Combining Multiple Heuristics on Discrete Resources

Marin Bougeret, Pierre-François Dutot, Alfredo Goldman, Yanik Ngoko, Denis Trystram

LIG laboratory, France

May 25th, APDCM 09

Oracle formalism for PTAS design

3 Approximation schemes for the restricted dRSSP

- First guess : arbitrary subset
- Second guess : convenient subset

Presentation of the problem

2 Oracle formalism for PTAS design

Approximation schemes for the restricted dRSSP
 First guess : arbitrary subset
 Second guess : convenient subset

Introduction

- a finite set H of algorithms/heuristics (algorithm portfolio)
- a finite set I of "representatives" instances (benchmark)
- the time needed by each algorithm of *H* to solve each instance of *I* is known
- goal : minimize the time needed to solve all the instances from the benchmark
- more than selection : combination of algorithms

Introduction

- a finite set H of algorithms/heuristics (algorithm portfolio)
- a finite set I of "representatives" instances (benchmark)
- the time needed by each algorithm of *H* to solve each instance of *I* is known
- goal : minimize the time needed to solve all the instances from the benchmark
- more than selection : combination of algorithms

Introduction

- a finite set H of algorithms/heuristics (algorithm portfolio)
- a finite set I of "representatives" instances (benchmark)
- the time needed by each algorithm of *H* to solve each instance of *I* is known
- goal : minimize the time needed to solve all the instances from the benchmark
- more than selection : combination of algorithms

Introduction

- a finite set H of algorithms/heuristics (algorithm portfolio)
- a finite set I of "representatives" instances (benchmark)
- the time needed by each algorithm of *H* to solve each instance of *I* is known
- goal : minimize the time needed to solve all the instances from the benchmark
- more than selection : combination of algorithms

Introduction

What we mean by combination :

- one instance may be solved by several algorithms in parallel
- parallel task model : moldable
- when a solution of an instance is found, everyone is aware

Introduction

Why not choosing the following greedy optimal policy: for each instance, give all the resources to the best heuristic ?

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Some existing combination models:

Space sharing [1] Time sharing [1]

Introduction

Some existing combination models:

Time sharing [1]

Introduction

Some existing combination models:

Time sharing [1]

Introduction

Some existing combination models:

Time sharing [1]

Introduction

Some existing combination models:

Time sharing [1]

Definition of the dRSSP

Input of the discrete Resource Sharing Scheduling Problem:

- a finite set of instances $I = \{I_1, \ldots, I_n\}$
- a finite set of heuristics $H = \{h_1, \ldots, h_k\}$
- *m* identical resources

• a cost
$$C(h_i, l_j, p) \in R^+$$
 for each $l_j \in I$, $h_i \in H$ and $p \in \{1, \ldots, m\}$

Output : an allocation $S = (S_1, \ldots, S_k)$ such that:

•
$$S_i \in \mathbb{N}$$

•
$$\sum_{i=1}^{k} S_i = m$$

• S minimizes
$$\sum_{j=1}^{n} \min_{1 \le i \le k} \{C(h_i, l_j, S_i)\}$$

Continuous version $(p \in R^+)$ in [1].

Definition of the dRSSP

Input of the discrete Resource Sharing Scheduling Problem:

- a finite set of instances $I = \{I_1, \ldots, I_n\}$
- a finite set of heuristics $H = \{h_1, \ldots, h_k\}$
- *m* identical resources

• a cost
$$C(h_i, l_j, p) \in R^+$$
 for each $l_j \in I$, $h_i \in H$ and $p \in \{1, \ldots, m\}$

Output : an allocation $S = (S_1, \ldots, S_k)$ such that:

• $S_i \in \mathbb{N}$

•
$$\sum_{i=1}^{k} S_i = m$$

• S minimizes
$$\sum_{j=1}^{n} \min_{1 \le i \le k} \{C(h_i, I_j, S_i)\}$$

Continuous version $(p \in R^+)$ in [1].

Complexity results

- the dRSSP is NP hard in the strong sense (reduction from the vertex cover problem)
- the dRSSP is innaproximable (unless P = NP) within a constant factor (if m < k)
- we study a restricted version:
 - linear cost assumption: $C(h_i, l_j, p) = C(h_i, l_j, m) \frac{m}{p}$
 - well chosen portfolio: each heuristic must use at least one processor (S_i ≥ 1)

Notations

Given a solution S:

- let σ(j) = argmin C(h_i, l_j)/S_i be the index of the used heuristic for instance j ∈ {1, ..., n} in S
 let T(l_j) = C(h_{σ(j}), l_j)/S_{σ(i)} be the processing time of instance j in S
- let $T(h_i) = \sum_{j/\sigma(j)=i} T(l_j)$ is the "useful" computation time of heuristic *i* in *S*

A naive algorithm : MA

We consider the mean-allocation (*MA*) algorithm which simply allocates $\lfloor \frac{m}{k} \rfloor$ resources to each heuristic.

PropositionMA is a k approximation.

Proof/Worst case:

Presentation of the problem

Oracle formalism for PTAS design

Approximation schemes for the restricted dRSSP
 First guess : arbitrary subset
 Second guess : convenient subset

Introduction

Some of the main *PTAS* design techniques [2]:

- structuring the input
- structuring the output ("extending partial small size solutions")
- structuring the execution of an algorithm ("trimmed algorithm")
- rounding LP
- oracle based approach
- ...

- define the guess G: choose an "interesting" property P
- ask a question Q(I) to the oracle
- the oracle provides an answer $r^* \in R$ (s t. $P(Q(I), r^*)$ is true)
- find a solution using the guess: an algorithm A provides $S(r^*) \leq \rho Opt$
- take the best: try all the possible answers and select the best of all the S(r), r ∈ R

- define the guess G: choose an "interesting" property P
- ask a question Q(I) to the oracle
- the oracle provides an answer $r^* \in R$ (s t. $P(Q(I), r^*)$ is true)
- find a solution using the guess: an algorithm A provides $S(r^*) \leq \rho Opt$
- take the best: try all the possible answers and select the best of all the S(r), r ∈ R

- define the guess G: choose an "interesting" property P
- ask a question Q(I) to the oracle
- the oracle provides an answer $r^* \in R$ (s t. $P(Q(I), r^*)$ is true)
- find a solution using the guess: an algorithm A provides $S(r^*) \leq \rho Opt$
- take the best: try all the possible answers and select the best of all the $S(r), r \in R$

- define the guess G: choose an "interesting" property P
- ask a question Q(I) to the oracle
- the oracle provides an answer $r^* \in R$ (s t. $P(Q(I), r^*)$ is true)
- find a solution using the guess: an algorithm A provides $S(r^*) \leq \rho Opt$
- take the best: try all the possible answers and select the best of all the S(r), r ∈ R

- define the guess G: choose an "interesting" property P
- ask a question Q(I) to the oracle
- the oracle provides an answer $r^* \in R$ (s t. $P(Q(I), r^*)$ is true)
- find a solution using the guess: an algorithm A provides $S(r^*) \leq \rho Opt$
- take the best: try all the possible answers and select the best of all the $S(r), r \in R$

- define the guess G: choose an "interesting" property P
- ask a question Q(I) to the oracle
- the oracle provides an answer $r^* \in R$ (s t. $P(Q(I), r^*)$ is true)
- find a solution using the guess: an algorithm A provides $S(r^*) \leq \rho Opt$
- take the best: try all the possible answers and select the best of all the S(r), r ∈ R

Thus, the obtained algorithm (without oracle):

• is a ho approximation

• has a computational complexity in $O(t_A * 2^{|r^*|})$

Generally, we can choose $|r^*|$ (leading to different ρ), leading to classical approximation schemes.

2 Oracle formalism for PTAS design

Approximation schemes for the restricted dRSSP First guess : arbitrary subset

• Second guess : convenient subset

Introduction

First guess : arbitrary subset Second guess : convenient subset

In this part:

- we use the MA algorithm as a basis
- we look for "the right" question to ask to the oracle

Introduction

We consider the following MA^G algorithm (given any guess $G = (X_1, \ldots, X_g), X_i \ge 1$):

- allocate X_i processors to heuristic $h_i, i \in \{1, \dots, g\}$
- applies *MA* on the *k*' others heuristics with the *m*' remaining processors

We will use this algorithm with guesses from the oracle.

Guess 1

As a first step we choose arbitrarily g heuristics denoted by $\{h_1, \ldots, h_g\}$.

Definition G1

Let $G_1 = (S_1^*, \ldots, S_g^*)$, for a fixed subset of g heuristics and a fixed optimal solution S^* .

Notice that $|G_1| = glog(m)$. We use the algorithm MA^G with $G = G_1$.

Proposition

 MA^{G_1} is a k - g approximation.

Analysis of MA^{G_1}

We need some notations :

- let k' = k g be the number of remaining heuristics
- let $s = \sum_{i=1}^{g} S_{i}^{*}$ the number of processors used in the guess
- let m' = m s the number of remaining processors

Proof/Worst case:

Algorithm MA_R^G

The ratio for instances solved by the guessed heuristics is unnecessarily good.

Thus, the mean-allocation-reassign algorithm (MA_R^G) (given any guess $G = (X_1, \ldots, X_g), X_i \ge 1$):

- allocates only $X_i \lfloor \frac{X_i}{\alpha} \rfloor$ processors to heuristic $h_i, i \in \{1, \dots, g\}$
- applies *MA* on the *k'* others heuristics with the remaining processors

Proposition

With the "right"
$$lpha,\; {\it MA}_{\it R}^{{\it G}_1}$$
 is a $(k-g)(1-eta)$ approximation

 MA_R^G requires a larger guess to ensure that s > k + c (c constant)

Introduction

The oracle response $r^* = [(i_1^*, \ldots, i_g^*), (r_1^*, \ldots, r_g^*)]$ will indicate the number of resources r_j^* allocated to heuritic $h_{i_j^*}$ (in a optimal solution).

The question now is: given an optimal solution S^* , what is the most "important" subset of g heuristics ?

- 1) those that have the largest number of allocated resources
- 2) those that have the fewest number of allocated resources
- 3) those that have the largest "useful" computation time

Another analysis of MA

For any heuristic h_i , $i \in \{1, ..., k\}$, remember that $T^*(h_i) = \sum_{j/\sigma^*(j)=i} T^*(l_j)$ is the "useful" computation time of heuristic i in the solution S^* .

Difficult instances are the ones where the optimal only uses a small number of heuristics.

First guess : arbitrary subset Second guess : convenient subset

Another analysis of MA

$$T_{MA} = \sum_{i=1}^{k} \sum_{j/\sigma^{*}(j)=i} T(l_{j})$$

$$\leq \sum_{i=1}^{k} \frac{S_{i}^{*}}{S_{i}} \sum_{j/\sigma^{*}(j)=i} T^{*}(l_{j})$$

$$= \sum_{i=1}^{k} \frac{S_{i}^{*}}{S_{i}} T^{*}(h_{i})$$

$$\leq Max_{i}(T^{*}(h_{i})) \frac{m}{\lfloor \frac{m}{k} \rfloor}$$

$$\leq Max_{i}(T^{*}(h_{i}))(2k-1)$$

Guess 2

Definition

Let $G_2 = (S_1^*, \ldots, S_g^*)$, such that $T^*(h_1) \ge \ldots \ge T^*(h_g) \ge T^*(h_i), \forall i \in \{g + 1, \ldots, k\}$ in a fixed optimal solution S^* .

Notice that $|G_2| = glog(k) + glog(m)$. We use the algorithm MA^G with $G = G_2$.

Proposition

 MA^{G_2} is a $\frac{k}{g+1}$ approximation.

First guess : arbitrary subset Second guess : convenient subset

Proof/Worst case:

Analysis of MA^{G_2}

First guess : arbitrary subset Second guess : convenient subset

Outline of the obtained approximation schemes

algorithm	approx ratio	r* complexity		
MA ^G 1	(k - g)	glog(m)	O(m ^g * kn)	
$MA_R^{G_1}$	$(k-g)(1-\beta)$	log(k) + glog(m)	$O(k * m^g * kn)$	
MA ^G 2	$\frac{k}{g+1}$	g(log(k) + log(m))	$O((km)^g * kn)$	

Remark: these results are approximation schemes, and not PTAS

Conclusion

In this presentation:

- we extended the resource sharing problem to the discrete version (dRSSP)
- we presented the oracle methodology for PTAS design
- we built different approximation schemes for the restricted dRSSP

Conclusion

In this presentation:

- we extended the resource sharing problem to the discrete version (dRSSP)
- we presented the oracle methodology for PTAS design
- we built different approximation schemes for the restricted dRSSP

Bibliography

- T. Sayag, S. Fine, and Y. Mansour. Combining multiple heuristics. In STACS 2006, volume 3884, pages 242–253. Springer, 2006.
- P. Schuurman and G. J. Woeginger. Approximation schemes - a tutorial. In *Lectures on Scheduling*, 2000.

NP hardness

The reduction is from the vertex cover problem. The input of the vertex cover problem is:

- k vertices
- n edges
- is there a vertex cover of size x ?

First guess : arbitrary subset Second guess : convenient subset

NP hardness

The input of the dRSSP is:

- k heuristics
- *n* instances in the benchmark
- x resources
- a cost matrix as following (costs are indicated when using every resources)

How to choose the right value for T:

- if there exists a vertex cover of size x, then $opt \leq nx\alpha = T$
- else $opt \ge T+1$

The gap can be arbitrary large.

The reduction for the restricted version is based on the same idea.

	I_1	I_2	<i>I</i> 3	 I _n
h_1		••	T+1	
h_2	••		α	 ••
••	••		T+1	 ••
••	••	••	T+1	 ••
h _k	••		α	 ••