Approximability and exact resolution of the Multidimensional Binary Vector Assignment problem

M. Bougeret¹, G. Duvillié¹, R. Giroudeau¹

LIRMM, Université Montpellier 2, France {marin.bougeret,guillerme.duvillie,rodolphe.giroudeau}@lirmm.fr

Abstract. In this paper we consider the multidimensional binary vector assignment problem. An input of this problem is defined by m disjoint multisets V^1, V^2, \ldots, V^m , each composed of n binary vectors of size p. An output is a set of n disjoint m-tuples of vectors, where each m-tuple is obtained by picking one vector from each multiset V^i . To each m-tuple we associate a p dimensional vector by applying the bit-wise AND operation on the m vectors of the tuple. The objective is to minimize the total number of zeros in these n vectors. We denote this problem by min $\sum 0$, and the restriction of this problem where every vector has at most c zeros by $(\min \sum 0)_{\#0 \le c}.$ $(\min \sum 0)_{\#0 \le 2}$ was only known to be $\mathbf{APX}\text{-complete},$ even for m = 3 [5]. We show that, assuming the unique games conjecture, it is **NP**-hard to $(n-\varepsilon)$ -approximate $(\min \sum 0)_{\#0 \le 1}$ for any fixed n and ε . This result is tight as any solution is a *n*-approximation. We also prove without assuming UGC that $(\min \sum 0)_{\#0 \le 1}$ is **APX**-complete even for n=2, and we provide an example of n-f(n,m)-approximation algorithm for $\min \sum 0$. Finally, we show that $(\min \sum 0)_{\#0 \le 1}$ is polynomialtime solvable for fixed m (which cannot be extended to $(\min \sum 0)_{\#0 \le 2}$ according to [5]).

1 Introduction

1.1 Problem definition

In this paper we consider the multidimensional binary vector assignment problem denoted by $\min \sum 0$. An input of this problem (see Figure 1) is described by m multisets V^1, \ldots, V^m , each multiset V^i containing n binary p-dimensional vectors. For any $j \in [n]^1$, and any $i \in [m]$, the j^{th} vector of multiset V^i is denoted v^i_j , and for any $k \in [p]$, the k^{th} coordinate of v^i_j is denoted $v^i_j[k]$.

The objective of this problem is to create a set S of n stacks. A stack $s = (v_1^s, \ldots, v_m^s)$ is an m - tuple of vectors such that $v_i^s \in V^i$, for any $i \in [m]$. Furthermore, S has to be such that every vector of the input appears in exactly one created stack.

¹ Note that [n] stands for $\{1, 2, \ldots, n\}$.

We now introduce the operator \land which assigns to a pair of vectors (u, v) the vector given by $u \land v = (u[1] \land v[1], u[2] \land v[2], \dots, u[p] \land v[p])$. We associate to each stack s a unique vector given by $v_s = \bigwedge_{i \in [m]} v_i^s$.

The cost of a vector v is defined as the number of zeros in it. More formally if v is p-dimensional, $c(v) = p - \sum_{k \in [p]} v[k]$. We extend this definition to a set of stacks $S = \{s_1, \ldots, s_n\}$ as follows: $c(S) = \sum_{s \in S} c(v_s)$.

The objective is then to find a set S of n disjoint stacks minimizing the total number of zeros. This leads us to the following definition of the problem:

Optimization Problem 1 min $\sum 0$

Input m multisets of n p-dimensional binary vectors.

Output A set S of n disjoint stacks minimizing c(S).

Throughout this paper, we denote $(\min \sum 0)_{\#0 \le c}$ the restriction of $\min \sum 0$ where the number of zeros per vector is upper bounded by c.



Fig. 1: Example of min $\sum 0$ instance with m=3, n=4, p=6 and of a feasible solution S of cost c(S)=17.

1.2 Related work

The dual version of the problem called $\max \sum 1$ (where the objective is to maximize the total number of 1 in the created stacks) has been introduced by Reda et al. in [8] as the "yield maximization problem in Wafer-to-Wafer 3-D Integration technology". They prove the **NP**-completeness of $\max \sum 1$ and provide heuristics without approximation guarantee. In [6] we proved that, even for n=2, for any $\varepsilon > 0$, $\max \sum 1$ is $\mathcal{O}(m^{1-\varepsilon})$ and $\mathcal{O}(p^{1-\varepsilon})$ inapproximable unless $\mathbf{P} = \mathbf{NP}$. We also provide an ILP formulation proving that $\max \sum 1$ (and thus $\min \sum 0$) is \mathbf{FPT}^2 when parameterized by p.

We introduced min $\sum 0$ in [4] where we provide in particular $\frac{4}{3}$ -approximation algorithm for m=3. In [5], authors focus on a generalization of min $\sum 0$, called MULTI DIMENSIONAL VECTOR ASSIGNMENT, where vectors are not necessary binary vectors. They extend the approximation algorithm of [4] to get a f(m)-approximation algorithm for arbitrary m. They also prove the **APX**-completeness of the $(\min \sum 0)_{\#0 \le 2}$ for m=3. This result was the only known inapproximability result for min $\sum 0$.

² i.e. admits an algorithm in f(p)poly(|I|) for an arbitrary function f.

1.3 Contribution

In section 2 we study the approximability of min $\sum 0$. Our main result in this section is to prove that assuming UGC, it is **NP**-hard to $(n - \varepsilon)$ -approximate $(\min \sum 0)_{\#0 \le 1}$ (and thus min $\sum 0$) for any fixed $n \ge 2$, $\forall \varepsilon > 0$. This result is tight as any solution is a n-approximation.

Notice that this improves the only existing negative result for min $\sum 0$, which was the **APX**-hardness of [5] (implying only no-**PTAS**).

We also show how this reduction can be used to obtain the **APX**-hardness for $(\min \sum 0)_{\#0 \le 1}$ for n=2 unless $\mathbf{P} = \mathbf{NP}$, which is weaker negative result, but does not require UGC. We then give an example n-f(n,m) approximation algorithm for the general problem $\min \sum 0$.

In section 3, we consider the exact resolution of $\min \sum 0$. We focus on *sparse* instances, *i.e.* instances of $(\min \sum 0)_{\#0 \le 1}$. Indeed, recall that authors of [5] show that $(\min \sum 0)_{\#0 \le 2}$ is **APX**-complete even for m=3, implying that $(\min \sum 0)_{\#0 \le 2}$ cannot be polynomial-time solvable for fixed m unless $\mathbf{P} = \mathbf{NP}$. Thus, it is natural to ask if $(\min \sum 0)_{\#0 \le 1}$ is polynomial-time solvable for fixed m. Section 3 is devoted to answer positively to this question. Notice that the question of determining if $(\min \sum 0)_{\#0 \le 1}$ is **FPT** when parameterized by m remains open.

2 Approximability of min $\sum 0$

We refer the reader to [1] and [7] for the definitions of Gap and L-reductions.

2.1 Inapproximability results for $(\min \sum 0)_{\#0 \le 1}$

From now we suppose that $\forall k \in [p], \exists i, \exists j \text{ such that } v_j^i[k] = 0$. In other words, for any solution S and $\forall k$, there exists a stack s such that $v_s[k] = 0$. Otherwise, we simply remove such a coordinate from every vector of every set, and decrease p by one. Since this coordinate would be set to 1 in all the stacks of all solutions, such a preprocessing preserves approximation ratios and exact results.

In a first time, we define the following polynomial-time computable function f which associates an instance of $(\min \sum 0)_{\#0 \le 1}$ to any k-uniform hypergraph, i.e. an hypergraph G = (U, E) such that every hyperedges of E contains exactly k distinct elements of U.

Definition of f We consider a k-uniform hypergraph G = (U, E). We call f the polynomial-time computable function that creates an instance of $(\min \sum 0)_{\#0 \le 1}$ from a G as follows.

- 1. We set m = |E|, n = k and p = |U|.
- 2. For each hyperedge $e = \{u_1, u_2, \dots, u_k\} \in E$, we create the set V^e containing k vectors $\{v_j^e, j \in [k]\}$, where for all $j \in [k]$, $v_j^e[u_j] = 0$ and $v_j^e[l] = 1$ for $l \neq u_j$. We say that a vector v **represents** $u \in U$ iff v[u] = 0 and $v[l \neq u] = 1$ (and thus vector v_j^e represents u_j).

An example of this construction is given in Figure 2.

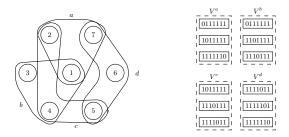


Fig. 2: Illustration of the reduction from an hypergraph $G = (U = \{1, 2, 3, 4, 5, 6, 7\}, E = \{\{1, 2, 7\}, \{1, 3, 4\}, \{2, 4, 5\}, \{5, 6, 7\}\})$ to an instance $(\min \sum 0)_{\#0 < 1}$

Negative results assuming UGC We consider the following problem. Notice that what we call a vertex cover in a k-regular hypergraph G = (U, E) is a set $U' \subseteq U$ such that for any hyperedge $e \in E$, $U' \cap e \neq \emptyset$.

Decision Problem 1 Almost Ek Vertex Cover

Input We are given an integer $k \geq 2$, two arbitrary positive constants

 ε and δ and a k-uniform hypergraph G = (U, E).

Output Distinguish between the following cases:

YES Case there exist k disjoint subsets $U^1, U^2, \ldots, U^k \subseteq U$, satisfying $|U^i| \ge \frac{1-\varepsilon}{k} |U|$ and such that every hyperedge contains at most one vertex from each U^i .

NO Case every vertex cover has size at least $(1 - \delta)|U|$.

It is shown in [2] that, assuming UGC, this problem is **NP**-complete.

Theorem 1. For any fixed $n \geq 2$, for any constants $\varepsilon, \delta > 0$, there exists a $\frac{n-n\delta}{1+n\varepsilon}$ -Gap reduction from Almost Ek Vertex Cover to $(\min\sum 0)_{\#0\leq 1}$. Consequently, under UGC, for any fixed n $(\min\sum 0)_{\#0\leq 1}$ is **NP**-hard to approximate within a factor $(n-\varepsilon')$ for any $\varepsilon' > 0$.

Proof. We consider an instance I of Almost Ek Vertex Cover defined by two positive constants δ and ϵ , an integer k and a k-regular hypergraph G = (U, E).

We use the function f previously defined to construct an instance f(I) of $\min \sum 0$. Let us now prove that if I is a positive instance, f(I) admits a solution S of cost $c(S) < (1 + n\varepsilon)|U|$, and otherwise any solution S of f(I) has cost $c(S) \geq n(1 - \delta)|U|$.

NO Case Let S be a solution of f(I). Let us first remark that for any stack $s \in S$, the set $\{k : v_s[k] = 0\}$ defines a vertex cover in G. Indeed, s contains exactly one vector per set, and thus by construction s selects one vertex per hyperedge in G. Remark also that the cost of s is equal to the size of the corresponding vertex cover.

Now, suppose that I is a negative instance. Hence each vertex cover has a size at least equal to $(1 - \delta)|U|$, and any solution S of f(I), composed of exactly n stacks, verifies $c(S) \ge n(1 - \delta)|U|$.

YES Case If I is a positive instance, there exists k disjoint sets $U^1, U^2, \ldots, U^k \subseteq U$ such that $\forall i = 1, \ldots, k, |U^i| \ge \frac{1-\varepsilon}{k} |U|$ and such that every hyperedge contains at most one vertex from each U^i .

We introduce the subset $X=U\backslash\bigcup_{i=1}^kU^i$. By definition $\{U^1,U^2,\ldots,U^k,X\}$ is a partition of U and $X\leq \varepsilon|U|$. Furthermore, $U^i\cup X$ is a vertex cover $\forall i=1,\ldots,k$. Indeed, each hyperedge $e\in E$ that contains no vertex of U^i , contains at least one vertex of X since e contains k vertices.

We now construct a solution S of f(I). Our objective is to construct stacks $\{s_i\}$ such that for any i, the zeros of s_i are included in $U_i \cup X$ (i.e. $\{l: v_{s_i}[l] = 0\} \subseteq U_i \cup X$). For each $e = \{u_1, \ldots, u_k\} \in E$, we show how to assign exactly one vector of V^e to each stack s_1, \ldots, s_k . For all $i \in [k]$, if v_j^e represents a vertex u with $u \in U^i$, then we assign v_j^e to s_i . W.l.o.g., let $S'_e = \{s_1, \ldots, s_{k'}\}$ (for $k' \leq k$) be the set of stacks that received a vertex during this process. Notice that as every hyperedge contains at most one vertex from each U^i , we only assigned one vector to each stack of S'_e . After this, every unassigned vector $v \in V^e$ represents a vertex of X (otherwise, such a vector v would belong to a set U^i , v a contradiction). We assign arbitrarily these vectors to the remaining stacks that are not in S'_e . As by construction $\forall i \in [k]$, $v_s i$ contains only vectors representing vertices from $U^i \cup X$, we get $c(s_i) \leq |U^i| + |X|$.

Thus, we obtain a feasible solution S of cost $c(S) = \sum_{i=1}^k c(s_i) \le k|X| + \sum_{i=1}^k |U^i|$. As by definition we have $|X| + \sum_{i=1}^k |U^i| = |U|$, it follows that $c(S) \le |U| + (k-1)\varepsilon|U|$ and since k = n, $c(S) < |U|(1+n\varepsilon)$.

If we define $a(n)=(1+n\varepsilon)|U|$ and $r(n)=\frac{n(1-\delta)}{(1+n\varepsilon)}$, the previous reduction is a r(n)-Gap reduction. Furthermore, $\lim_{\delta,\varepsilon\to 0} r(n)=n$, thus it is **NP**-hard to approximate $(\min\sum 0)_{\#0\le 1}$ within a ratio $(n-\varepsilon')$ for any $\varepsilon'>0$.

Notice that, as a function of n, this inapproximability result is optimal. Indeed, we observe that any feasible solution S is an n-approximation as, for any instance I of min $\sum 0^3$, $Opt(I) \geq p$ and for any solution S, $c(S) \leq pn$.

Negative results without assuming UGC Let us now study the negative results we can get when only assuming $P \neq NP$. Our objective is to prove that $(\min \sum 0)_{\#0 \leq 1}$ is APX-hard, even for n=2. To do so, we present a reduction from ODD CYCLE TRANSVERSAL, which is defined as follows. Given an input graph G = (U, E), the objective is to find an odd cycle transversal of minimum size, i.e. a subset $T \subseteq U$ of minimum size such that $G[U \setminus T]$ is bipartite.

For any integer $\gamma \geq 2$, we denote \mathcal{G}_{γ} the class of graphs G = (U, E) such that any optimal odd cycle transversal T has size $|T| \geq \frac{|U|}{\gamma}$. Given \mathcal{G} a class of

³ Recall that we assume $\forall k \in [p], \exists i, \exists j \text{ such that } v_j^i[k] = 0$

graphs, we denote $OCT_{\mathcal{G}}$ the ODD CYCLE TRANSVERSAL problem restricted to \mathcal{G} .

Lemma 1. For any constant $\gamma \geq 2$, there exists an L-reduction from $OCT_{\mathcal{G}_{\gamma}}$ to $(\min \sum 0)_{\#0 \leq 1}$ with n = 2.

Proof. Let us consider an integer γ , an instance I of $OCT_{\mathcal{G}_{\gamma}}$, defined by a graph G = (V, E) such that $G \in \mathcal{G}_{\gamma}$. W.l.o.g., we can consider that G contains no isolated vertex.

Remark that any graph can be seen as a 2-uniform hypergraph. Thus, we use the function f previously defined to construct an instance f(I) of $(\min \sum 0)_{\#0 \le 1}$ such that n = 2. Since, G contains no isolated vertex, f(I) contains no position k such that $\forall i \in [m], \ \forall j \in [n], \ v_i^i[k] = 1$.

Let us now prove that I admits an odd cycle transversal of size t if and only if f(I) admits a solution of cost p + t.

 \Leftarrow We consider an instance f(I) of $(\min \sum 0)_{\#0 \le 1}$ with n=2 admitting a solution $S = \{s_A, s_B\}$ with cost c(S) = p + t. Let us specify a function g which produces from S a solution T = g(I, S) of $OCT_{\mathcal{G}_{\gamma}}$, *i.e.* a set of vertices of U such that $G[U \setminus T]$ is bipartite.

We define $T=\left\{u\in U: v_{s_A}[u]=v_{s_B}[u]=0\right\}$, the set of coordinates equal to zero in both s_A and s_B . We also define $A=\left\{u\in V: v_{s_A}[u]=0 \text{ and } v_{s_B}[u]=1\right\}$ (resp. $B=\left\{u\in V: v_{s_B}[u]=0 \text{ and } v_{s_A}[u]=1\right\}$), the set of coordinates set to zero only in s_A (resp. s_B). Notice that $\{T,A,B\}$ is a partition of U.

Remark that A and B are independent sets. Indeed, suppose that $\exists \{u,v\} \in E$ such that $u,v \in A$. As $\{u,v\} \in E$ there exists a set $V^{(u,v)}$ containing a vector that represents u and another vector that represents v, and thus these vectors are assigned to different stacks. This leads to a contradiction. It follows that $G[U \setminus T]$ is bipartite and T is an odd cycle transversal.

Since c(S) = |A| + |B| + 2|T| = p + |T| = p + t, we get |T| = t.

 \Rightarrow We consider an instance I of $OCT_{\mathcal{G}_{\gamma}}$ and a solution T of size t. We now construct a solution $S = \{s_A, s_B\}$ of f(I) from T.

By definition, $G[U\backslash T]$ is a bipartite graph, thus the vertices in $U\backslash T$ may be split into two disjoint independent sets A and B. For each edge $e\in E$, the following cases can occur:

- if $\exists u \in e$ such that $u \in A$, then the vector corresponding to u is assigned to s_A , and the vector corresponding to $e \setminus \{u\}$ is assigned to s_B (and the same rule holds by exchanging A and B)
- otherwise, u and $v \in T$, and we assign arbitrarily v_u^e to s_A and the other to s_B .

We claim that the stacks s_A and s_B describe a feasible solution S of cost at most p + t.

Since, for each set, only one vector is assigned to s_A and the other to s_B , the two stacks s_A and s_B are disjoint and contain exactly m vectors. S is therefore a feasible solution.

Remark that v_{s_A} (resp. v_{s_B}) contains only vectors v such that $v[k] = 0 \implies k \in A \cup T$ (resp. $k \in B \cup T$), and thus $c(v_A) \leq |A| + |T|$ (resp. $c(v_B) \leq |B| + |T|$). Hence $c(S) \leq |A| + |B| + 2|T| = p + t$.

Let us now prove that this reduction is an L-reduction.

1. By definition, any instance I of $OCT_{\mathcal{G}_{\gamma}}$ verifies $|Opt(I)| \geq |U|/\gamma$. Thus,

$$Opt(f(I)) \le |U| + Opt(I) \le (\gamma + 1)Opt(I)$$

2. We consider an arbitrary instance I of $OCT_{\mathcal{G}_{\gamma}}$, f(I) the corresponding instance of $(\min \sum 0)_{\#0 \leq 1}$, S a solution of f(I) and T = g(I), S the corresponding solution of I.

We proved
$$|T| - Opt(I) = c(S) - |U| - (Opt(f(I)) - |U|) = c(S) - Opt(f(I))$$
.

Therefore, we get an L-reduction for $\alpha = \gamma + 1$ and $\beta = 1$.

Lemma 2 ([3]). There exist a constant γ and $\mathcal{G} \subset \mathcal{G}_{\gamma}$ such that $OCT_{\mathcal{G}}$ is **APX**-hard.

The following result is now immediate.

Theorem 2. $(\min \sum 0)_{\#0 < 1}$ is **APX**-hard, even for n = 2.

2.2 Approximation algorithm for $\min \sum 0$

Let us now show an example of algorithm achieving a n - f(n, m) ratio. Notice that the $(n - \epsilon)$ inapproximability result holds for fixed n and #0 = 1, while the following algorithm is polynomial-time computable when n is part of the input and #0 is arbitrary.

Proposition 1. There is a polynomial-time $n - \frac{n-1}{n\rho(n,m)}$ approximation algorithm for min $\sum 0$, where $\rho(n,m) > 1$ is the approximation ratio for independent set in graphs that are the union of m complete n-partite graphs.

Proof. Let I be an instance of $\min \sum 0$. Let us now consider an optimal solution $S^* = \{s_1^*, \dots, s_n^*\}$ of I. For any $i \in [n]$, let $Z_i^* = \{l \in [p] : v_{s_i^*}[l] = 0$ and $v_{s_i^*}[l] = 1, \forall t \neq i\}$ be the set of coordinates equal to zero only in stack s_i^* . Let $\Delta = \sum_{i=1}^n |Z_i^*|$. Notice that we have $c(S^*) \geq \Delta + 2(p-\Delta)$, as for any coordinate l outside $\bigcup_i Z_i^*$, there are at least two stacks with a zero at coordinate l. W.l.o.g., let us suppose that Z_1^* is the largest set among $\{Z_i^*\}$, implying $|Z_1^*| \geq \frac{\Delta}{n}$.

Given a subset $Z \subset [p]$, we will construct a solution $S = \{s_1, \ldots, s_n\}$ such that for any $l \in Z$, $v_{s_1}[l] = 0$, and for any $i \neq 1$, $v_{s_i}[l] = 1$. Informally, the zero at coordinates Z will appear only in s_1 , which behaves as a "trash" stack. The cost of such a solution is $c(S) \leq c(s_1) + \sum_{i=2}^n c(s_i) \leq p + (n-1)(p-|Z|)$. Our objective is now to compute such a set Z, and to lower bound |Z| according to $|Z_1^*|$.

Let us now define how we compute Z. Let $P = \{l \in [p] : \forall i \in [m], |\{j : v_i^i[l] = 0\}| \leq 1\}$ be the subset of coordinates that are never nullified in two

different vectors of the same set. We will construct a simple undirected graph G = (P, E), and thus it remains to define E. For vector v_j^i , let $Z_j^i = Z(v_j^i) \cap P$, where $Z(v) \subseteq [p]$ denotes the set of null coordinates of vector v. For any $i \in [m]$, we add to G the edges of the complete n-partite graph $G^i = (\{Z_1^i \times \cdots \times Z_n^i\})$ (i.e. for any $j_1, j_2, v_1 \in Z_{j_1}^i, v_2 \in Z_{j_2}^i$, we add edge $\{v_1, v_2\}$ to G). This concludes the description of G, which can be seen as the union of m complete n-partite graphs.

Let us now see the link between independent set in G and our problem. Let us first see why Z_1^* is a independent set in G. Recall that by definition of Z_1^* , for any $l \in Z_1^*$, $v_{s_1^*}[k] = 0$, but $v_{s_j^*}[k] = 1$, $j \geq 2$. Thus, it is immediate that $Z_1^* \subseteq P$. Moreover, assume by contradiction that there exists an edge in G between to vertices l_1 and l_2 of Z_1^* . This implies that there exists $i \in [m]$, j_1 and $j_2 \neq j_1$ such that $v_{j_1}^i[l_1] = 0$ and $v_{j_2}^i[l_2] = 0$. As by definition of Z_1^* we must have $v_{s_j^*}[k_1] = 1$ and $v_{s_j^*}[k_2] = 1$ for $j \geq 2$, this implies that s_1^* must contains both $v_{j_1}^i$ and $v_{j_2}^i$, a contradiction. Thus, we get $Opt(G) \geq |Z_1^*|$, where Opt(G) is the size of a maximum independent set in G.

Now, let us check that for any independent set $Z \subseteq P$ in G, we can construct a solution $S = \{s_1, \ldots, s_n\}$ such that for any $l \in Z$, $v_{s_1}[l] = 0$, and for any $i \neq 1$, $v_{s_i}[l] = 1$. To construct such a solution, we have to prove that we can add in s_1 all the vectors v such that $\exists l \in Z$ such that v[l] = 0. However, this last statement is clearly true as for any $i \in [m]$, there is at most one vector v_j^i with $Z(v_i^i) \subseteq Z$.

Thus, any $\rho(n,m)$ approximation algorithm gives us a set Z with $|Z| \ge \frac{|Z_1^*|}{\rho(n,m)} \ge \frac{\Delta}{n\rho(n,m)}$, and we get a ratio of $\frac{p+(n-1)(p-\frac{\Delta}{n\rho(n,m)})}{2p-\Delta} \le n-\frac{n-1}{n\rho(n,m)}$ for $\Delta=p$.

Remark 1. We can get, for example, $\rho(n,m) = mn^{m-1}$ using the following algorithm. For any $i \in [m]$, let $G^i = (A_1^i, \dots, A_n^i)$ be the i-th complete n-partite graph. W.l.o.g., suppose that A_1^1 is the largest set among $\{A_j^i\}$. Notice that $|A_1^1| \geq \frac{Opt}{m}$. The algorithm starts by setting $S_1 = A_1^1$ (S_1 may not be an independent set). Then, for any i from 2 to m, the algorithm set $S_i = S_{i-1} \setminus (\bigcup_{j \neq j_0} A_j^i)$, where $j_0 = \arg\max_j \{|S_{i-1} \cap A_j^i|\}$. Thus, for any i we have $|S_i| \geq \frac{|S_{i-1}|}{n}$, and S_i is an independent set when considering only edges from $\bigcup_{l=1}^i G^l$. Finally, we get an independent set of G of size $|S_m| \geq \frac{S_1}{n^{m-1}} \geq \frac{Opt}{mn^{m-1}}$.

3 Exact resolution of sparse instances

The section is devoted to the exact resolution of $\min \sum 0$ for sparse instances where each vector has at most one zero $(\#0 \le 1)$. As we have seen in Section 2, $(\min \sum 0)_{\#0 \le 1}$ remains **NP**-hard (even for n=2). Thus it is natural to ask if $(\min \sum 0)_{\#0 \le 1}$ is polynomial-time solvable for fixed m (for general n). This section is devoted to answer positively to this question. Notice that we cannot extend this result to a more general notion of sparsity as $(\min \sum 0)_{\#0 \le 2}$ is

APX-complete for m=3 [5]. However, the question if $(\min \sum 0)_{\#0 \le 1}$ is fixed parameter tractable when parameterized by m is left open.

We first need some definitions, and refer the reader to Figure 3 where an example is depicted.

Definition 1.

- For any $l \in [p], i \in [m]$, we define $B^{(l,i)} = \{v_j^i : v_j^i[l] = 0\}$ to be the set of vectors of set i that have their (unique) zero at position l. For the sake of homogeneous notation, we define $B^{(p+1,i)} = \{v_j^i : v_j^i \text{ is a } 1 \text{ vector}\}$. Notice that the $B^{(l,i)}$ form a partition of all the vectors of the input, and thus an input of $(\min \sum 0)_{\#0 \le 1}$ is completely characterized by the $B^{(l,i)}$.
- For any $l \in [p+1]$, the **block** $B^l = \bigcup_{i \in [m]} B^{(l,i)}$.

Informally, the idea to solve $(\min \sum 0)_{\#0 \le 1}$ in polynomial time for fixed m is to parse the input block after block using a dynamic programming algorithm. When arriving at block B^l we only need to remember for each $c \subseteq [m]$ the number x_c of "partial stacks" that have only one vector for each $V^i, i \in c$. Indeed, we do not need to remember what is "inside" these partial stacks as all the remaining vectors from $B^{l'}, l' \ge l$ cannot "match" (i.e. have their zero in the same position) the vectors in these partial stacks.

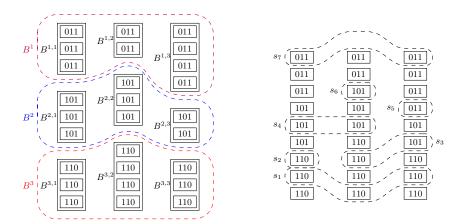


Fig. 3: Left: instance I of $(\min \sum 0)_{\#0 \le 1}$ partitionned into blocks. Right: A profile $P = \{x_{\{\emptyset\}} = 2, x_{\{1\}} = 1, x_{\{2\}} = 1, x_{\{3\}} = 1, x_{\{1,2\}} = 1, x_{\{1,3\}} = 1, x_{\{2,3\}} = 1, x_{\{1,2,3\}} = 1\}$ encoding a set S of partial stacks of I containing two empty stacks. The support of s_7 is $\sup(s_7) = \{1,3\}$ and has cost $c(s_7) = 1$.

Definition 2.

- A partial stack $s = \{v_{i_1}^s, \dots, v_{i_k}^s\}$ of I is such that $\{i_x \in [m], x \in [k]\}$ are pairwise disjoints, and for any $x \in [k]$, $v_{i_x}^s \in V^{i_x}$. The support of a partial stack s is $sup(s) = \{i_x, x \in [k]\}$. Notice that a stack s (i.e. non partial) has sup(s) = [m].
- The cost is extended in the natural way: the cost of a partial stack $c(s) = c(\bigwedge_{x \in [k]} v_{i_x}^s)$ is the number of zeros of the bitwise AND of the vectors of s.

We define the notion of profile as follows:

Definition 3. A profile $P = \{x_c, c \subseteq [m]\}$ is a set of 2^m positive integers such that $\sum_{c \subseteq [m]} x_c = n$.

In the following, a profile will be used to encode a set S of n partial stacks by keeping a record of their support. In other words, $x_c, c \subseteq [m]$ will denote the number of partial stacks in S of support c. This leads us to introduce the notion of reachable profile as follows:

Definition 4. Given two profiles $P = \{x_c : c \subseteq [m]\}$ and $P' = \{x'_{c'} : c' \subseteq [m]\}$ and a set $S = \{s_1, \ldots, s_n\}$ of n partial stacks, P' is said reachable from P through S iff there exist n couples $(s_1, c_1), (s_2, c_2), \ldots, (s_n, c_n)$ such that:

- For each couple (s, c), $sup(s) \cap c = \emptyset$.
- For each $c \subseteq [m]$, $|\{(s_j, c_j) : c_j = c, j = 1, ..., n\}| = x_c$. Intuitively, the configuration c appears in exactly x_c couples.
- For each $c' \subseteq [m]$, $|\{(s_j, c_j) : sup(s_j) \cup c_j = c', j = 1, \ldots, n\}| = x'_{c'}$. Intuitively, there exist exactly $x'_{c'}$ couples that, when associated, create a partial of profile c'.

Given two profiles P and P', P' is said reachable from P, if there exists a set S of n partial stacks such that P' is reachable from P through S.

Intuitively, a profile P' is reachable from P through S if every partial stack of the set encoded by P can be assigned to a unique partial stack from S to obtain a set of new partial stacks encoded by P'.

Remark that, given a set of partial stacks S only their profile is used to determine whether a profile is reachable or not. An example of a reachable profile is given on Figure 4.

We introduce now the following problem Π . We then show that this problem can be used to solve $(\min \sum 0)_{\#0 \le 1}$ problem, and we present a dynamic programming algorithm that solves Π in polynomial time when m is fixed.

Optimization Problem 2 Π

Input (l, P) with $l \in [p+1]$, P a profile.

Output A set of n partial stacks $S = \{s_1, s_2, ..., s_n\}$ such that S is a partition of $\mathcal{B} = \bigcup_{l' \geq l} B^{l'}$ and for every $c \subseteq [m]$, $|\{s \in S | sup(s) = [m] \setminus c\}| = x_c$ and such that $c(S) = \sum_{j=1}^n c(s_j)$ is minimum.

$$x_{\{\emptyset\}} = 1 \cdots \qquad c_1 = \{\emptyset\} \qquad \frac{(c_1, s_1)}{(c_2, s_2)} \qquad s_1 : sup(s_1) = \{1, 2, 4\} \qquad c'_1 = \{1, 2\} \qquad \cdots \qquad x_{\{1, 2\}} = 1 \\ x_{\{2, 4\}} = 1 \cdots \qquad c_2 = \{2, 4\} \qquad \frac{(c_3, s_3)}{(c_3, s_3)} \qquad s_2 : sup(s_2) = \{\emptyset\} \qquad c'_2 = \{2, 4\} \qquad \cdots \qquad x_{\{2, 4\}} = 1 \\ x_{\{1\}} = 2 \cdots \qquad c_4 = \{1\} \qquad c_5 = \{1\} \qquad c_5 = \{1\} \qquad c_5 : sup(s_5) = \{2, 4\} \qquad c'_4 = \{1, 2, 4\} \qquad \cdots \qquad x_{\{1, 2, 4\}} = 2 \\ x_{\{1\}} = 2 \cdots \qquad c_5 = \{1\} \qquad c_5 : sup(s_5) = \{2, 4\} \qquad c'_5 = \{1, 2, 3, 4\} \qquad \cdots \qquad x_{\{1, 2, 3, 4\}} = 1$$

Fig. 4: Example of a profile $P' = \{x_{\{1,2\}} = 1, x_{\{2,4\}} = 1, x_{\{1,2,4\}} = 2, x_{\{1,2,3,4\}} = 1\}$ reachable from $P = \{x_{\{\emptyset\}} = 1, x_1 = 2, x_{\{2,4\}} = 1, x_{\{3,4\}} = 1\}$ through $S = \{s_1 : sup(s_1) = \{1, 2, 4\}, s_2 : sup(s_2) = \{\emptyset\}, s_3 : sup(s_3) = \{1, 2\}, s_4 : sup(s_4) = \{2\}, s_5 : sup(s_5) = \{2, 4\}\}.$

Remark that an instance I of $(\min \sum 0)_{\#0 \le 1}$ can be solved optimally by solving optimally the instance $I' = (1, P = \{x_{\emptyset} = n, x_c = 0, \forall c \ne \emptyset\})$ of Π . The optimal solution of I' is indeed a set of n partial disjoint stacks of support [m] of minimum cost.

We are now ready to define the following dynamic programming algorithm that solves any instance (l, P) of Π by parsing the instance block after block and branching for each of these blocks on every reachable profile.

Function MinSumZeroDP(l, P)

```
if k == p + 1 then

return 0;

return \min(c(S') + \text{MinSumZeroDP}(l + 1, P')), with P' reachable from P

through S', where S' partition of B^l;
```

Note that this dynamic programming assumes the existence of a procedure that enumerates *efficiently* all the profiles P' that are reachable from P. The existence of such a procedure will be shown thereafter.

Lemma 3. For any instance of
$$\Pi(l, P)$$
, $MinSumZeroDP(l, P) = Opt(l, P)$.

Proof. Lemma 3 is true as in a given block l, the algorithm tries every reachable profile, and the zeros of vectors in blocks $\mathcal{B} = \bigcup_{l' < l} B^{l'}$ cannot be matched with those of vectors in block $\mathcal{B}' = \bigcup_{l' \geq l} B^{l'}$. This is the reason why the support of the already created partial stacks (stored in profile P) is sufficient to keep a record of what have been done (the positions of the zeros in the partial stacks corresponding to P is not relevant).

Let us focus now on the procedure in charge of the enumeration of the reachable profile. A first and intuitive way to perform this operation is by guessing, for all $c, c' \subseteq [m]$, $y_{c,c'}$ the number of partial stacks in configuration c that will

be turned into configuration c' with vectors of current block B^l . For each such guess it is possible to greedily verify that each $y_{c,c'}$ can be satisfied with the vectors of the current block. As each of the $y_{c,c'}$ can take values from 0 to n and c and c' can be both enumerated in $\mathcal{O}^*(n^{2^m})$, the previous algorithm runs in $\mathcal{O}^*(n^{2^{2m}})$.

This complexity can be improved as follows. The idea is to enumerate every possible profile P' and to verify using another dynamic programming algorithm if such a P' is reachable from P. We define $Aux_{P'}(P,X)$, that verifies if P' is reachable from P by using all vectors of X. If $X = \emptyset$, then the algorithm returns whether P is equal to P' or not. Otherwise, we consider the first vector v of X (we fix any arbitrary order) for which a branching is done on every possible assignment of v. More formally, the algorithm returns $\bigvee_{c\subseteq[m],x_c>0,c\cap sup(v)=\emptyset}Aux_{P'}(P_2=\{x_l'\},X\setminus\{v\}),$ where $x_l'=x_l-1$ if l=c, $x_l'=x_l+1$ if $l=c\cup sup(v),$ and $x_l'=x_l$ otherwise. Using Aux in MinSumZeroDP, we get the following theorem.

Theorem 3. $(\min \sum 0)_{\#0 \le 1}$ can be solved in $\mathcal{O}^*(n^{2^{m+2}})$.

We compute the overall complexity as follows: for each of the pn^{2^m} possible values of the parameters of MinSumZeroDP, the algorithm tries the n^{2^m} profiles P', and run for each one $Aux_{P'}$ in $\mathcal{O}^*(n^{2^m}nm)$ (the first parameter of Aux can take n^{2^m} values, and the second nm as we just encode how many vectors left in X).

References

- 1. G. Ausiello and V. T. Paschos. Reductions, completeness and the hardness of approximability. European Journal of Operational Research, 172(3):719-739, 2006.
- 2. N. Bansal and S. Khot. Inapproximability of hypergraph vertex cover and applications to scheduling problems. In International Colloquium on Automata, Languages and Programming (ICALP), pages 250-261, 2010.
- 3. M. Bougeret, G. Duvillié, and R. Giroudeau. Approximability and exact resolution of the Multidimensional Binary Vector Assignment problem. Research report, Lirmm ; Université de Montpellier, May 2016. HAL id:lirmm-01310648.
- 4. T. Dokka, M. Bougeret, V. Boudet, R. Giroudeau, and F. C. Spieksma. Approximation algorithms for the wafer to wafer integration problem. In Approximation and Online Algorithms (WAOA), pages 286-297. Springer, 2013.
- 5. T. Dokka, Y. Crama, and F. C. Spieksma. Multi-dimensional vector assignment problems. Discrete Optimization, 14:111-125, 2014.
- 6. G. Duvillié, M. Bougeret, V. Boudet, T. Dokka, and R. Giroudeau. On the complexity of wafer-to-wafer integration. In International Conference on Algorithms and Complexity (CIAC), pages 208–220, 2015.
- 7. C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. In Proceedings of the twentieth annual ACM symposium on Theory of computing, pages 229-234. ACM, 1988.
- 8. S. Reda, G. Smith, and L. Smith. Maximizing the functional yield of wafer-towafer 3-d integration. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 17(9):1357-1362, 2009.