Combining Multiple Heuristics on Discrete
Resources

Marin Bougeret, Pierre-Francois Dutot, Alfredo Goldman, Yanik
Ngoko, Denis Trystram

LIG laboratory, France

May 25th, APDCM 09

1/31

@ Presentation of the problem
@ Oracle formalism for PTAS design

© Approximation schemes for the restricted dRSSP
@ First guess : arbitrary subset
@ Second guess : convenient subset

2/31

Presentation of the problem

@ Presentation of the problem

3/31

Presentation of the problem

Introduction

Context:
e a finite set H of algorithms/heuristics (algorithm portfolio)
@ a finite set / of “representatives” instances (benchmark)
@ the time needed by each algorithm of H to solve each instance
of I is known
@ goal : minimize the time needed to solve all the instances from
the benchmark

SAT Algorithms

X
X

4/31

Presentation of the problem

Introduction

Context:
e a finite set H of algorithms/heuristics (algorithm portfolio)
@ a finite set / of “representatives” instances (benchmark)
@ the time needed by each algorithm of H to solve each instance
of I is known
@ goal : minimize the time needed to solve all the instances from
the benchmark

SAT Algorithms

4/31

Presentation of the problem

Introduction

Context:
e a finite set H of algorithms/heuristics (algorithm portfolio)
@ a finite set / of “representatives” instances (benchmark)
@ the time needed by each algorithm of H to solve each instance
of I is known
@ goal : minimize the time needed to solve all the instances from
the benchmark

SAT Algorithms

4/31

Presentation of the problem

Introduction

Context:

e a finite set H of algorithms/heuristics (algorithm portfolio)

@ a finite set / of “representatives” instances (benchmark)

@ the time needed by each algorithm of H to solve each instance

of I is known

@ goal : minimize the time needed to solve all the instances from
the benchmark
more than selection : combination of algorithms

SAT Algorithms

4/31

Presentation of the problem

Introduction

What we mean by combination :
@ one instance may be solved by several algorithms in parallel
@ parallel task model : moldable

@ when a solution of an instance is found, everyone is aware

5/31

Presentation of the problem

Introduction

Why not choosing the following greedy optimal policy: for each
instance, give all the resources to the best heuristic ?

6/31

Presentation of the problem

Introduction

Why not choosing the following greedy optimal policy: for each
instance, give all the resources to the best heuristic ?
Because we don’'t want to solve ONLY the benchmark!

6/31

Presentation of the problem

Introduction

Why not choosing the following greedy optimal policy: for each
instance, give all the resources to the best heuristic ?
Because we don’t want to solve ONLY the benchmark!

O Marbitrary" instance ha
@ instance of the benchmark

6/31

Presentation of the problem

Introduction

Why not choosing the following greedy optimal policy: for each
instance, give all the resources to the best heuristic ?
Because we don’t want to solve ONLY the benchmark!

O Marbitrary" instance ha
@ instance of the benchmark

6/31

Presentation of the problem

Introduction

Why not choosing the following greedy optimal policy: for each
instance, give all the resources to the best heuristic ?
Because we don’t want to solve ONLY the benchmark!

O Marbitrary" instance ha
@ instance of the benchmark

6/31

Presentation of the problem

Introduction

Why not choosing the following greedy optimal policy: for each
instance, give all the resources to the best heuristic ?
Because we don’t want to solve ONLY the benchmark!

O Marbitrary" instance ha
@ instance of the benchmark

6/31

Presentation of the problem

Introduction

Why not choosing the following greedy optimal policy: for each
instance, give all the resources to the best heuristic ?
Because we don’t want to solve ONLY the benchmark!

O Marbitrary" instance ha
@ instance of the benchmark

6/31

Presentation of the problem

Introduction

Why not choosing the following greedy optimal policy: for each
instance, give all the resources to the best heuristic ?
Because we don’t want to solve ONLY the benchmark!

O Marbitrary" instance ha
@ instance of the benchmark

6/31

Presentation of the problem

Introduction

Some existing combination models:

Space sharing [1] Time sharing [1]
m resources m resources
l1 l3
h
h2 h2
h3
time time

7/31

Presentation of the problem

Introduction

Some existing combination models:

Space sharing [1] Time sharing [1]
m resources m resources
l1 l3
h
h2 V h2
hs
time time

7/31

Presentation of the problem

Introduction

Some existing combination models:

Space sharing [1] Time sharing [1]
m resources m resources
l1 l3
h
h2 h2
h3
time time

7/31

Presentation of the problem

Introduction

Some existing combination models:

Space sharing [1] Time sharing [1]
m resources l1 l2 m resources l3
hy v
hy hy
h3
tim: tim:

7/31

Presentation of the problem

Introduction

Some existing combination models:

Space sharing [1] Time sharing [1]
m resources l1 l2 m resources l3
hy v
hy hy
h3
tim: tim:

7/31

Presentation of the problem

Introduction

Some existing combination models:

Space sharing [1] Time sharing [1]
m resources l1 l2 m resources l3 l1
hy v
hy hy |l
h3
tim: tim:

7/31

Presentation of the problem

Introduction

Some existing combination models:

Space sharing [1] Time sharing [1]
m resources l1 l2 m resources l3 l1 l3
hy v
hy hy |h| hy
h3
tim: tim:

7/31

Presentation of the problem

Introduction

Some existing combination models:

Space sharing [1] Time sharing [1]
m resources l1 l2 m resources l3 l1 l3 l1
hy v
hy hy | M hy h3
h3
tim: tim:

7/31

Presentation of the problem

Introduction

Some existing combination models:

Space sharing [1] Time sharing [1]
m resources L h m resources oL I
h v/
ho hy % hy h3
Vv
h3
time time

7/31

Presentation of the problem

Definition of the dRSSP

Input of the discrete Resource Sharing Scheduling Problem:

@ a finite set of instances | = {h,..., I}
@ a finite set of heuristics H = {hy,..., hi}

@ m identical resources
e acost C(hj,l;,p) € RT for each I; € I, h; € H and
pe{l,...,m}

8/31

Presentation of the problem

Definition of the dRSSP

Input of the discrete Resource Sharing Scheduling Problem:

@ a finite set of instances | = {h,..., I}

@ a finite set of heuristics H = {hy,..., hi}

@ m identical resources

e acost C(hj,l;,p) € RT for each I; € I, h; € H and
pe{l,...,m}

Output : an allocation S = (S, ..., Sk) such that:
() 5,' eN
o Zf'(:l 5,' =m
® S minimizes > ;4 12i|2k{C(h,-, I, Si)}

Continuous version (p € RT) in [1].
8/31

Presentation of the problem

Complexity results

o the dRSSP is NP hard in the strong sense (reduction from the
vertex cover problem)
@ the dRSSP is innaproximable (unless P = NP) within a
constant factor (if m < k)
@ we study a restricted version:
o linear cost assumption: C(h;,l;, p) = C(h;, l;, m)%

o well chosen portfolio: each heuristic must use at Ieast one
processor (S; > 1)

9/31

Presentation of the problem

Notations

Given a solution S:

o leto(j) = argmin% be the index of the used heuristic for
1<i<k !
instance j € {1,..,n}in S

ho ()l o : .
o let T(/) = C(S"i((’]))’) be the processing time of instance j in S

o let T(h;) = ZJ-/JU-):,-T(IJ-) is the “useful” computation time of

heuristic / in S

m resources
A h h

hy v/

hy

h3

time

10/31

Presentation of the problem

A naive algorithm : MA

We consider the mean-allocation (MA) algorithm which simply
allocates | 7] resources to each heuristic.

Proposition

MA is a k approximation.

Proof/Worst case:

T (hi)

(110110 [g
Opt ~m
VA R R RTR

11/31

Oracle formalism for PTAS design

@ Oracle formalism for PTAS design

12/31

Oracle formalism for PTAS design

Introduction

Some of the main PTAS design techniques [2]:

structuring the input
structuring the output (“extending partial small size solutions”)

structuring the execution of an algorithm (“trimmed
algorithm”)

rounding LP

oracle based approach

13/31

Oracle formalism for PTAS design

Oracle based approach

This vision is based on guesses from a reliable oracle. Given an
instance /, the main (“polynomial”) steps are:
@ define the guess G: choose an “interesting” property P

14 /31

Oracle formalism for PTAS design

Oracle based approach

This vision is based on guesses from a reliable oracle. Given an
instance /, the main (“polynomial”) steps are:

@ define the guess G: choose an “interesting” property P

@ ask a question Q(/) to the oracle

Q)

14 /31

Oracle formalism for PTAS design

Oracle based approach

This vision is based on guesses from a reliable oracle. Given an
instance /, the main (“polynomial”) steps are:

@ define the guess G: choose an “interesting” property P

@ ask a question Q(/) to the oracle

o the oracle provides an answer r* € R (s t. P(Q(/), r*) is true)

14 /31

Oracle formalism for PTAS design

Oracle based approach

This vision is based on guesses from a reliable oracle. Given an
instance /, the main (“polynomial”) steps are:

@ define the guess G: choose an “interesting” property P

@ ask a question Q(/) to the oracle

o the oracle provides an answer r* € R (s t. P(Q(/), r*) is true)

14 /31

Oracle formalism for PTAS design

Oracle based approach

This vision is based on guesses from a reliable oracle. Given an
instance /, the main (“polynomial”) steps are:
@ define the guess G: choose an “interesting” property P
@ ask a question Q(/) to the oracle
o the oracle provides an answer r* € R (s t. P(Q(/), r*) is true)
@ find a solution using the guess: an algorithm A provides
S(r*) < pOpt

I \
Q(N)
@
[r]

A — 5(r)

14 /31

Oracle formalism for PTAS design

Oracle based approach

This vision is based on guesses from a reliable oracle. Given an
instance /, the main (“polynomial”) steps are:

define the guess G: choose an “interesting” property P

@ ask a question Q(/) to the oracle

o the oracle provides an answer r* € R (s t. P(Q(/), r*) is true)
@ find a solution using the guess: an algorithm A provides

S(r*) < pOpt

take the best: try all the possible answers and select the best
of all the S(r),r € R

I \
Q(N)
@
[r]

A — 5(r)

14 /31

Oracle formalism for PTAS design

Oracle based approach

Thus, the obtained algorithm (without oracle):
@ is a p approximation
o has a computational complexity in O(t4 * 2/""1)

Generally, we can choose |r*| (leading to different p), leading to
classical approximation schemes.

15/31

Approximation schemes for the restricted dRSSP

© Approximation schemes for the restricted dRSSP
@ First guess : arbitrary subset
@ Second guess : convenient subset

16 /31

First guess : arbitrary subset

. . . Second guess : convenient subset
Approximation schemes for the restricted dRSSP cond g CORVEMIERE SHBSE

Introduction

In this part:
@ we use the MA algorithm as a basis

@ we look for “the right” question to ask to the oracle

17 /31

First guess : arbitrary subset

i i . econd guess : convenient subset
Approximation schemes for the restricted dRSSP Second g CONVEmEnt subse

Introduction

We consider the following MAC algorithm (given any guess
G=(X1,...,Xz), X; > 1):
o allocate X; processors to heuristic h;,i € {1,...,g}

@ applies MA on the k’ others heuristics with the m’ remaining
processors

We will use this algorithm with guesses from the oracle.

18 /31

First guess : arbitrary subset
Second guess : convenient subset

Approximation schemes for the restricted dRSSP

Guess 1

As a first step we choose arbitrarily g heuristics denoted by
{hi,... hg}.

Definition G1

Let G1 = (57,...,S;), for a fixed subset of g heuristics and a fixed

optimal solution S*.

Notice that |G| = glog(m).
We use the algorithm MAC with G = G;.

Proposition

MA® is a k — g approximation.

19/31

First guess : arbitrary subset

i i . econd guess : convenient subset
Approximation schemes for the restricted dRSSP Second g CONVEmEnt subse

Analysis of MA®

We need some notations :

o let k' = k — g be the number of remaining heuristics
o let s = X% | S* the number of processors used in the guess

@ let m" = m — s the number of remaining processors
Proof/Worst case:

T (h)

guessed heuristics

Opt
MAS1

20/31

First guess : arbitrary subset

. . . Second guess : convenient subset
Approximation schemes for the restricted dRSSP cond g CONVEmERt Subse

Algorithm MAS

The ratio for instances solved by the guessed heuristics is
unnecessarily good.

Thus, the mean-allocation-reassign algorithm (MAS)(given any
guess G = (X1,...,Xg), X; > 1):

o allocates only X; — L%j processors to heuristic

h,’,iE {Lag}
@ applies MA on the k’ others heuristics with the remaining
processors

Proposition

With the “right” o, MA,C?;1 is a (k—g)(1 —) approximation

MAS requires a larger guess to ensure that s > k + ¢ (c constant)

21/31

First guess : arbitrary subset

Approximation schemes for the restricted dRSSP Seseme] Enass § EEver s

Introduction

The oracle response r* = [(if, ..., ig), (1], ..., rg)] will indicate the
number of resources r* allocated to heuritic h (in a optimal

solution).
The question now is: given an optimal solution §*, what is the
most “important” subset of g heuristics ?

@ 1) those that have the largest number of allocated resources
2) those that have the fewest number of allocated resources

@ 3) those that have the largest “useful” computation time

22/31

First guess : arbitrary subset

Approximation schemes for the restricted dRSSP Seseme] Enass § EEver s

Another analysis of MA

For any heuristic h;,i € {1, .., k}, remember that
T*(hi) = Zj/o=(jy=i T*(l;) is the “useful” computation time of
heuristic i in the solution S*.

T (hi) T (h;)
O A momom N mm m
MA TR R R TR R R

Difficult instances are the ones where the optimal only uses a small
number of heuristics.

23/31

First guess : arbitrary subset

Approximation schemes for the restricted dRSSP Sioerm:] grers § earentng ool

Another analysis of MA

< ¥ (1)

I
]~
w9
.
=
SN—r

IN
<
o
X
-
=

IN

Max;(T*(h;))(2k — 1)

24 /31

First guess : arbitrary subset
Second guess : convenient subset

Approximation schemes for the restricted dRSSP

Guess 2

Definition

Let G2 = (S7,...,S;), such that

T*(h1) > .. > T*(hg) > T*(hj),Vie {g +1,..,k} in a fixed
optimal solution S*.

Notice that |Gy| = glog(k) + glog(m).
We use the algorithm MAC with G = G..

Proposition

MA®2 is a TL approximation.

25 /31

First guess : arbitrary subset
Second guess : convenient subset

Approximation schemes for the restricted dRSSP

Analysis of MA©®

Proof/Worst case:

Opt =~ (g+1)X
MA®2 =~ gX 4+ k'X = kX

26 /31

First guess : arbitrary subset
Approximation schemes for the restricted dRSSP Seseme] Enass § EEver s

Outline of the obtained approximation schemes

algorithm approx. ratio || complexity
MA®: (k—g) glog(m) O(m& x kn)
MAS! (k—g)(1—p) log(k)+glog(m) O(k* m& x kn)
MA®2 g—j‘rl g(log(k) + log(m)) O((km)& % kn)

Remark: these results are approximation schemes, and not PTAS

27 /31

First guess : arbitrary subset

Approximation schemes for the restricted dRSSP Seseme] Enass § EEver s

Conclusion

In this presentation:

@ we extended the resource sharing problem to the discrete
version (dRSSP)

@ we presented the oracle methodology for PTAS design

@ we built different approximation schemes for the restricted
dRSSP

28 /31

First guess : arbitrary subset

Approximation schemes for the restricted dRSSP Seseme] Enass § EEver s

Conclusion

In this presentation:

@ we extended the resource sharing problem to the discrete
version (dRSSP)

@ we presented the oracle methodology for PTAS design

@ we built different approximation schemes for the restricted
dRSSP

Thank you for
your attention!

28 /31

First guess : arbitrary subset
. . . d : ient subset
Approximation schemes for the restricted dRSSP Seseme] Enass § EEmem s

Bibliography

[1] T. Sayag, S. Fine, and Y. Mansour.

Combining multiple heuristics.

In STACS 2006, volume 3884, pages 242-253. Springer, 2006.
[2] P. Schuurman and G. J. Woeginger.

Approximation schemes - a tutorial.

In Lectures on Scheduling, 2000.

29 /31

First guess : arbitrary subset

Approximation schemes for the restricted dRSSP Seseme] Enass § EEver s

NP hardness

The reduction is from the vertex cover problem.
The input of the vertex cover problem is:

o k vertices
@ n edges

@ is there a vertex cover of size x 7

30/31

First guess : arbitrary subset

Approximation schemes for the restricted dRSSP Seseme] Enass § EEver s

NP hardness

The input of the dRSSP is:

@ k heuristics h b I3 .o
@ n instances in the benchmark by | . . TH1
h2 «
@ X resources
_ _ T+1
@ a cost matrix as following T+1
(costs are indicated when h o

using every resources)
How to choose the right value for T:

o if there exists a vertex cover of size x, then opt < nxa =T
@ elseopt >T+1

The gap can be arbitrary large.
The reduction for the restricted version is based on the same idea.

31/31

	Presentation of the problem
	Oracle formalism for PTAS design
	Approximation schemes for the restricted dRSSP
	First guess : arbitrary subset
	Second guess : convenient subset

