A fast 5/2 approximation for hierarchical scheduling

Marin Bougeret, Pierre-François Dutot, Christina Otte, Klaus Jansen and Denis Trystram

LIG laboratory (MOAIS Team), Grenoble, France

- Introduction
- 2 State of art
- 3 Main ideas of the $\frac{5}{2}$ approximation
- Finishing the proof

- Introduction
- 2 State of art
- 3 Main ideas of the $\frac{5}{2}$ approximation
- 4 Finishing the proof

Context

Problem statement

Multiple Cluster Scheduling Problem (MCSP):

Input:

- k clusters (cluster Cl_i owns m_i machines)
- n independent parallel jobs (job J_j requires q_j machines on the same cluster during p_j units of time)

Objective:

 \bullet schedule all the jobs minimizing the makespan C_{max}

Problem statement

Multiple Cluster Scheduling Problem (MCSP):

Input:

- k clusters (cluster Cl_i owns m_i machines)
- n independent parallel jobs (job J_j requires q_j machines on the same cluster during p_j units of time)

Objective:

 \bullet schedule all the jobs minimizing the makespan C_{max}

Problem statement

Multiple Cluster Scheduling Problem (MCSP):

Input:

- k clusters (cluster Cl_i owns m_i machines)
- n independent parallel jobs (job J_j requires q_j machines on the same cluster during p_j units of time)

Objective:

 \bullet schedule all the jobs minimizing the makespan C_{max}

- parallel job = schedule of sequential jobs with dependencies without communication costs
- communication costs between machines of the same cluster are neglected
- communication costs between machines of different clusters are unbounded, hence the constraint of using q_j machines of the same cluster when scheduling one job

- parallel job = schedule of sequential jobs with dependencies without communication costs
- communication costs between machines of the same cluster are neglected
- \Rightarrow communication costs between machines of different clusters are unbounded, hence the constraint of using q_j machines of the same cluster when scheduling one job

- parallel job = schedule of sequential jobs with dependencies without communication costs
- ⇒ communication costs between machines of the same cluster are neglected
- \Rightarrow communication costs between machines of different clusters are unbounded, hence the constraint of using q_j machines of the same cluster when scheduling one job

- parallel job = schedule of sequential jobs with dependencies without communication costs
- ⇒ communication costs between machines of the same cluster are neglected
- \Rightarrow communication costs between machines of different clusters are unbounded, hence the constraint of using q_j machines of the same cluster when scheduling one job

- Introduction
- 2 State of art
- 3 Main ideas of the $\frac{5}{2}$ approximation
- 4 Finishing the proof

- parallel (rigid) job scheduling
- Rectangle packing = parallel(rigid) job continuous scheduling

- Algorithms for non continuous case generally not apply to continuous case but ..
- Approximation ratios for continuous case may not apply to non contiguous case (as $C^*_{max} \leq C^{cont}_{max}$ *)
- However, approximation ratio for continuous case often apply to non continuous case

- parallel (rigid) job scheduling
- Rectangle packing =
 parallel(rigid) job continuous
 scheduling

• Approximation ratios for continuous case may not apply to non contiguous case (as $C^*_{max} \leq C^{cont}_{max}$ *)

machine 1

 However, approximation ratio for continuous case often apply to non continuous case

scheduling

- parallel (rigid) job scheduling
- Rectangle packing =

 parallel(rigid) job continuous

 machine 4

 machine 3

 machine 3

 machine 3

 machine 3

 machine 3

machine 4

machine 3 machine 2 machine 1

machine 1

- Algorithms for non continuous case generally not apply to continuous case but ...
- Approximation ratios for continuous case may not apply to non contiguous case (as $C_{max}^* \leq C_{max}^{cont}$ *)
- However, approximation ratio for continuous case often apply to non continuous case

- parallel (rigid) job scheduling
- Rectangle packing = parallel(rigid) job continuous scheduling

- Algorithms for non continuous case generally not apply to continuous case but ...
- Approximation ratios for continuous case may not apply to non contiguous case (as $C_{max}^* \leq C_{max}^{cont}$ *)
- However, approximation ratio for continuous case often apply to non continuous case

MCSP and strip packing

- MCSP + continuous constraint = Multiple Strip Packing
- For k = 1 Cluster:
 - MCSP is classical parallel job scheduling
 - MCSP + continuous constraint = Strip Packing
 - (the 2 ratio required more efforts!

MCSP and strip packing

- MCSP + continuous constraint = Multiple Strip Packing
- For k = 1 Cluster:
 - MCSP is classical parallel job scheduling (List Scheduling ratio $2 \frac{1}{2}$)
 - MCSP + continuous constraint = Strip Packing (the 2 ratio required more efforts!)

MCSP and strip packing

- MCSP + continuous constraint = Multiple Strip Packing
- For k = 1 Cluster:
 - MCSP is classical parallel job scheduling (List Scheduling ratio $2 \frac{1}{m}$)
 - MCSP + continuous constraint = Strip Packing (the 2 ratio required more efforts!)

MCSP and strip packing

- MCSP + continuous constraint = Multiple Strip Packing
- For k = 1 Cluster:
 - MCSP is classical parallel job scheduling (List Scheduling ratio $2 \frac{1}{m}$)
 - MCSP + continuous constraint = Strip Packing (the 2 ratio required more efforts!)

MCSP and strip packing

- MCSP + continuous constraint = Multiple Strip Packing
- For k = 1 Cluster :
 - MCSP is classical parallel job scheduling (List Scheduling ratio $2 \frac{1}{m}$)
 - MCSP + continuous constraint = Strip Packing (the 2 ratio required more efforts!)

Negative result for MCSP

• MCSP is 2-inapproximable unless P = NP, even for k = 2 clusters having the same size

Using a gap reduction [Zhu06] from the 2-partition problem:

Ratio	Remarks	Hypothesis	Source
3	decentralized (and fast) algorithm		[STY08]
$2+\epsilon$	requires solving $Q C_{max}$ with a ratio $1+rac{\epsilon}{2}$	every job fits everywhere, adapted from [YHZ09]	
<u>5</u> 2	fast, also applies for continuous case	every job fits every- where	this talk

Ratio	Remarks	Hypothesis	Source
3	decentralized (and fast) algorithm		[STY08]
$2+\epsilon$	requires solving $Q C_{max}$ with a ratio $1+rac{\epsilon}{2}$	every job fits everywhere, adapted from [YHZ09]	
<u>5</u> 2	fast, also applies for continuous case	every job fits every- where	this talk

Ratio	Remarks	Hypothesis	Source
3	decentralized (and fast) algorithm		[STY08]
$2 + \epsilon$	requires solving $Q \mathcal{C}_{max}$ with a ratio $1+rac{\epsilon}{2}$	every job fits everywhere, adapted from [YHZ09]	this pa- per
<u>5</u> 2	fast, also applies for continuous case	every job fits every- where	this talk

Ratio	Remarks	Hypothesis	Source
3	decentralized (and fast) algorithm		[STY08]
$2 + \epsilon$	requires solving $Q \mathcal{C}_{max}$ with a ratio $1+rac{\epsilon}{2}$	every job fits everywhere, adapted from [YHZ09]	this pa- per
<u>5</u> 2	fast, also applies for continuous case	every job fits every- where	this talk

Ratio	Remarks	Hypothesis	Source
3	decentralized (and fast) algorithm		[STY08]
$2 + \epsilon$	requires solving $Q \mathcal{C}_{max}$ with a ratio $1+rac{\epsilon}{2}$	every job fits everywhere, adapted from [YHZ09]	this pa- per
<u>5</u> 2	fast, also applies for continuous case	every job fits every- where	this talk

- Introduction
- State of art
- 3 Main ideas of the $\frac{5}{2}$ approximation
- 4 Finishing the proof

Using the dual approximation technique [HS87]

Specification

Given an input I, and a guess v of the optimal value, the algorithm:

- schedules I with $C_{max} \leq \frac{5v}{2}$
- ullet or REJECTS v, implying then that $v < C^*_{max}$

Thus, using a binary search on v on the interval $[0, np_{max}] \ni C_{max}^*$ we get a $\frac{5}{2}$ -approximation

Using the dual approximation technique [HS87]

Specification

Given an input I, and a guess v of the optimal value, the algorithm:

- schedules I with $C_{max} \leq \frac{5v}{2}$
- ullet or REJECTS v, implying then that $v < C^*_{max}$

Thus, using a binary search on v on the interval $[|0, np_{max}|] \ni C_{max}^*$ we get a $\frac{5}{2}$ -approximation

Using the dual approximation technique

We fill the clusters from the smallest to the largest, trying to schedule an "optimal work" in every cluster

Notation

Let $W(X) = \sum_{i \in X} p_i q_i$ denote the work of the set of jobs X.

Using the dual approximation technique

We fill the clusters from the smallest to the largest, trying to schedule an "optimal work" in every cluster

Notation

Let $W(X) = \sum_{j \in X} p_j q_j$ denote the work of the set of jobs X.

Aselecti

Let us suppose that we have an algorithm A_{select} such that:

- if there is enough remaining jobs I' (I' is the set of unscheduled jobs)
- then A_{select} returns $X \subset I'$ such that
 - X can be scheduled in $\frac{5v}{2}$
 - $\circ W(X) > m_i v$

A_{select}

Let us suppose that we have an algorithm A_{select} such that:

- if there is enough remaining jobs I' (I' is the set of unscheduled jobs)
- then A_{select} returns $X \subset I'$ such that
 - $M(X) > m_{i}$

Aselecti

Let us suppose that we have an algorithm A_{select} such that:

- if there is enough remaining jobs I' (I' is the set of unscheduled jobs)
- then A_{select} returns $X \subset I'$ such that
 - X can be scheduled in $\frac{5v}{2}$
 - $W(X) > m_i v$

Aselecti

Let us suppose that we have an algorithm A_{select} such that:

- if there is enough remaining jobs I' (I' is the set of unscheduled jobs)
- then A_{select} returns $X \subset I'$ such that
 - X can be scheduled in $\frac{5v}{2}$
 - $W(X) > m_i v$

Let us dream

A_{select}

Let us suppose that we have an algorithm A_{select} such that:

- if there is enough remaining jobs I' (I' is the set of unscheduled jobs)
- then A_{select} returns $X \subset I'$ such that
 - X can be scheduled in $\frac{5v}{2}$
 - $W(X) \geq m_i v$

Then we would directly have the $\frac{5}{2}$ approximation

Let us dream

A_{select}

Let us suppose that we have an algorithm A_{select} such that:

- if there is enough remaining jobs I' (I' is the set of unscheduled jobs)
- then A_{select} returns $X \subset I'$ such that
 - X can be scheduled in $\frac{5v}{2}$
 - $W(X) \geq m_i v$

Then we would directly have the $\frac{5}{2}$ approximation.

Bad news

The previous algorithm does not exist:

A weaker Aselect

Thus, A_{select} requires constraints ensuring that such a X set exists.

- instead of: if there is enough remaining jobs I' then A_{select} returns X as specified before
- we have: if C_1 then A_{select} returns X as specified before

Road map

- define C
- ullet if C_1 is true, prove that X can be scheduled in $\frac{5v}{2}$
- otherwise, prove that it is "obvious" to finish packing all the jobs of I' in all the remaining empty clusters

A weaker Aselect

Thus, A_{select} requires constraints ensuring that such a X set exists.

- instead of: if there is enough remaining jobs I' then A_{select} returns X as specified before
- we have: if C_1 then A_{select} returns X as specified before

Road man

- define C1
- if C_1 is true, prove that X can be scheduled in $\frac{5v}{2}$
- otherwise, prove that it is "obvious" to finish packing all the jobs of I' in all the remaining empty clusters

A weaker Aselect

Thus, A_{select} requires constraints ensuring that such a X set exists.

- instead of: if there is enough remaining jobs I' then A_{select} returns X as specified before
- we have: if C_1 then A_{select} returns X as specified before

Road map

- define C1
- \bullet if C_1 is true, prove that X can be scheduled in $\frac{5v}{2}$
- otherwise, prove that it is "obvious" to finish packing all the iobs of I' in all the remaining empty clusters

A weaker Aselect

Thus, A_{select} requires constraints ensuring that such a X set exists.

- instead of: if there is enough remaining jobs I' then A_{select} returns X as specified before
- we have: if C_1 then A_{select} returns X as specified before

Road map

- define C_1
- if C_1 is true, prove that X can be scheduled in $\frac{5v}{2}$
- otherwise, prove that it is "obvious" to finish packing all the jobs of I' in all the remaining empty clusters

A weaker Aselect

Thus, A_{select} requires constraints ensuring that such a X set exists.

- instead of: if there is enough remaining jobs I' then A_{select} returns X as specified before
- we have: if C_1 then A_{select} returns X as specified before

Road map

- define C_1
- if C_1 is true, prove that X can be scheduled in $\frac{5v}{2}$
- otherwise, prove that it is "obvious" to finish packing all the jobs of I' in all the remaining empty clusters

A weaker A_{select}

Thus, A_{select} requires constraints ensuring that such a X set exists.

- instead of: if there is enough remaining jobs I' then A_{select} returns X as specified before
- we have: if C_1 then A_{select} returns X as specified before

Road map

- define C_1
- if C_1 is true, prove that X can be scheduled in $\frac{5v}{2}$
- otherwise, prove that it is "obvious" to finish packing all the jobs of I' in all the remaining empty clusters

A weaker A_{select}

Thus, A_{select} requires constraints ensuring that such a X set exists.

- instead of: if there is enough remaining jobs I' then A_{select} returns X as specified before
- we have: if C_1 then A_{select} returns X as specified before

Road map

- define C₁
- if C_1 is true, prove that X can be scheduled in $\frac{5v}{2}$
- otherwise, prove that it is "obvious" to finish packing all the jobs of I' in all the remaining empty clusters

- Introduction
- 2 State of art
- 3 Main ideas of the $\frac{5}{2}$ approximation
- 4 Finishing the proof

An important tool for one strip:

Steinberg's theorem [Ste97]

Steinberg's theorem applied in our case:

if a set X is such that $W(X) \leq \alpha m_i v$, $(\alpha \geq 1)$, then X can be scheduled (continuously) in a rectangular box of size $m_i \times 2\alpha v$.

Remark: Can be proved using a List Scheduling algorithm (leading however to a non-continuous schedule)

Notation

We need the following definitions (given a cluster Cl_i):

- let $L = \{J_J | p_i > \frac{v}{2}\}$ (long jobs)
- let $H_i = \{J_J | q_j > \frac{m_i}{2}\}$ (high jobs)

An important tool for one strip:

Steinberg's theorem [Ste97]

Steinberg's theorem applied in our case:

if a set X is such that $W(X) \leq \alpha m_i v$, $(\alpha \geq 1)$, then X can be scheduled (continuously) in a rectangular box of size $m_i \times 2\alpha v$.

Remark: Can be proved using a List Scheduling algorithm (leading however to a non-continuous schedule)

Notation

We need the following definitions (given a cluster Cl_i):

- let $L = \{J_J | p_j > \frac{v}{2}\}$ (long jobs)
- let $H_i = \{J_J | q_j > \frac{m_i}{2}\}$ (high jobs)

An important tool for one strip:

Steinberg's theorem [Ste97]

Steinberg's theorem applied in our case:

if a set X is such that $W(X) \leq \alpha m_i v$, $(\alpha \geq 1)$, then X can be scheduled (continuously) in a rectangular box of size $m_i \times 2\alpha v$.

Remark: Can be proved using a List Scheduling algorithm (leading however to a non-continuous schedule)

Notation

We need the following definitions (given a cluster Cl_i):

- let $L = \{J_J | p_i > \frac{v}{2}\}$ (long jobs)
- let $H_i = \{J_J | q_j > \frac{m_i}{2}\}$ (high jobs)

Our Aselect

- add to X one rectangle of $L \cap H_i$ (the highest...)
- if there are enough rectangles of $H_i \setminus L$ to reach 2v, add them to X until reaching 2v (we will have $\sum_{i \in X} p_i \leq \frac{5v}{2}$)
- otherwise (we know that few jobs of $H_i \setminus L$ remain), add to X jobs of $I' \setminus H_i$ using a non-increasing work order, stops when $W(X) \ge m_i v$ or when no jobs of $I' \setminus H_i$ remain.

Our Aselect

- add to X one rectangle of $L \cap H_i$ (the highest...)
- if there are enough rectangles of $H_i \setminus L$ to reach 2v, add them to X until reaching 2v (we will have $\sum_{i \in X} p_i \leq \frac{5v}{2}$)
- otherwise (we know that few jobs of $H_i \setminus L$ remain), add to X jobs of $I' \setminus H_i$ using a non-increasing work order, stops when $W(X) \ge m_i v$ or when no jobs of $I' \setminus H_i$ remain.

Our Aselect

- add to X one rectangle of $L \cap H_i$ (the highest...)
- if there are enough rectangles of $H_i \setminus L$ to reach 2v, add them to X until reaching 2v (we will have $\sum_{i \in X} p_i \leq \frac{5v}{2}$)
- otherwise (we know that few jobs of $H_i \setminus L$ remain), add to X jobs of $I' \setminus H_i$ using a non-increasing work order, stops when $W(X) \ge m_i v$ or when no jobs of $I' \setminus H_i$ remain.

Our Aselect

- add to X one rectangle of $L \cap H_i$ (the highest...)
- if there are enough rectangles of $H_i \setminus L$ to reach 2v, add them to X until reaching 2v (we will have $\sum_{i \in X} p_i \leq \frac{5v}{2}$)
- otherwise (we know that few jobs of $H_i \setminus L$ remain), add to X jobs of $I' \setminus H_i$ using a non-increasing work order, stops when $W(X) \ge m_i v$ or when no jobs of $I' \setminus H_i$ remain.

Our Aselect

- add to X one rectangle of $L \cap H_i$ (the highest...)
- if there are enough rectangles of $H_i \setminus L$ to reach 2v, add them to X until reaching 2v (we will have $\sum_{i \in X} p_i \leq \frac{5v}{2}$)
- otherwise (we know that few jobs of $H_i \setminus L$ remain), add to X jobs of $I' \setminus H_i$ using a non-increasing work order, stops when $W(X) \ge m_i v$ or when no jobs of $I' \setminus H_i$ remain.

Our Aselect

- add to X one rectangle of $L \cap H_i$ (the highest...)
- if there are enough rectangles of $H_i \setminus L$ to reach 2v, add them to X until reaching 2v (we will have $\sum_{i \in X} p_i \leq \frac{5v}{2}$)
- otherwise (we know that few jobs of $H_i \setminus L$ remain), add to X jobs of $I' \setminus H_i$ using a non-increasing work order, stops when $W(X) \ge m_i v$ or when no jobs of $I' \setminus H_i$ remain.

Our Aselect

- add to X one rectangle of $L \cap H_i$ (the highest...)
- if there are enough rectangles of $H_i \setminus L$ to reach 2v, add them to X until reaching 2v (we will have $\sum_{i \in X} p_i \leq \frac{5v}{2}$)
- otherwise (we know that few jobs of $H_i \setminus L$ remain), add to X jobs of $I' \setminus H_i$ using a non-increasing work order, stops when $W(X) \ge m_i v$ or when no jobs of $I' \setminus H_i$ remain.

Our Aselect

- add to X one rectangle of $L \cap H_i$ (the highest...)
- if there are enough rectangles of $H_i \setminus L$ to reach 2v, add them to X until reaching 2v (we will have $\sum_{i \in X} p_i \leq \frac{5v}{2}$)
- otherwise (we know that few jobs of $H_i \setminus L$ remain), add to X jobs of $I' \setminus H_i$ using a non-increasing work order, stops when $W(X) \ge m_i v$ or when no jobs of $I' \setminus H_i$ remain.

What is missing now?

Road map

- define C1: DONE
- if C_1 is true (i.e. when $W(X) \ge m_i v$), prove that X can be scheduled in $\frac{5v}{2}$
- otherwise, prove that it is "obvious" to finish packing all the jobs of I' in all the remaining empty clusters

Analyzing A_{select}

- if there are enough rectangles of $H_i \setminus L$ to reach 2v, add them to X until reaching 2v (we will have $\sum_{j \in X} p_j \leq \frac{5v}{2}$)
- otherwise (we know that few jobs of $H_i \setminus L$ remain), add to X jobs of $I' \setminus H_i$ using a non-increasing work order, stops when $W(X) \ge m_i v$ or when no jobs of $I' \setminus H_i$ remain.

- if $m_i v \leq W(X) \leq \frac{5m_i v}{4}$: use Steinberg's algorithm
- if $W(X) > \frac{5m_i v}{4}$?

Analyzing A_{select}

- if there are enough rectangles of $H_i \setminus L$ to reach 2v, add them to X until reaching 2v (we will have $\sum_{j \in X} p_j \leq \frac{5v}{2}$)
- otherwise (we know that few jobs of $H_i \setminus L$ remain), add to X jobs of $I' \setminus H_i$ using a non-increasing work order, stops when $W(X) \ge m_i v$ or when no jobs of $I' \setminus H_i$ remain.

- if $m_i v \leq W(X) \leq \frac{5m_i v}{4}$: use Steinberg's algorithm
- if $W(X) > \frac{5m_i v}{4}$?

Analyzing A_{select}

- if there are enough rectangles of $H_i \setminus L$ to reach 2v, add them to X until reaching 2v (we will have $\sum_{j \in X} p_j \leq \frac{5v}{2}$)
- otherwise (we know that few jobs of $H_i \setminus L$ remain), add to X jobs of $I' \setminus H_i$ using a non-increasing work order, stops when $W(X) \ge m_i v$ or when no jobs of $I' \setminus H_i$ remain.

- if $m_i v \leq W(X) \leq \frac{5m_i v}{4}$: use Steinberg's algorithm
- if $W(X) > \frac{5m_i v}{4}$?

Analyzing A_{select}

- if there are enough rectangles of $H_i \setminus L$ to reach 2v, add them to X until reaching 2v (we will have $\sum_{j \in X} p_j \leq \frac{5v}{2}$)
- otherwise (we know that few jobs of $H_i \setminus L$ remain), add to X jobs of $I' \setminus H_i$ using a non-increasing work order, stops when $W(X) \ge m_i v$ or when no jobs of $I' \setminus H_i$ remain.

- if $m_i v \leq W(X) \leq \frac{5m_i v}{4}$: use Steinberg's algorithm
- if $W(X) > \frac{5m_i v}{4}$?

Analyzing A_{select}

- if there are enough rectangles of $H_i \setminus L$ to reach 2v, add them to X until reaching 2v (we will have $\sum_{j \in X} p_j \leq \frac{5v}{2}$)
- otherwise (we know that few jobs of $H_i \setminus L$ remain), add to X jobs of $I' \setminus H_i$ using a non-increasing work order, stops when $W(X) \ge m_i v$ or when no jobs of $I' \setminus H_i$ remain.

- if $m_i v \leq W(X) \leq \frac{5m_i v}{4}$: use Steinberg's algorithm
- if $W(X) > \frac{5m_i v}{4}$?

Analyzing A_{select}

- if there are enough rectangles of $H_i \setminus L$ to reach 2v, add them to X until reaching 2v (we will have $\sum_{j \in X} p_j \leq \frac{5v}{2}$)
- otherwise (we know that few jobs of $H_i \setminus L$ remain), add to X jobs of $I' \setminus H_i$ using a non-increasing work order, stops when $W(X) \ge m_i v$ or when no jobs of $I' \setminus H_i$ remain.

- if $m_i v \leq W(X) \leq \frac{5m_i v}{4}$: use Steinberg's algorithm
- if $W(X) > \frac{5m_i v}{4}$?

Analyzing A_{select}

Our Aselect

- if there are enough rectangles of $H_i \setminus L$ to reach 2v, add them to X until reaching 2v (we will have $\sum_{j \in X} p_j \leq \frac{5v}{2}$)
- otherwise (we know that few jobs of $H_i \setminus L$ remain), add to X jobs of $I' \setminus H_i$ using a non-increasing work order, stops when $W(X) \ge m_i v$ or when no jobs of $I' \setminus H_i$ remain.

- if $m_i v \leq W(X) \leq \frac{5m_i v}{4}$: use Steinberg's algorithm
- if $W(X) > \frac{5m_i v}{4}$?

Analyzing A_{select}

Our Aselect

- if there are enough rectangles of $H_i \setminus L$ to reach 2v, add them to X until reaching 2v (we will have $\sum_{j \in X} p_j \leq \frac{5v}{2}$)
- otherwise (we know that few jobs of $H_i \setminus L$ remain), add to X jobs of $I' \setminus H_i$ using a non-increasing work order, stops when $W(X) \ge m_i v$ or when no jobs of $I' \setminus H_i$ remain.

- if $m_i v \leq W(X) \leq \frac{5m_i v}{4}$: use Steinberg's algorithm
- if $W(X) > \frac{5m_i v}{4}$?

Analyzing A_{select}

Our Aselect

- if there are enough rectangles of $H_i \setminus L$ to reach 2v, add them to X until reaching 2v (we will have $\sum_{j \in X} p_j \leq \frac{5v}{2}$)
- otherwise (we know that few jobs of $H_i \setminus L$ remain), add to X jobs of $I' \setminus H_i$ using a non-increasing work order, stops when $W(X) \ge m_i v$ or when no jobs of $I' \setminus H_i$ remain.

• if $m_i v \leq W(X) \leq \frac{5m_i v}{4}$: use Steinberg's algorithm

• if
$$W(X) > \frac{5m_i v}{4}$$
?

Analyzing A_{select}

Our Aselect

- if there are enough rectangles of $H_i \setminus L$ to reach 2v, add them to X until reaching 2v (we will have $\sum_{j \in X} p_j \leq \frac{5v}{2}$)
- otherwise (we know that few jobs of $H_i \setminus L$ remain), add to X jobs of $I' \setminus H_i$ using a non-increasing work order, stops when $W(X) \ge m_i v$ or when no jobs of $I' \setminus H_i$ remain.

- if $m_i v \leq W(X) \leq \frac{5m_i v}{4}$: use Steinberg's algorithm
- if $W(X) > \frac{5m_i v}{4}$?

Let
$$X = \{J_0\} \cup \{J_1, \dots, J_p\}$$
, with

- $J_0 \in H_i \cap L$ (if not empty)
- $W(J_j) \ge W(J_{j+1})$, for $1 \le j \le p-1$
- $W(X) > \frac{5m_i v}{4}$ implies $J_j \in L$ for $1 \le j \le p$ and $p \le 4$.

Let
$$X = \{J_0\} \cup \{J_1, \dots, J_p\}$$
, with

- $J_0 \in H_i \cap L$ (if not empty)
- $W(J_j) \ge W(J_{j+1})$, for $1 \le j \le p-1$
- $W(X) > \frac{5m_i v}{4}$ implies $J_j \in L$ for $1 \le j \le p$ and $p \le 4$.

Let
$$X = \{J_0\} \cup \{J_1, \dots, J_p\}$$
, with

- $J_0 \in H_i \cap L$ (if not empty)
- $W(J_j) \ge W(J_{j+1})$, for $1 \le j \le p-1$
- $W(X) > \frac{5m_i v}{4}$ implies $J_j \in L$ for $1 \le j \le p$ and $p \le 4$.

Let
$$X = \{J_0\} \cup \{J_1, \dots, J_p\}$$
, with

- $J_0 \in H_i \cap L$ (if not empty)
- $W(J_j) \ge W(J_{j+1})$, for $1 \le j \le p-1$
- $W(X) > \frac{5m_i v}{4}$ implies $J_j \in L$ for $1 \le j \le p$ and $p \le 4$.

Let
$$X = \{J_0\} \cup \{J_1, ..., J_p\}$$
, with

- $J_0 \in H_i \cap L$ (if not empty)
- $W(J_i) \ge W(J_{i+1})$, for $1 \le j \le p-1$
- $W(X) > \frac{5m_i v}{4}$ implies $J_j \in L$ for $1 \le j \le p$ and $p \le 4$.

$$X = \{J_0\} \cup \{J_1, ..., J_p\}$$

If J_0 "does not exist", obvious! (as $\{J_1,\ldots,J_p\}\subset (L\setminus H_i)$).

Let $X = \{J_0\} \cup \{J_1, \dots, J_p\}$, with

- $J_0 \in H_i \cap L$ (if not empty)
- $W(J_i) \ge W(J_{i+1})$, for $1 \le j \le p-1$
- $W(X) > \frac{5m_i v}{4}$ implies $J_j \in L$ for $1 \le j \le p$ and $p \le 4$.

Otherwise, we even have $p \le 3$, and the only non obvious case if for p = 3.

- let J_{i_1} be the rectangle of $\{J_1, J_2, J_3\}$ having the smallest q_i
- let $t_{i_1} = \frac{5v}{2} p_0 p_{i_1}$.

Let $X = \{J_0\} \cup \{J_1, \dots, J_p\}$, with

- $J_0 \in H_i \cap L$ (if not empty)
- $W(J_i) \ge W(J_{i+1})$, for $1 \le j \le p-1$
- $W(X) > \frac{5 m_i v}{4}$ implies $J_j \in L$ for $1 \le j \le p$ and $p \le 4$.

Otherwise, we even have $p \le 3$, and the only non obvious case if for p = 3.

• let J_{i_1} be the rectangle of $\{J_1, J_2, J_3\}$ having the smallest q_i

• let
$$t_{i_1} = \frac{5v}{2} - p_0 - p_{i_1}$$
.

Let $X = \{J_0\} \cup \{J_1, \dots, J_p\}$, with

- $J_0 \in H_i \cap L$ (if not empty)
- $W(J_i) \ge W(J_{i+1})$, for $1 \le j \le p-1$
- $W(X) > \frac{5 m_i v}{4}$ implies $J_j \in L$ for $1 \le j \le p$ and $p \le 4$.

Otherwise, we even have $p \le 3$, and the only non obvious case if for p = 3.

- let J_{i_1} be the rectangle of $\{J_1, J_2, J_3\}$ having the smallest q_i
- let $t_{i_1} = \frac{5v}{2} p_0 p_{i_1}$.

Let $X = \{J_0\} \cup \{J_1, ..., J_n\}$, with

- $J_0 \in H_i \cap L$ (if not empty)
- $W(J_i) \ge W(J_{i+1})$, for $1 \le i \le p-1$
- $W(X) > \frac{5m_i v}{4}$ implies $J_j \in L$ for $1 \le j \le p$ and $p \le 4$.

If J_i intersects the shelf we get:

$$W(X \setminus J_1) > p_0(m_i - q_1) + t_{i_1}(m_i - q_1) + (Q(Sh) - (m_i - q_1))\frac{v}{2}$$

 $> m_i v$ as $Q(sh) > 2q_{i_1}$ and $t_{i_1} > \frac{3v}{2} - p_{0i_2}$

Let $X = \{J_0\} \cup \{J_1, ..., J_n\}$, with

- $J_0 \in H_i \cap L$ (if not empty)
- $W(J_i) \ge W(J_{i+1})$, for $1 \le i \le p-1$
- $W(X) > \frac{5m_i v}{4}$ implies $J_i \in L$ for $1 \le j \le p$ and $p \le 4$.

If J_{i} intersects the shelf we get:

$$W(X \setminus J_1) > p_0(m_i - q_1) + t_{i_1}(m_i - q_1) + (Q(Sh) - (m_i - q_1))\frac{v}{2}$$

> $m_i v$ as $Q(sh) > 2q_{i_1}$ and $t_{i_1} > \frac{3v}{2} - p_{0i_2}$

Let $X = \{J_0\} \cup \{J_1, \dots, J_n\}$, with

- $J_0 \in H_i \cap L$ (if not empty)
- $W(J_i) \ge W(J_{i+1})$, for $1 \le i \le p-1$
- $W(X) > \frac{5m_i v}{4}$ implies $J_j \in L$ for $1 \le j \le p$ and $p \le 4$.

If J_{i_1} intersects the shelf we get:

$$W(X \setminus J_1) > p_0(m_i - q_1) + t_{i_1}(m_i - q_1) + (Q(Sh) - (m_i - q_1))\frac{v}{2}$$

> $m_i v$ as $Q(sh) > 2q_{i_1}$ and $t_{i_1} > \frac{3v}{2} - p_{0i_2}$

- $I' \subset H_3$
- $P(I' \setminus L) = \sum_{I'} p_X \leq 2v$
- if $X \cap (H_3 \cap L) = \emptyset$ then $I' \subset H_3 \setminus L$.
- if $X \cap (H_3 \cap L) \neq \emptyset$: $P(I' \setminus L) \leq \frac{3v}{2}$
 - how to schedule $I' \cap L$
 - how to schedule I'\ L ?

- $I' \subset H_3$
- $P(I' \setminus L) = \sum_{I'} p_X \leq 2V$
- if $X \cap (H_3 \cap L) = \emptyset$ then $I' \subset H_3 \setminus L$.
- if $X \cap (H_3 \cap L) \neq \emptyset$: $P(I' \setminus L) \leq \frac{3v}{2}$
 - how to schedule $I' \cap L$
 - how to schedule $I' \setminus L$?

- $I' \subset H_3$
- $P(I' \setminus L) = \sum_{I'} p_X \leq 2v$
- if $X \cap (H_3 \cap L) = \emptyset$ then $I' \subset H_3 \setminus L$.
- if $X \cap (H_3 \cap L) \neq \emptyset$: $P(I' \setminus L) \leq \frac{3v}{2}$
 - how to schedule $I' \cap L$
 - how to schedule I'\ L?

- $I' \subset H_3$
- $P(I' \setminus L) = \sum_{I'} p_x \leq 2v$
- if $X \cap (H_3 \cap L) = \emptyset$ then $I' \subset H_3 \setminus L$.
- if $X \cap (H_3 \cap L) \neq \emptyset$: $P(I' \setminus L) \leq \frac{3v}{2}$
 - how to schedule I' ∩ L?
 - how to schedule I' \ L ?

- $I' \subset H_3$
- $P(I' \setminus L) = \sum_{I'} p_x \leq 2v$
- if $X \cap (H_3 \cap L) = \emptyset$ then $I' \subset H_3 \setminus L$.
- if $X \cap (H_3 \cap L) \neq \emptyset$: $P(I' \setminus L) \leq \frac{3v}{2}$
 - how to schedule $I' \cap L$?
 - how to schedule $I' \setminus L$?

- $I' \subset H_3$
- $P(I' \setminus L) = \sum_{I'} p_x \leq 2v$
- if $X \cap (H_3 \cap L) = \emptyset$ then $I' \subset H_3 \setminus L$.
- if $X \cap (H_3 \cap L) \neq \emptyset$: $P(I' \setminus L) \leq \frac{3\nu}{2}$
 - how to schedule $I' \cap L$?
 - how to schedule $I' \setminus L$?

- $I' \subset H_3$
- $P(I' \setminus L) = \sum_{I'} p_x \leq 2v$
- if $X \cap (H_3 \cap L) = \emptyset$ then $I' \subset H_3 \setminus L$.
- if $X \cap (H_3 \cap L) \neq \emptyset$: $P(I' \setminus L) \leq \frac{3\nu}{2}$
 - how to schedule $I' \cap L$?
 - how to schedule $I' \setminus L$?

- $I' \subset H_3$
- $P(I' \setminus L) = \sum_{I'} p_x \leq 2v$
- if $X \cap (H_3 \cap L) = \emptyset$ then $I' \subset H_3 \setminus L$.
- if $X \cap (H_3 \cap L) \neq \emptyset$: $P(I' \setminus L) \leq \frac{3\nu}{2}$
 - how to schedule $I' \cap L$?
 - how to schedule $I' \setminus L$?

- $I' \subset H_3$
- $P(I' \setminus L) = \sum_{I'} p_x \leq 2v$
- if $X \cap (H_3 \cap L) = \emptyset$ then $I' \subset H_3 \setminus L$.
- if $X \cap (H_3 \cap L) \neq \emptyset$: $P(I' \setminus L) \leq \frac{3\nu}{2}$
 - how to schedule $I' \cap L$?
 - how to schedule $I' \setminus L$?

- $I' \subset H_3$
- $P(I' \setminus L) = \sum_{I'} p_x \leq 2v$
- if $X \cap (H_3 \cap L) = \emptyset$ then $I' \subset H_3 \setminus L$.
- if $X \cap (H_3 \cap L) \neq \emptyset$: $P(I' \setminus L) \leq \frac{3\nu}{2}$
 - how to schedule $I' \cap L$?
 - how to schedule $I' \setminus L$?

Conclusion

This algorithm

- is a $\frac{5}{2}$ -approximation (improving the previous 3 bound, the lower bound being 2)
- runs in $\mathcal{O}(log(np_{mapx})kC_{Steinb})$ with $C_{Steinb} = nlog^2(n)/log(log(n))$
- also applies for continuous scheduling (i.e. rectangle packing)
- :(requires that every job fits everywhere

Remarks / future work

- why not $\frac{7}{3}$?
 - $A(X) \leq \frac{7m_i v}{6} \Rightarrow Steinberg$
 - $A(X) > \frac{7 \, m_i \, v}{6} \Rightarrow$ at most 6 rectangles.
- remove the "fit everywhere" assumption..

Bibliography

- [HS87] D.S. Hochbaum and D.B. Shmoys. Using dual approximation algorithms for scheduling problems theoretical and practical results. Journal of the ACM (JACM), 34(1):144-162, 1987.
- [Ste97] A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM Journal on Computing, 26:401, 1997.
- [STY08] U. Schwiegelshohn, A. Tchernykh, and R. Yahyapour. Online scheduling in grids. In IEEE International Symposium on Parallel and Distributed Processing (IPDPS), pages 1-10, 2008.
- [YHZ09] D. Ye, X. Han, and G. Zhang. On-Line Multiple-Strip Packing. In Proceedings of the 3rd International Conference on Combinatorial Optimization and Applications (COCOA), page 165. Springer, 2009.
- [Zhu06] SN Zhuk.

 Approximate algorithms to pack rectangles into several strips.

 Discrete Mathematics and Applications, 16(1):73-85, 2006.