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De�nition of the problem

Using the standard notation, this problem is Q||Cmax

O�ine monocriteria optimization problem

Input :

m machines of speed s1 ≤ s2 ≤ ... ≤ sm, si > 0
n jobs with processing requirement p1 ≤ ... ≤ pn, pj > 0
(processing job j on machine i will take

pj
si

units of time, ie

processors are related)

Output : A schedule σ which assigns to each job one machine and
one starting date

Constraints :

A job can be processed on only one machine
No preemption, no restart

Objective function : makespan
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Results on this problem

Existing results :

Q||Cmax is unary NP hard

Gonzalez, Ibarra and Sahni [SIAM JoC 77] provided a 2
approximation algorithm (a list algorithm)

Hochbaum and Shmoys [SIAM JoC 88] provided a PTAS

Our result :

A 3
2 approximation algorithm
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Why is this interesting ?

→ the algorithmic complexity of the PTAS is huge (O(n43) to
get a ratio of 3

2)

→ our algorithm, based on dual approximation and list technique,
is simple and quick

→ a naive implementation of the Gonzalez algorithm leads to
O(nlog(n) + mn) while our algorithm is in
O(nlog(n) + mlog(m) + mnlog(

∑n
i=1 pi ))
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Layout

1 Two classical list algorithms applied on Q||Cmax
Analysis of EFT without sorting the tasks
Analysis of EFT with decreasing sort

2 Our 3
2 approximation for Q||Cmax

The algorithm
Proof and tightness of the bound
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Analysis of EFT without sorting the tasks
Analysis of EFT with decreasing sort

Sum up of known results

Applied on the P||Cmax problem

EFT is exactly the famous [Graham 66] algorithm
the approximation ratio is 2− 1

m

Applied on the Q||Cmax problem

the approximation ratio is θ(log(n)) (Aspnes and al. [ACM 93])
→ schedule �rst the biggest tasks
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Analysis of EFT without sorting the tasks
Analysis of EFT with decreasing sort

The Gonzalez ratio of 2

Before scheduling the last task n (the
smallest) :

let Loadi : total load of machine i before
scheduling n

completion time on machine i is
Loadi
si

let W =
Pm

i=1 Loadi + pn (total work)

let Q =
Pm

i=1 si

Idea of the proof :

skCmax = Loadk + pn
siCmax ≤ Loadi + pn,∀i 6= kPm

i=1 si Cmax ≤
Pm

i=1 Loadi + mpn
QCmax ≤W + (m − 1)pn
QCmax ≤W + (m − 1)pn| {z }

≤W if n≥m..

Cmax ≤ 2W
Q
≤ 2C∗max

1

2

m

.

.

.

slow

fast

time

machines

k

Load2/s2

Loadm/sm

Load1/s1

Loadk/sk
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Analysis of EFT with decreasing sort

A worst case for EFT + Sort

Lower bound for the ratio

There exist instances for which Cmax
C∗max

≈ 3
2 , for m →∞

Let s1 = 1 ≤ s2 ≤ ... ≤ sm and
p′1 ≤ p1 ≤ p2 ≤ p3, ... ≤ pm, such that :

p1 = p′1 = p, (we �xed p) (1)

pi+p
si

= 2p, for 2 ≤ i ≤ m (2)

2p
sm

=
pi

si−1
, for 2 ≤ i ≤ m (3)

Thus, we get :

Cmax = 2p and C∗max = 2p
sm

=⇒ Cmax
C∗max

= sm

In fact :

(1) ∧ (2) ∧ (3) =⇒ 2sm − 3
sm
− 1

smm
+ 2

sm+1
m

= 0

=⇒ sm = 3
2 − εm

εm > 0, εm →m→∞ 0
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.

.

.
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machines
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p2/s2

pp
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Presentation

our algorithm uses the dual approximation technique :

w (guess)

I

Algorithm

the ratio is tight

the complexity is O(nlog(n) + mlog(m) + mnlog(
∑n

i=1 pi ))
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Proof of the �rst reject condition

First reject condition

¬(L < m) =⇒ w < C∗max

Proof :

By construction of Left :

∀j ∈ Left, ∀i ∈ {1, ..,m},C1
i +

jobj
si

> w (1)

Now suppose L ≥ m
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≤ w

2 ) =⇒ w < C∗max

Proof :

Suppose ∃j0,
jobj0

sm−j0+1
> w

2 (2) (let's take the

�rst such j0)

Let I ′ = {j ∈ {1, .., n}, pj ≥ pjobj0
}

We will prove that scheduling tasks in I ′ is
impossible in w units of time,
proving thus that the original set of tasks
{1, .., n} is also impossible in w .
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Proof of the second reject condition

Let's consider σ|I′ :

On �slow� machines
i ∈ Slow = {1, ..,m − j0 + 1}, (2) =⇒ 0 or 1
task per machine

On �fast� machines i ∈ Fast = {m − j0, ..,m},
at least 1 task from phase 1, and 1 task from
phase 2

To show that I ′ is impossible, we proved that :

the total work Wslow scheduled on the �slow�
machines is maximal (optimal)

the remaining work scheduled on Wfast is too
large (Wfast >

Pm
i=m−j0+1 siw)
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Tightness of the bound

Theorem

∀ε > 0, ∃I/Cmax ≥ (32 − ε)C
∗
max

w/2 w/2 w/2(1+x) w/2(1+x)

2

1

machines
w

Left

time

1 + x

1

Notice that we could modify the phase 2 of our algorithm to avoid this case, but ...
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Conclusion

For the problem Q||Cmax ,
there is a fast 3

2 approximation

there is the PTAS of Hochbaum and Shmoys [SIAM JoC 88]

Thank you for your attention !
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