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Introduction

Context:

a �nite set H of algorithms/heuristics (algorithm portfolio)
a �nite set I of �representatives� instances (benchmark)
the time needed by each algorithm of H to solve each instance
of I is known
goal : minimize the time needed to solve all the instances from
the benchmark
more than selection : combination of algorithms

SAT Algorithms
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Introduction

What we mean by combination :

one instance may be solved by several algorithms in parallel

parallel task model : moldable

when a solution of an instance is found, everyone is aware
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Why not choosing the following greedy optimal policy: for each
instance, give all the resources to the best heuristic ?

Because we don't want to solve ONLY the benchmark!
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Space sharing [1]
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De�nition of the dRSSP

Input of the discrete Resource Sharing Scheduling Problem:

a �nite set of instances I = {I1, . . . , In}
a �nite set of heuristics H = {h1, . . . , hk}
m identical resources

a cost C (hi , Ij , p) ∈ R+ for each Ij ∈ I , hi ∈ H and
p ∈ {1, . . . ,m}

Output : an allocation S = (S1, . . . , Sk) such that:

Si ∈ N∑k
i=1 Si = m

S minimizes
∑n

j=1 min
1≤i≤k

{C (hi , Ij , Si )}

Continuous version (p ∈ R+) in [1].
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Complexity results

the dRSSP is NP hard in the strong sense (reduction from the
vertex cover problem)

the dRSSP is innaproximable (unless P = NP) within a
constant factor (if m < k)

we study a restricted version:

linear cost assumption: C (hi , Ij , p) = C (hi , Ij ,m)m
p

well chosen portfolio: each heuristic must use at least one
processor (Si ≥ 1)
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Notations

Given a solution S :

let σ(j) = argmin
1≤i≤k

C(hi ,Ij )
Si

be the index of the used heuristic for

instance j ∈ {1, .., n} in S

let T (Ij) =
C(hσ(j),Ij )

Sσ(j)
be the processing time of instance j in S

let T (hi ) = Σj/σ(j)=iT
(Ij) is the �useful� computation time of

heuristic i in S
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A naive algorithm : MA

We consider the mean-allocation (MA) algorithm which simply
allocates bm

k
c resources to each heuristic.

Proposition

MA is a k approximation.

Proof/Worst case:

m
k

m
k

m
k

m
k

m
k

m
k

T∗(hi )

≈mOpt

MA
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Introduction

Some of the main PTAS design techniques [2]:

structuring the input

structuring the output (�extending partial small size solutions�)

structuring the execution of an algorithm (�trimmed
algorithm�)

rounding LP

oracle based approach

...

13 / 31
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Oracle based approach

This vision is based on guesses from a reliable oracle. Given an
instance I , the main (�polynomial�) steps are:

de�ne the guess G: choose an �interesting� property P
ask a question Q(I ) to the oracle
the oracle provides an answer r∗ ∈ R (s t. P(Q(I ), r∗) is true)
�nd a solution using the guess: an algorithm A provides
S(r∗) ≤ ρOpt
take the best: try all the possible answers and select the best
of all the S(r), r ∈ R

I

14 / 31
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Oracle based approach

Thus, the obtained algorithm (without oracle):

is a ρ approximation

has a computational complexity in O(tA ∗ 2|r
∗|)

Generally, we can choose |r∗| (leading to di�erent ρ), leading to
classical approximation schemes.
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Introduction

In this part:

we use the MA algorithm as a basis

we look for �the right� question to ask to the oracle
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Introduction

We consider the following MAG algorithm (given any guess
G = (X1, . . . ,Xg ),Xi ≥ 1):

allocate Xi processors to heuristic hi , i ∈ {1, . . . , g}
applies MA on the k ′ others heuristics with the m′ remaining
processors

We will use this algorithm with guesses from the oracle.

18 / 31
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Guess 1

As a �rst step we choose arbitrarily g heuristics denoted by
{h1, . . . , hg}.

De�nition G1

Let G1 = (S∗1 , . . . , S
∗
g ), for a �xed subset of g heuristics and a �xed

optimal solution S∗.

Notice that |G1| = glog(m).
We use the algorithm MAG with G = G1.

Proposition

MAG1 is a k − g approximation.

19 / 31
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Second guess : convenient subset

Analysis of MAG1

We need some notations :

let k ′ = k − g be the number of remaining heuristics

let s = Σg
i=1S

∗
i the number of processors used in the guess

let m′ = m − s the number of remaining processors

Proof/Worst case:

T∗(hi )

≈m′
≈m′

k′

1 1 1

h1 hg

guessed heuristics

Opt

MAG1

20 / 31
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Algorithm MA
G
R

The ratio for instances solved by the guessed heuristics is
unnecessarily good.
Thus, the mean-allocation-reassign algorithm (MAG

R )(given any
guess G = (X1, . . . ,Xg ),Xi ≥ 1):

allocates only Xi − bXi

α c processors to heuristic
hi , i ∈ {1, . . . , g}
applies MA on the k ′ others heuristics with the remaining
processors

Proposition

With the �right� α, MAG1
R is a (k − g)(1− β) approximation

MAG
R requires a larger guess to ensure that s > k + c (c constant)

21 / 31
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Introduction

The oracle response r∗ = [(i∗1 , . . . , i
∗
g ), (r∗1 , . . . , r

∗
g )] will indicate the

number of resources r∗j allocated to heuritic hi∗
j
(in a optimal

solution).
The question now is: given an optimal solution S∗, what is the
most �important� subset of g heuristics ?

1) those that have the largest number of allocated resources

2) those that have the fewest number of allocated resources

3) those that have the largest �useful� computation time

22 / 31
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Another analysis of MA

For any heuristic hi , i ∈ {1, .., k}, remember that
T ∗(hi ) = Σj/σ∗(j)=iT

∗(Ij) is the �useful� computation time of
heuristic i in the solution S∗.

m
k

m
k

m
k

m
k

m
k

m
k

m
k

m
k

m
k

m
k

m
k

m
k

T∗(hi ) T∗(hi )

≈mOpt

MA

≈m
2
≈m

2

Di�cult instances are the ones where the optimal only uses a small
number of heuristics.
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Another analysis of MA

TMA =
k∑
i=1

∑
j/σ∗(j)=i

T (Ij)

≤
k∑
i=1

S∗i
Si

∑
j/σ∗(j)=i

T ∗(Ij)

=
k∑
i=1

S∗i
Si

T ∗(hi )

≤ Maxi (T
∗(hi ))

m

bm
k
c

≤ Maxi (T
∗(hi ))(2k − 1)
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Guess 2

De�nition

Let G2 = (S∗1 , . . . , S
∗
g ), such that

T ∗(h1) ≥ .. ≥ T ∗(hg ) ≥ T ∗(hi ), ∀i ∈ {g + 1, .., k} in a �xed
optimal solution S∗.

Notice that |G2| = glog(k) + glog(m).
We use the algorithm MAG with G = G2.

Proposition

MAG2 is a k
g+1

approximation.

25 / 31
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Analysis of MAG2

Proof/Worst case:

T∗(hi )

k′ 1 1 1

1 2 2 2

hgh1

guessed heuristics

X

Opt ≈ (g + 1)X

MAG2 ≈ gX + k′X = kX

Opt

MAG2

26 / 31
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Outline of the obtained approximation schemes

algorithm approx. ratio |r∗| complexity

MAG1 (k − g) glog(m) O(mg ∗ kn)

MAG1
R (k − g)(1− β) log(k) + glog(m) O(k ∗mg ∗ kn)

MAG2 k
g+1

g(log(k) + log(m)) O((km)g ∗ kn)

Remark: these results are approximation schemes, and not PTAS

27 / 31
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Conclusion

In this presentation:

we extended the resource sharing problem to the discrete
version (dRSSP)

we presented the oracle methodology for PTAS design

we built di�erent approximation schemes for the restricted
dRSSP

Thank you for

your attention!
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NP hardness

The reduction is from the vertex cover problem.
The input of the vertex cover problem is:

k vertices

n edges

is there a vertex cover of size x ?
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Presentation of the problem
Oracle formalism for PTAS design

Approximation schemes for the restricted dRSSP

First guess : arbitrary subset
Second guess : convenient subset

NP hardness

The input of the dRSSP is:

k heuristics

n instances in the benchmark

x resources

a cost matrix as following
(costs are indicated when
using every resources)

I1 I2 I3 .. In
h1 .. .. T+1 .. ..
h2 .. .. α .. ..
.. .. .. T+1 .. ..
.. .. .. T+1 .. ..
hk .. .. α .. ..

How to choose the right value for T :

if there exists a vertex cover of size x , then opt ≤ nxα = T

else opt ≥ T + 1

The gap can be arbitrary large.
The reduction for the restricted version is based on the same idea.
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