

~r—

JEN

gy
N L]

21/27

Finishing the proof

Toward a "good" Aselect

Given Cl; the current empty cluster (initially X = 0):
@ add to X one rectangle of L N H; (the highest..)

o if there are enough rectangles of H; \ L to reach 2v, add them
to X until reaching 2v (we will have > .y pj <)

2v

SXEE
<=3

~—
<

JEN

21/27

Finishing the proof

Toward a "good" Aselect

Given Cl; the current empty cluster (initially X = 0):
@ add to X one rectangle of L N H; (the highest..)
o if there are enough rectangles of H; \ L to reach 2v, add them
to X until reaching 2v (we will have > .y pj <)

@ otherwise (we know that few jobs of H; \ L remain), add to X
jobs of I”\ H; using a non-increasing work order, stops when
W(X) > mjv or when no jobs of I’ \ H; remain.

v 2v

08N

21/27

Finishing the proof

Toward a "good" Aselect

Given Cl; the current empty cluster (initially X = 0):
@ add to X one rectangle of L N H; (the highest..)

o if there are enough rectangles of H; \ L to reach 2v, add them
to X until reaching 2v (we will have > .y pj <)

@ otherwise (we know that few jobs of H; \ L remain), add to X
jobs of I”\ H; using a non-increasing work order, stops when
W(X) > mjv or when no jobs of I’ \ H; remain.

.D

v 2v

08N

X
21/27

Finishing the proof

Toward a "good" Aselect

Given Cl; the current empty cluster (initially X = 0):
@ add to X one rectangle of L N H; (the highest..)

o if there are enough rectangles of H; \ L to reach 2v, add them
to X until reaching 2v (we will have > .y pj <)

@ otherwise (we know that few jobs of H; \ L remain), add to X
jobs of I”\ H; using a non-increasing work order, stops when
W(X) > mjv or when no jobs of I’ \ H; remain.

| I

v 2v

08N

21/27

Finishing the proof

What is missing now?

What we have to do is:
o define G;: DONE

@ if G is true (i.e. when W(X) > mjv), prove that X can be

scheduled in 2

@ otherwise, prove that it is "obvious" to finish packing all the
jobs of I” in all the remaining empty clusters

Finishing the proof

AnalyZing Aselect

o if there are enough rectangles of H; \ L to reach 2v, add them

. . . 5
to X until reaching 2v (we will have 3 p; < %)

s}
—
<

2v

0EN

23 /27

Finishing the proof

AnalyZing Aselect

o if there are enough rectangles of H; \ L to reach 2v, add them

. . . 5
to X until reaching 2v (we will have 3 p; < %)

s}
—
<

2v

0EN

23 /27

Finishing the proof

AnalyZing Aselect

o if there are enough rectangles of H; \ L to reach 2v, add them

. . . 5
to X until reaching 2v (we will have 3 p; < %)

s}
—

0EN

gy
o L

23 /27

Finishing the proof

AnalyZing Aselect

o if there are enough rectangles of H; \ L to reach 2v, add them

. . . 5
to X until reaching 2v (we will have 3 p; < %)

s}
—

0EN

gy
o L

23 /27

Finishing the proof

AnalyZing Aselect

o if there are enough rectangles of H; \ L to reach 2v, add them

. . . 5
to X until reaching 2v (we will have 3 p; < %)

s}
—
<

2v

0EN

23 /27

Finishing the proof

Analyzing Aselect

o if there are enough rectangles of H; \ L to reach 2v, add them

. . . 5
to X until reaching 2v (we will have 3 p; < %)

@ otherwise (we know that few jobs of H; \ L remain), add to X
jobs of I”\ H; using a non-increasing work order, stops when
W(X) > mjv or when no jobs of /" \ H; remain.

| [PVE . R
MHHMH,'\(L : i " " ' v
1 inH,

23 /27

Finishing the proof

Analyzing Aselect

o if there are enough rectangles of H; \ L to reach 2v, add them

. . . 5
to X until reaching 2v (we will have 3 p; < %)

@ otherwise (we know that few jobs of H; \ L remain), add to X
jobs of I”\ H; using a non-increasing work order, stops when
W(X) > mjv or when no jobs of /" \ H; remain.

| [PVE . R
MHHMH,'\(L : H " " ' v
l:l/’\H, i

1.

23 /27

Finishing the proof

Analyzing Aselect

o if there are enough rectangles of H; \ L to reach 2v, add them

. . . 5
to X until reaching 2v (we will have 3 p; < %)

@ otherwise (we know that few jobs of H; \ L remain), add to X
jobs of I”\ H; using a non-increasing work order, stops when
W(X) > mjv or when no jobs of /" \ H; remain.

| [PVE . R
MHHMH,'\(L : i " " ' v
1 inH,

=]

23 /27

Finishing the proof

Analyzing Aselect

o if there are enough rectangles of H; \ L to reach 2v, add them

. . . 5
to X until reaching 2v (we will have 3 p; < %)

@ otherwise (we know that few jobs of H; \ L remain), add to X
jobs of I”\ H; using a non-increasing work order, stops when
W(X) > mjv or when no jobs of /" \ H; remain.

| [PVE . R
MHHMH,'\(L : i " " ' v
1 inH,

X

=]

o if mv < W(X)< 5'2”: use Steinberg’s algorithm

23 /27

Finishing the proof

Analyzing Aselect

o if there are enough rectangles of H; \ L to reach 2v, add them

. . . 5
to X until reaching 2v (we will have 3 p; < %)

@ otherwise (we know that few jobs of H; \ L remain), add to X
jobs of I”\ H; using a non-increasing work order, stops when
W(X) > mjv or when no jobs of /" \ H; remain.

| [PVE . R
MHHMH,'\(L : i " " ' v
1 inH,

X

=]

o if mv < W(X)< E”’]T"V: use Steinberg’s algorithm
o if W(X) > 5'27"‘/? 23 /27

Finishing the proof

Scheduling at most 4 big jobs

Let X = {Jo} U{h, ..., Jp}, with

24 /27

Finishing the proof

Scheduling at most 4 big jobs

Let X = {h} U{4,...,Jp}, with
e Jo € HiN L (if not empty)

24 /27

Finishing the proof

Scheduling at most 4 big jobs

Let X = {h} U{4,...,Jp}, with
e Jo € HiN L (if not empty)
o W(J) = W(Jis1). for 1<j<p-1

24 /27

Finishing the proof

Scheduling at most 4 big jobs

Let X = {Jo} U {1, ..., Jp}, with
e Jo € HiN L (if not empty)
o W(J;)>W(Jj1), for1 < j<p-—-1
° W(X)>5$4"V implies J; € Lfor1 <j<pandp <4

24 /27

Finishing the proof

Scheduling at most 4 big jobs

Let X = {Jo} U{Jx,...,Jp}, with
@ Jy € HiN L (if not empty)
o W(Jj) > W(Jjt1) for1 <j<p-1

o W(X) > 5'2"‘/ implies Jj € Lfor 1 <j<pandp <4

v 2v

X:{Jo}u{_/l.“.,_jp)

If Jo "does not exist", obvious! (as {Ji,...,Jp} C (L\ H})).

24 /27

Finishing the proof

Scheduling at most 4 big jobs

Let X = {Jo} U {r,..., Jp}, with
@ Jy € HiN L (if not empty)
o W(J;) > W(Jjt1), for1 < j<p-—-1
o W(X)> 5m'v implies Jj € Lfor1 <j<pandp <4

v 2v

Otherwise, we even have p < 3, and the only non obvious case if
for p = 3.

24 /27

Finishing the proof

Scheduling at most 4 big jobs

Let X = {Jo} U{Jx,...,Jp}, with
@ Jy € HiN L (if not empty)
o W(Jj) > W(Jjt1) for1 <j<p-1

o W(X) > 2mY implies J; € L for 1 <j < p and p < 4.
4 J

v 2v

j

X=potdy... Iy

Q(sh)

Py t

Otherwise, we even have p < 3, and the only non obvious case if
for p = 3.
o let J; be the rectangle of {J;, J», J3} having the smallest g;

24 /27

Finishing the proof

Scheduling at most 4 big jobs

Let X = {Jo} U{Jx,...,Jp}, with
@ Jy € HiN L (if not empty)
o W(Jj) > W(Jjt1) for1 <j<p-1

o W(X) > 2mY implies J; € L for 1 <j < p and p < 4.
4 J

v 2v

j

X=potdy... Iy

Q(sh)

Py £,

Otherwise, we even have p < 3, and the only non obvious case if
for p = 3.
o let J; be the rectangle of {J;, J», J3} having the smallest g;
o let t,-lz%"—po—p,-l. 24)27

Finishing the proof

Scheduling at most 4 big jobs

Let X = {Jo} U {r,..., Jp}, with
@ Jy € HiN L (if not empty)
o W(J;) > W(Jjt1), for1 < j<p-—-1
o W(X)> 5m'v implies Jj € Lfor1 <j<pandp <4

v 2v

If Ji, intersects the shelf we get:

v
W(X\) > po(mi— q1)+ ti(mi — q1) + (Q(Sh) — (mi — Q1))§
> mjv as Q(sh) > 2q;, and t;, > 3 .00,

Finishing the proof

Scheduling at most 4 big jobs

Let X = {Jo} U{Jx,...,Jp}, with
@ Jy € HiN L (if not empty)
o W(Jj) > W(Jjt1) for1 <j<p-1

o W(X) > 5'2"‘/ implies Jj € Lfor 1 <j<pandp <4

v 2v

X=potdy... Iy

L
7
/
i

Q(sh)

a;\
|
|
\

If Ji, intersects the shelf we get:
v

W(X\J) > po(mi—q1)+ ti,(mi —q1) + (Q(Sh) — (m; — Q1))§
> mjv as Q(sh) > 2g;, and t;, > 37" =490,

Finishing the proof

Scheduling at most 4 big jobs

Let X = {Jo} U{Jx,...,Jp}, with
@ Jy € HiN L (if not empty)
o W(Jj) > W(Jjt1) for1 <j<p-1

o W(X) > 5'2"‘/ implies Jj € Lfor 1 <j<pandp <4

v 2v

Q(sh)

a;\
|
|
\

If Ji, intersects the shelf we get:
v

W(X\J) > po(mi—aq1)+ ty(mi — q1) + (Q(Sh) — (mj — 01))5

> mjv as Q(sh) > 2g;, and t;, > 37" =490,

Finishing the proof

Finishing when (7 is false

v 2v
g R o M Hs\ L
>m 1 ;‘ C/4 : : -H3ﬁL

—

work 2 mv =——Ch | i ’J: ——
IBETE —,
— P r
Chl | % b |] e j

Let us suppose that Agejec: fails for Ch (i.e. returns X with
W(X) < mzv). Let I’ be the remaining jobs after filling Ch.

Finishing the proof

Finishing when (7 is false

v 2v
g R o M Hs\ L
>m 1 ;‘ C/4 : : -H3ﬁL

—

work 2 mv =——Ch | i ’J: ——
IBETE —,
— P r
Chl | % b |] e j

Let us suppose that Agejec: fails for Ch (i.e. returns X with
W(X) < mzv). Let I’ be the remaining jobs after filling Ch.
o /' C H

Finishing the proof

Finishing when (7 is false

v 2v
[N R MHg\L
work > myy ~—— C} ; H : : :

work 2 my ———Ch| i {1 L ——
L O —,
— o r
Gl | xS

Let us suppose that Agejec: fails for Ch (i.e. returns X with
W(X) < mzv). Let I’ be the remaining jobs after filling Ch.
o /' C H
o P(I'\L)y=>", px <2v

Finishing the proof

Finishing when (7 is false

v 2v
g S— M Hs\ L
work > myv ~—— Ch Cly M AnL
work > mpv =—— C/Q A‘—J ’J:
G |
IR

Let us suppose that Agejec: fails for Ch (i.e. returns X with
W(X) < mzv). Let I’ be the remaining jobs after filling Ch.
o /' C H
o P(I'\L)y=>", px <2v
o if XN (HsNL)=0then I C Hs\ L.

25 /27

Finishing the proof

Finishing when (7 is false

v 2v
work > mv ~——— Cll C/4 = Hz nL

e I S s e

Let us suppose that Agejec: fails for Ch (i.e. returns X with
W(X) < mzv). Let I’ be the remaining jobs after filling Ch.
o /' C H
o P(I'\L)y=>", px <2v

o if XN(HsNL)#0: P(I'\L)< ¥
o how to schedule I'N L7

25 /27

Finishing the proof

Finishing when (7 is false

v 2v
work > mv ~——— Cll C/4 = Hz nL

mzme—a L

Cls

Ch

Let us suppose that Agejec: fails for Ch (i.e. returns X with
W(X) < mzv). Let I’ be the remaining jobs after filling Ch.
o /' C H
o P(I'\L)y=>", px <2v

o if XN (H3NL)#0: P(I’\L)§32—V
o how to schedule I'N L7

25 /27

Finishing the proof

Finishing when (7 is false

v 2v
N o M Hs\ L
s sl @) I B O B it

work > mov =——— C/2

Cls

Ch

Let us suppose that Agejec: fails for Ch (i.e. returns X with
W(X) < mzv). Let I’ be the remaining jobs after filling Ch.
o /' C H
o P(I'\L)y=>", px <2v

o if XN (H3NL)#0: P(I’\L)§32—V
o how to schedule I'N L7

25 /27

Finishing the proof

Finishing when (7 is false

v 2v
N I M Hs\ L
: ; ; ; C/4 : ! : HsN L

work > mov =——— C/2

Ch

Let us suppose that Agejec: fails for Ch (i.e. returns X with
W(X) < mzv). Let I’ be the remaining jobs after filling Ch.
o /' C H
o P(I'\L)y=>", px <2v

o if XN (H3NL)#0: P(I’\L)§32—V
o how to schedule I'N L7

25 /27

Finishing the proof

Finishing when (7 is false

v 2v
N I M Hs\ L
: ; ; ; C/4 : ! : HsN L

work > mov =——— C/2

Ch

Let us suppose that Agejec: fails for Ch (i.e. returns X with
W(X) < mzv). Let I’ be the remaining jobs after filling Ch.
o /' C H
o P(I'\L)y=>", px <2v

o if XN (H3NL)#0: P(I’\L)§32—V
o how to schedule I'N L7

o how to schedule /" \ L7
25 /27

Finishing the proof

Finishing when (7 is false

v 2v
N I M Hs\ L
: ; ; ; C/4 : ! : HsN L

work > mov =——— C/2

Ch

Let us suppose that Agejec: fails for Ch (i.e. returns X with
W(X) < mzv). Let I’ be the remaining jobs after filling Ch.
o /' C H
o P(I'\L)y=>", px <2v

o if XN (H3NL)#0: P(I’\L)§32—V
o how to schedule I'N L7

o how to schedule /" \ L7
25 /27

Finishing the proof

Conclusion

This algorithm

@ isa g—approximation (improving the previous 3 bound, the
lower bound being 2)

o runs in O(log(npmapx)kCsteinp) With

Csteinb = nlog?(n)/log(log(n))
@ also applies for continuous scheduling (i.e. rectangle packing)
@ :(requires that every job fits everywhere

Remarks / future work
o why not % ?
o A(X) < Im¥ = Steinberg
o A(X) > ™i¥ = at most 6 rectangles..

@ remove the "fit everywhere" assumption..

Finishing the proof

Bibliography

[HS87]

[Ste97]

[STYO08]

[YHZ09]

[Zhu06]

D.S. Hochbaum and D.B. Shmoys.
Using dual approximation algorithms for scheduling problems theoretical and practical results.
Journal of the ACM (JACM), 34(1):144-162, 1987.

A. Steinberg.
A strip-packing algorithm with absolute performance bound 2.
SIAM Journal on Computing, 26:401, 1997.

U. Schwiegelshohn, A. Tchernykh, and R. Yahyapour.

Online scheduling in grids.

In IEEE International Symposium on Parallel and Distributed Processing (IPDPS), pages
1-10, 2008.

D. Ye, X. Han, and G. Zhang.

On-Line Multiple-Strip Packing.

In Proceedings of the 3rd International Conference on Combinatorial Optimization and
Applications (COCOA), page 165. Springer, 2009.

SN Zhuk.

Approximate algorithms to pack rectangles into several strips.
Discrete Mathematics and Applications, 16(1):73—-85, 2006.

27 /27

	Introduction
	State of art
	Main ideas of the 52 approximation
	Finishing the proof

