A fast 5/2 approximation for hierarchical scheduling

Marin Bougeret, Pierre-Francois Dutot, Christina Otte, Klaus
Jansen and Denis Trystram

LIG laboratory (MOAIS Team), Grenoble, France

1/27



@ Introduction
© State of art
© Main ideas of the g approximation

@ Finishing the proof



Introduction

@ Introduction



Introduction
Context
?

\AG w cerees
\ B 4 \

g
7] i

f

L -

4/27



Introduction

Problem statement

Multiple Cluster Scheduling Problem (MCSP):
Input:

@ k clusters (cluster Cl; owns m; machines)

Objective:

N

5/27



Introduction

Problem statement

Multiple Cluster Scheduling Problem (MCSP):
Input:

@ k clusters (cluster Cl; owns m; machines)

@ n independent parallel jobs (job J; requires g; machines on
the same cluster during p; units of time)

Objective:

N

C/3 E | "

Conax




Introduction

Problem statement

Multiple Cluster Scheduling Problem (MCSP):

Input:

@ k clusters (cluster Cl; owns m; machines)

@ n independent parallel jobs (job J; requires g; machines on
the same cluster during p; units of time)

Objective:

@ schedule all the jobs minimizing the makespan Cpax
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Introduction

Motivation of the Multiple Cluster model

What means this model ?

@ parallel job = schedule of sequential jobs with dependencies
without communication costs

= communication costs between machines of the same cluster
are neglected

= communication costs between machines of different clusters
are unbounded, hence the constraint of using gj machines of
the same cluster when scheduling one job

I e
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State of art

Related problems

- . . ma:h!ne4
o parallel (rigid) job scheduling s
machine 1

@ Rectangle packing = .
parallel(rigid) job continuous mechine3
scheduling

machine 1

@ Algorithms for non continuous case generally not apply to
continuous case but ..

@ Approximation ratios for continuous case may not apply to non
contiguous case (as Cj,, < CEont *)

@ However, approximation ratio for continuous case often apply
to non continuous case
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State of art

Related problems

MCSP and strip packing

@ MCSP + continuous constraint = Multiple Strip Packing
@ For k = 1 Cluster :

o MCSP is classical parallel job scheduling
(List Scheduling ratio 2 — 1)

e MCSP + continuous constraint = Strip Packing
(the 2 ratio required more efforts!)

As shown in [STYO08] List Scheduling is arbitrarily bad on MCSP
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State of art

Negative result for MCSP

@ MCSP is 2-inapproximable unless P = NP, even for k =2
clusters having the same size }

Using a gap reduction [Zhu06] from the 2-partition problem:

YES-Instance NO-Instance

C* =1 C:naw =2

max
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Main positive results for MCSP

’ Ratio \ Remarks \ Hypothesis \ Source ‘

3 decentralized (and fast) [STYO08]

algorithm
2+ € . i . . .
requires solving Q||Cmax | every job fits ev- | this pa-
with a ratio 1 + 5 erywhere, adapted | per
from [YHZ09]

5

2 fast, also applies for con- | every job fits every- | this talk
tinuous case where

Remark: Solving Q|| Cnax using a classical PTAS is in Q(n®?), as
our 3 approximation is in & knlog?(n)
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Specification

Given an input /, and a guess v of the optimal value, the algorithm:
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Main ideas of the g approximation

Using the dual approximation technique [HS87]

Specification

Given an input /, and a guess v of the optimal value, the algorithm:

o schedules | with Cpax < %
e or REJECTS v, implying then that v < C .,

Thus, using a binary search on v on the interval [|0, npmax|] 3 Chax
we get a %—approximation
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Using the dual approximation technique

We fill the clusters from the smallest to the largest, trying to
schedule an "optimal work" in every cluster

work > myv
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Main ideas of the g approximation

Using the dual approximation technique

We fill the clusters from the smallest to the largest, trying to
schedule an "optimal work" in every cluster

Ml -
E e

Let W(X) = > :cx pjq; denote the work of the set of jobs X.

J
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2

Let us dream

Let us suppose that we have an algorithm Agejec such that:

o if there is enough remaining jobs I’ (I’ is the set of
unscheduled jobs)

o then Agecr returns X C I’ such that

o X can be scheduled in %~

2
] W(X) > m;v

Then we would directly have the g approximation.
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Bad news

The previous algorithm does not exist:

N[
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Proposed solution

A weaker Aselect
Thus, Aseject requires constraints ensuring that such a X set exists.

o instead of: if there is enough remaining jobs /I’ then Ageject
returns X as specified before

@ we have: if C; then Ageec; returns X as specified before

What we have to do is:
o define (4

o if C; is true, prove that X can be scheduled in

5v
2

@ otherwise, prove that it is "obvious" to finish packing all the
jobs of I” in all the remaining empty clusters
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Main ideas of the g approximation

e

All in all, the algorithm will behave as follows:

~lg
~lg

e

X/W(X) < msv — - y

‘\ How to pack /’, knowing

that C is false ?
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Toward a "good" Aselect

An important tool for one strip:

Steinberg’s theorem [Ste97]

Steinberg's theorem applied in our case:
if a set X is such that W(X) < amjv, (a > 1), then X can be
scheduled (continuously) in a rectangular box of size m; x 2av.
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Toward a "good" Aselect

An important tool for one strip:

Steinberg’s theorem [Ste97]

Steinberg's theorem applied in our case:
if a set X is such that W(X) < amjv, (a > 1), then X can be
scheduled (continuously) in a rectangular box of size m; x 2av.

Remark: Can be proved using a List Scheduling algorithm (leading
however to a non-continuous schedule)

We need the following definitions (given a cluster Cl;):
o let L = {Jy|pj > 5} (long jobs)
o let H; = {J,|q; > 5t} (high jobs)
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Finishing the proof

Toward a "good" Aselect

Given Cl; the current empty cluster (initially X = 0):
@ add to X one rectangle of L N H; (the highest..)
o if there are enough rectangles of H; \ L to reach 2v, add them
to X until reaching 2v (we will have > .y pj < )

@ otherwise (we know that few jobs of H; \ L remain), add to X
jobs of I”\ H; using a non-increasing work order, stops when
W(X) > mjv or when no jobs of I’ \ H; remain.
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Finishing the proof

Toward a "good" Aselect

Given Cl; the current empty cluster (initially X = 0):
@ add to X one rectangle of L N H; (the highest..)

o if there are enough rectangles of H; \ L to reach 2v, add them
to X until reaching 2v (we will have > .y pj < )

@ otherwise (we know that few jobs of H; \ L remain), add to X
jobs of I”\ H; using a non-increasing work order, stops when
W(X) > mjv or when no jobs of I’ \ H; remain.

| I
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Finishing the proof

What is missing now?

What we have to do is:
o define G;: DONE

@ if G is true (i.e. when W(X) > mjv), prove that X can be

scheduled in 2

@ otherwise, prove that it is "obvious" to finish packing all the
jobs of I” in all the remaining empty clusters
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AnalyZing Aselect

o if there are enough rectangles of H; \ L to reach 2v, add them

. . . 5
to X until reaching 2v (we will have 3 p; < %)
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Finishing the proof

Analyzing Aselect

o if there are enough rectangles of H; \ L to reach 2v, add them

. . . 5
to X until reaching 2v (we will have 3 p; < %)

@ otherwise (we know that few jobs of H; \ L remain), add to X
jobs of I”\ H; using a non-increasing work order, stops when
W(X) > mjv or when no jobs of /" \ H; remain.

| [PVE . R
MHHMH,'\(L : i " " ' v
1 inH,

X

=]

o if mv < W(X)< E”’]T"V: use Steinberg’s algorithm
o if W(X) > 5'27"‘/? 23 /27
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Let X = {Jo} U{Jx,...,Jp}, with
@ Jy € HiN L (if not empty)
o W(Jj) > W(Jjt1) for1 <j<p-1

o W(X) > 5'2"‘/ implies Jj € Lfor 1 <j<pandp <4

v 2v

X:{Jo}u{_/l.“.,_jp)

If Jo "does not exist", obvious! (as {Ji,...,Jp} C (L\ H})).
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Otherwise, we even have p < 3, and the only non obvious case if
for p = 3.
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Finishing when (7 is false

v 2v
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Let us suppose that Agejec: fails for Ch (i.e. returns X with
W(X) < mzv). Let I’ be the remaining jobs after filling Ch.
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Conclusion

This algorithm

@ isa g—approximation (improving the previous 3 bound, the
lower bound being 2)

o runs in O(log(npmapx)kCsteinp) With

Csteinb = nlog?(n)/log(log(n))
@ also applies for continuous scheduling (i.e. rectangle packing)
@ :( requires that every job fits everywhere

Remarks / future work
o why not % ?
o A(X) < Im¥ = Steinberg
o A(X) > ™i¥ = at most 6 rectangles..

@ remove the "fit everywhere" assumption..
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