Approximability and exact resolution of the Multidimensional Binary Vector Assignment problem

M. Bougeret ${ }^{1}$, G. Duvillié ${ }^{1}$, R. Giroudeau ${ }^{1}$
LIRMM, Université Montpellier 2, France
\{marin.bougeret,guillerme.duvillie,rodolphe.giroudeau\}@lirmm.fr

Abstract

In this paper we consider the multidimensional binary vector assignment problem. An input of this problem is defined by m disjoint multisets $V^{1}, V^{2}, \ldots, V^{m}$, each composed of n binary vectors of size p. An output is a set of n disjoint m-tuples of vectors, where each m-tuple is obtained by picking one vector from each multiset V^{i}. To each m-tuple we associate a p dimensional vector by applying the bit-wise AND operation on the m vectors of the tuple. The objective is to minimize the total number of zeros in these n vectors. We denote this problem by $\min \sum 0$, and the restriction of this problem where every vector has at most c zeros by $\left(\min \sum 0\right)_{\# 0<c} \cdot\left(\min \sum 0\right)_{\# 0 \leq 2}$ was only known to be APX-complete, even for $m=3[5]$. We show that, assuming the unique games conjecture, it is NP-hard to $(n-\varepsilon)$-approximate $\left(\min \sum 0\right)_{\# 0<1}$ for any fixed n and ε. This result is tight as any solution is a n-approximation. We also prove without assuming UGC that $\left(\min \sum 0\right)_{\# 0<1}$ is APX-complete even for $n=2$, and we provide an example of $n-f(n, m)$-approximation algorithm for $\min \sum 0$. Finally, we show that $\left(\min \sum 0\right)_{\# 0 \leq 1}$ is polynomialtime solvable for fixed m (which cannot be extended to $\left(\min \sum 0\right)_{\# 0 \leq 2}$ according to [5]).

1 Introduction

1.1 Problem definition

In this paper we consider the multidimensional binary vector assignment problem denoted by $\min \sum 0$. An input of this problem (see Figure 1) is described by m multisets V^{1}, \ldots, V^{m}, each multiset V^{i} containing n binary p-dimensional vectors. For any $j \in[n]^{1}$, and any $i \in[m]$, the $j^{t h}$ vector of multiset V^{i} is denoted v_{j}^{i}, and for any $k \in[p]$, the $k^{t h}$ coordinate of v_{j}^{i} is denoted $v_{j}^{i}[k]$.

The objective of this problem is to create a set S of n stacks. A stack $s=$ $\left(v_{1}^{s}, \ldots, v_{m}^{s}\right)$ is an m-tuple of vectors such that $v_{i}^{s} \in V^{i}$, for any $i \in[m]$. Furthermore, S has to be such that every vector of the input appears in exactly one created stack.

[^0]We now introduce the operator \wedge which assigns to a pair of vectors (u, v) the vector given by $u \wedge v=(u[1] \wedge v[1], u[2] \wedge v[2], \ldots, u[p] \wedge v[p])$. We associate to each stack s a unique vector given by $v_{s}=\bigwedge_{i \in[m]} v_{i}^{s}$.

The cost of a vector v is defined as the number of zeros in it. More formally if v is p-dimensional, $c(v)=p-\sum_{k \in[p]} v[k]$. We extend this definition to a set of stacks $S=\left\{s_{1}, \ldots, s_{n}\right\}$ as follows : $c(S)=\sum_{s \in S} c\left(v_{s}\right)$.

The objective is then to find a set S of n disjoint stacks minimizing the total number of zeros. This leads us to the following definition of the problem:

Optimization Problem 1 min $\sum 0$

Input $\quad m$ multisets of n p-dimensional binary vectors.
Output $\quad A$ set S of n disjoint stacks minimizing $c(S)$.
Throughout this paper, we denote $\left(\min \sum 0\right)_{\# 0 \leq c}$ the restriction of $\min \sum 0$ where the number of zeros per vector is upper bounded by c.

V^{1}	V^{2}	V^{3}	S			
001101	110010	110110	110010	$v_{s_{1}}$	$c\left(v_{s_{1}}\right)=3$	
110111	010101	010110	000000	$v_{s_{2}}$	$c\left(v_{s_{2}}\right)=6$	
011101	110011	010011	010001	$v_{s_{3}}$	$c\left(v_{s_{3}}\right)=4$	-. ${ }^{3}$
111101	010101	001111.	000101	$v_{s_{4}}$	$c\left(v_{s_{4}}\right)=4$	

Fig. 1: Example of $\min \sum 0$ instance with $m=3, n=4, p=6$ and of a feasible solution S of cost $c(S)=17$.

1.2 Related work

The dual version of the problem called max $\sum 1$ (where the objective is to maximize the total number of 1 in the created stacks) has been introduced by Reda et al. in [8] as the "yield maximization problem in Wafer-to-Wafer 3-D Integration technology". They prove the NP-completeness of max $\sum 1$ and provide heuristics without approximation guarantee. In [6] we proved that, even for $n=2$, for any $\varepsilon>0$, max $\sum 1$ is $\mathcal{O}\left(m^{1-\varepsilon}\right)$ and $\mathcal{O}\left(p^{1-\varepsilon}\right)$ inapproximable unless $\mathbf{P}=\mathbf{N P}$. We also provide an ILP formulation proving that max $\sum 1$ (and thus min $\sum 0$) is $\mathbf{F P T}^{2}$ when parameterized by p.

We introduced $\min \sum 0$ in [4] where we provide in particular $\frac{4}{3}$-approximation algorithm for $m=3$. In [5], authors focus on a generalization of $\min \sum 0$, called Multi Dimensional Vector Assignment, where vectors are not necessary binary vectors. They extend the approximation algorithm of [4] to get a $f(m)$-approximation algorithm for arbitrary m. They also prove the APXcompleteness of the $\left(\min \sum 0\right)_{\# 0 \leq 2}$ for $m=3$. This result was the only known inapproximability result for $\min \sum 0$.

[^1]
1.3 Contribution

In section 2 we study the approximability of $\min \sum 0$. Our main result in this section is to prove that assuming UGC, it is NP-hard to $(n-\varepsilon)$-approximate $\left(\min \sum 0\right)_{\# 0 \leq 1}$ (and thus $\left.\min \sum 0\right)$ for any fixed $n \geq 2, \forall \varepsilon>0$. This result is tight as any solution is a n-approximation.

Notice that this improves the only existing negative result for $\min \sum 0$, which was the APX-hardness of [5] (implying only no-PTAS).

We also show how this reduction can be used to obtain the APX-hardness for $\left(\min \sum 0\right)_{\# 0<1}$ for $n=2$ unless $\mathbf{P}=\mathbf{N P}$, which is weaker negative result, but does not require UGC. We then give an example $n-f(n, m)$ approximation algorithm for the general problem min $\sum 0$.

In section 3, we consider the exact resolution of $\min \sum 0$. We focus on sparse instances, i.e. instances of $\left(\min \sum 0\right)_{\# 0 \leq 1}$. Indeed, recall that authors of [5] show that $\left(\min \sum 0\right)_{\# 0 \leq 2}$ is APX-complete even for $m=3$, implying that $\left(\min \sum 0\right)_{\# 0 \leq 2}$ cannot be polynomial-time solvable for fixed m unless $\mathbf{P}=\mathbf{N P}$. Thus, it is natural to ask if $\left(\min \sum 0\right)_{\# 0 \leq 1}$ is polynomial-time solvable for fixed m. Section 3 is devoted to answer positively to this question. Notice that the question of determining if $\left(\min \sum 0\right)_{\# 0 \leq 1}$ is FPT when parameterized by m remains open.

2 Approximability of $\min \sum 0$

We refer the reader to [1] and [7] for the definitions of Gap and L-reductions.

2.1 Inapproximability results for $\left(\min \sum 0\right)_{\# 0 \leq 1}$

From now we suppose that $\forall k \in[p], \exists i, \exists j$ such that $v_{j}^{i}[k]=0$. In other words, for any solution S and $\forall k$, there exists a stack s such that $v_{s}[k]=0$. Otherwise, we simply remove such a coordinate from every vector of every set, and decrease p by one. Since this coordinate would be set to 1 in all the stacks of all solutions, such a preprocessing preserves approximation ratios and exact results.

In a first time, we define the following polynomial-time computable function f which associates an instance of $\left(\min \sum 0\right)_{\# 0 \leq 1}$ to any k-uniform hypergraph, i.e. an hypergraph $G=(U, E)$ such that every hyperedges of E contains exactly k distinct elements of U.

Definition of \boldsymbol{f} We consider a k-uniform hypergraph $G=(U, E)$. We call f the polynomial-time computable function that creates an instance of $\left(\min \sum 0\right)_{\# 0 \leq 1}$ from a G as follows.

1. We set $m=|E|, n=k$ and $p=|U|$.
2. For each hyperedge $e=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\} \in E$, we create the set V^{e} containing k vectors $\left\{v_{j}^{e}, j \in[k]\right\}$, where for all $j \in[k], v_{j}^{e}\left[u_{j}\right]=0$ and $v_{j}^{e}[l]=1$ for $l \neq u_{j}$. We say that a vector v represents $u \in U$ iff $v[u]=0$ and $v[l \neq u]=1$ (and thus vector v_{j}^{e} represents u_{j}).

An example of this construction is given in Figure 2.

Fig. 2: Illustration of the reduction from an hypergraph $G=(U=\{1,2,3,4,5,6,7\}$, $E=\{\{1,2,7\},\{1,3,4\},\{2,4,5\},\{5,6,7\}\})$ to an instance $\left(\min \sum 0\right)_{\# 0 \leq 1}$

Negative results assuming UGC We consider the following problem. Notice that what we call a vertex cover in a k-regular hypergraph $G=(U, E)$ is a set $U^{\prime} \subseteq U$ such that for any hyperedge $e \in E, U^{\prime} \cap e \neq \emptyset$.

Decision Problem 1 Almost Ek Vertex Cover

Input We are given an integer $k \geq 2$, two arbitrary positive constants ε and δ and a k-uniform hypergraph $G=(U, E)$.

Output Distinguish between the following cases:
YES Case there exist k disjoint subsets $U^{1}, U^{2}, \ldots, U^{k} \subseteq U$, satisfying $\left|U^{i}\right| \geq \frac{1-\varepsilon}{k}|U|$ and such that every hyperedge contains at most one vertex from each U^{i}.
NO Case every vertex cover has size at least $(1-\delta)|U|$.
It is shown in [2] that, assuming UGC, this problem is NP-complete.
Theorem 1. For any fixed $n \geq 2$, for any constants $\varepsilon, \delta>0$, there exists a $\frac{n-n \delta}{1+n \varepsilon}-G a p$ reduction from Almost Ek Vertex Cover to $\left(\min \sum 0\right)_{\# 0 \leq 1}$. Consequently, under $U G C$, for any fixed $n\left(\min \sum 0\right)_{\# 0 \leq 1}$ is $\mathbf{N P}$-hard to approximate within a factor $\left(n-\varepsilon^{\prime}\right)$ for any $\varepsilon^{\prime}>0$.

Proof. We consider an instance I of Almost Ek Vertex Cover defined by two positive constants δ and ϵ, an integer k and a k-regular hypergraph $G=(U, E)$.

We use the function f previously defined to construct an instance $f(I)$ of $\min \sum 0$. Let us now prove that if I is a positive instance, $f(I)$ admits a solution S of cost $c(S)<(1+n \varepsilon)|U|$, and otherwise any solution S of $f(I)$ has cost $c(S) \geq n(1-\delta)|U|$.

NO Case Let S be a solution of $f(I)$. Let us first remark that for any stack $s \in S$, the set $\left\{k: v_{s}[k]=0\right\}$ defines a vertex cover in G. Indeed, s contains exactly one vector per set, and thus by construction s selects one vertex per hyperedge in G. Remark also that the cost of s is equal to the size of the corresponding vertex cover.

Now, suppose that I is a negative instance. Hence each vertex cover has a size at least equal to $(1-\delta)|U|$, and any solution S of $f(I)$, composed of exactly n stacks, verifies $c(S) \geq n(1-\delta)|U|$.
YES Case If I is a positive instance, there exists k disjoint sets $U^{1}, U^{2}, \ldots, U^{k} \subseteq$ U such that $\forall i=1, \ldots, k,\left|U^{i}\right| \geq \frac{1-\varepsilon}{k}|U|$ and such that every hyperedge contains at most one vertex from each U^{i}.
We introduce the subset $X=U \backslash \bigcup_{i=1}^{k} U^{i}$. By definition $\left\{U^{1}, U^{2}, \ldots, U^{k}, X\right\}$ is a partition of U and $X \leq \varepsilon|U|$. Furthermore, $U^{i} \cup X$ is a vertex cover $\forall i=1, \ldots, k$. Indeed, each hyperedge $e \in E$ that contains no vertex of U^{i}, contains at least one vertex of X since e contains k vertices.
We now construct a solution S of $f(I)$. Our objective is to construct stacks $\left\{s_{i}\right\}$ such that for any i, the zeros of s_{i} are included in $U_{i} \cup X$ (i.e. $\{l$: $\left.v_{s_{i}}[l]=0\right\} \subseteq U_{i} \cup X$). For each $e=\left\{u_{1}, \ldots, u_{k}\right\} \in E$, we show how to assign exactly one vector of V^{e} to each stack s_{1}, \ldots, s_{k}. For all $i \in[k]$, if v_{j}^{e} represents a vertex u with $u \in U^{i}$, then we assign v_{j}^{e} to s_{i}. W.l.o.g., let $S_{e}^{\prime}=\left\{s_{1}, \ldots, s_{k^{\prime}}\right\}$ (for $k^{\prime} \leq k$) be the set of stacks that received a vertex during this process. Notice that as every hyperedge contains at most one vertex from each U^{i}, we only assigned one vector to each stack of S_{e}^{\prime}. After this, every unassigned vector $v \in V^{e}$ represents a vertex of X (otherwise, such a vector v would belong to a set $U^{i}, i \in k^{\prime}$, a contradiction). We assign arbitrarily these vectors to the remaining stacks that are not in S_{e}^{\prime}. As by construction $\forall i \in[k], v_{s} i$ contains only vectors representing vertices from $U^{i} \cup X$, we get $c\left(s_{i}\right) \leq\left|U^{i}\right|+|X|$.
Thus, we obtain a feasible solution S of $\operatorname{cost} c(S)=\sum_{i=1}^{k} c\left(s_{i}\right) \leq k|X|+$ $\sum_{i=1}^{k}\left|U^{i}\right|$. As by definition we have $|X|+\sum_{i=1}^{k}\left|U^{i}\right|=|U|$, it follows that $c(S) \leq|U|+(k-1) \varepsilon|U|$ and since $k=n, c(S)<|U|(1+n \varepsilon)$.
If we define $a(n)=(1+n \varepsilon)|U|$ and $r(n)=\frac{n(1-\delta)}{(1+n \varepsilon)}$, the previous reduction is a $r(n)$-Gap reduction. Furthermore, $\lim _{\delta, \varepsilon \rightarrow 0} r(n)=n$, thus it is NP-hard to approximate $\left(\min \sum 0\right)_{\# 0 \leq 1}$ within a ratio $\left(n-\varepsilon^{\prime}\right)$ for any $\varepsilon^{\prime}>0$.

Notice that, as a function of n, this inapproximability result is optimal. Indeed, we observe that any feasible solution S is an n-approximation as, for any instance I of $\min \sum 0^{3}, \operatorname{Opt}(I) \geq p$ and for any solution $S, c(S) \leq p n$.

Negative results without assuming UGC Let us now study the negative results we can get when only assuming $\mathbf{P} \neq \mathbf{N P}$. Our objective is to prove that $\left(\min \sum 0\right)_{\# 0<1}$ is $\mathbf{A P X}$-hard, even for $n=2$. To do so, we present a reduction from Odd Cycle Transversal, which is defined as follows. Given an input graph $G=(U, E)$, the objective is to find an odd cycle transversal of minimum size, i.e. a subset $T \subseteq U$ of minimum size such that $G[U \backslash T]$ is bipartite.

For any integer $\gamma \geq 2$, we denote \mathcal{G}_{γ} the class of graphs $G=(U, E)$ such that any optimal odd cycle transversal T has size $|T| \geq \frac{|U|}{\gamma}$. Given \mathcal{G} a class of

[^2]graphs, we denote $O C T_{\mathcal{G}}$ the Odd Cycle Transversal problem restricted to \mathcal{G}.

Lemma 1. For any constant $\gamma \geq 2$, there exists an L-reduction from $O C T_{\mathcal{G}_{\gamma}}$ to $\left(\min \sum 0\right)_{\# 0 \leq 1}$ with $n=2$.

Proof. Let us consider an integer γ, an instance I of $O C T_{\mathcal{G}_{\gamma}}$, defined by a graph $G=(V, E)$ such that $G \in \mathcal{G}_{\gamma}$. W.l.o.g., we can consider that G contains no isolated vertex.

Remark that any graph can be seen as a 2-uniform hypergraph. Thus, we use the function f previously defined to construct an instance $f(I)$ of $\left(\min \sum 0\right)_{\# 0 \leq 1}$ such that $n=2$. Since, G contains no isolated vertex, $f(I)$ contains no position k such that $\forall i \in[m], \forall j \in[n], v_{j}^{i}[k]=1$.

Let us now prove that I admits an odd cycle transversal of size t if and only if $f(I)$ admits a solution of cost $p+t$.
\Leftarrow We consider an instance $f(I)$ of $\left(\min \sum 0\right)_{\# 0 \leq 1}$ with $n=2$ admitting a solution $S=\left\{s_{A}, s_{B}\right\}$ with $\operatorname{cost} c(S)=p+t$. Let us specify a function g which produces from S a solution $T=g(I, S)$ of $O C T_{\mathcal{G}_{\gamma}}$, i.e. a set of vertices of U such that $G[U \backslash T]$ is bipartite.

We define $T=\left\{u \in U: v_{s_{A}}[u]=v_{s_{B}}[u]=0\right\}$, the set of coordinates equal to zero in both s_{A} and s_{B}. We also define $A=\left\{u \in V: v_{s_{A}}[u]=0\right.$ and $\left.v_{s_{B}}[u]=1\right\}$ (resp. $B=\left\{u \in V: v_{s_{B}}[u]=0\right.$ and $\left.v_{s_{A}}[u]=1\right\}$), the set of coordinates set to zero only in s_{A} (resp. s_{B}). Notice that $\{T, A, B\}$ is a partition of U.

Remark that A and B are independent sets. Indeed, suppose that $\exists\{u, v\} \in E$ such that $u, v \in A$. As $\{u, v\} \in E$ there exists a set $V^{(u, v)}$ containing a vector that represents u and another vector that represents v, and thus these vectors are assigned to different stacks. This leads to a contradiction. It follows that $G[U \backslash T]$ is bipartite and T is an odd cycle transversal.

Since $c(S)=|A|+|B|+2|T|=p+|T|=p+t$, we get $|T|=t$.
\Rightarrow We consider an instance I of $O C T_{\mathcal{G}_{\gamma}}$ and a solution T of size t. We now construct a solution $S=\left\{s_{A}, s_{B}\right\}$ of $f(I)$ from T.

By definition, $G[U \backslash T]$ is a bipartite graph, thus the vertices in $U \backslash T$ may be split into two disjoint independent sets A and B. For each edge $e \in E$, the following cases can occur:

- if $\exists u \in e$ such that $u \in A$, then the vector corresponding to u is assigned to s_{A}, and the vector corresponding to $e \backslash\{u\}$ is assigned to s_{B} (and the same rule holds by exchanging A and B)
- otherwise, u and $v \in T$, and we assign arbitrarily v_{u}^{e} to s_{A} and the other to s_{B}.

We claim that the stacks s_{A} and s_{B} describe a feasible solution S of cost at most $p+t$.

Since, for each set, only one vector is assigned to s_{A} and the other to s_{B}, the two stacks s_{A} and s_{B} are disjoint and contain exactly m vectors. S is therefore a feasible solution.

Remark that $v_{s_{A}}$ (resp. $v_{s_{B}}$) contains only vectors v such that $v[k]=0 \Longrightarrow$ $k \in A \cup T$ (resp. $k \in B \cup T$), and thus $c\left(v_{A}\right) \leq|A|+|T|\left(\right.$ resp. $\left.c\left(v_{B}\right) \leq|B|+|T|\right)$. Hence $c(S) \leq|A|+|B|+2|T|=p+t$.

Let us now prove that this reduction is an L-reduction.

1. By definition, any instance I of $O C T_{\mathcal{G}_{\gamma}}$ verifies $|O p t(I)| \geq|U| / \gamma$. Thus,

$$
O p t(f(I)) \leq|U|+O p t(I) \leq(\gamma+1) O p t(I)
$$

2. We consider an arbitrary instance I of $O C T_{\mathcal{G}_{\gamma}}, f(I)$ the corresponding instance of $\left(\min \sum 0\right)_{\# 0 \leq 1}, S$ a solution of $f(I)$ and $T=g(I), S$ the corresponding solution of I.
We proved $|T|-O p t(I)=c(S)-|U|-(O p t(f(I))-|U|)=c(S)-O p t(f(I))$.
Therefore, we get an L-reduction for $\alpha=\gamma+1$ and $\beta=1$.
Lemma 2 ([3]). There exist a constant γ and $\mathcal{G} \subset \mathcal{G}_{\gamma}$ such that $O C T_{\mathcal{G}}$ is APX-hard.

The following result is now immediate.
Theorem 2. $\left(\min \sum 0\right)_{\# 0 \leq 1}$ is APX-hard, even for $n=2$.

2.2 Approximation algorithm for $\min \sum 0$

Let us now show an example of algorithm achieving a $n-f(n, m)$ ratio. Notice that the $(n-\epsilon)$ inapproximability result holds for fixed n and $\# 0=1$, while the following algorithm is polynomial-time computable when n is part of the input and $\# 0$ is arbitrary.

Proposition 1. There is a polynomial-time $n-\frac{n-1}{n \rho(n, m)}$ approximation algorithm for $\min \sum 0$, where $\rho(n, m)>1$ is the approximation ratio for independent set in graphs that are the union of m complete n-partite graphs.

Proof. Let I be an instance of $\min \sum 0$. Let us now consider an optimal solution $S^{*}=\left\{s_{1}^{*}, \ldots, s_{n}^{*}\right\}$ of I. For any $i \in[n]$, let $Z_{i}^{*}=\left\{l \in[p]: v_{s_{i}^{*}}[l]=0\right.$ and $v_{s_{t}^{*}}[l]=$ $1, \forall t \neq i\}$ be the set of coordinates equal to zero only in stack s_{i}^{*}. Let $\Delta=$ $\sum_{i=1}^{n}\left|Z_{i}^{*}\right|$. Notice that we have $c\left(S^{*}\right) \geq \Delta+2(p-\Delta)$, as for any coordinate l outside $\bigcup_{i} Z_{i}^{*}$, there are at least two stacks with a zero at coordinate l. W.l.o.g., let us suppose that Z_{1}^{*} is the largest set among $\left\{Z_{i}^{*}\right\}$, implying $\left|Z_{1}^{*}\right| \geq \frac{\Delta}{n}$.

Given a subset $Z \subset[p]$, we will construct a solution $S=\left\{s_{1}, \ldots, s_{n}\right\}$ such that for any $l \in Z, v_{s_{1}}[l]=0$, and for any $i \neq 1, v_{s_{i}}[l]=1$. Informally, the zero at coordinates Z will appear only in s_{1}, which behaves as a "trash" stack. The cost of such a solution is $c(S) \leq c\left(s_{1}\right)+\sum_{i=2}^{n} c\left(s_{i}\right) \leq p+(n-1)(p-|Z|)$. Our objective is now to compute such a set Z, and to lower bound $|Z|$ according to $\left|Z_{1}^{*}\right|$.

Let us now define how we compute Z. Let $P=\{l \in[p]: \forall i \in[m], \mid\{j:$ $\left.\left.v_{j}^{i}[l]=0\right\} \mid \leq 1\right\}$ be the subset of coordinates that are never nullified in two
different vectors of the same set. We will construct a simple undirected graph $G=(P, E)$, and thus it remains to define E. For vector v_{j}^{i}, let $Z_{j}^{i}=Z\left(v_{j}^{i}\right) \cap P$, where $Z(v) \subseteq[p]$ denotes the set of null coordinates of vector v. For any $i \in[m]$, we add to G the edges of the complete n-partite graph $G^{i}=\left(\left\{Z_{1}^{i} \times \cdots \times Z_{n}^{i}\right\}\right)$ (i.e. for any $j_{1}, j_{2}, v_{1} \in Z_{j_{1}}^{i}, v_{2} \in Z_{j_{2}}^{i}$, we add edge $\left\{v_{1}, v_{2}\right\}$ to G). This concludes the description of G, which can be seen as the union of m complete n-partite graphs.

Let us now see the link between independent set in G and our problem. Let us first see why Z_{1}^{*} is a independent set in G. Recall that by definition of Z_{1}^{*}, for any $l \in Z_{1}^{*}, v_{s_{1}^{*}}[k]=0$, but $v_{s_{j}^{*}}[k]=1, j \geq 2$. Thus, it is immediate that $Z_{1}^{*} \subseteq P$. Moreover, assume by contradiction that there exists an edge in G between to vertices l_{1} and l_{2} of Z_{1}^{*}. This implies that there exists $i \in[m], j_{1}$ and $j_{2} \neq j_{1}$ such that $v_{j_{1}}^{i}\left[l_{1}\right]=0$ and $v_{j_{2}}^{i}\left[l_{2}\right]=0$. As by definition of Z_{1}^{*} we must have $v_{s_{j}^{*}}\left[k_{1}\right]=1$ and $v_{s_{j}^{*}}\left[k_{2}\right]=1$ for $j \geq 2$, this implies that s_{1}^{*} must contains both $v_{j_{1}}^{i}$ and $v_{j_{2}}^{i}$, a contradiction. Thus, we get $\operatorname{Opt}(G) \geq\left|Z_{1}^{*}\right|$, where $\operatorname{Opt}(G)$ is the size of a maximum independent set in G.

Now, let us check that for any independent set $Z \subseteq P$ in G, we can construct a solution $S=\left\{s_{1}, \ldots, s_{n}\right\}$ such that for any $l \in Z, v_{s_{1}}[l]=0$, and for any $i \neq 1, v_{s_{i}}[l]=1$. To construct such a solution, we have to prove that we can add in s_{1} all the vectors v such that $\exists l \in Z$ such that $v[l]=0$. However, this last statement is clearly true as for any $i \in[m]$, there is at most one vector v_{j}^{i} with $Z\left(v_{j}^{i}\right) \subseteq Z$.

Thus, any $\rho(n, m)$ approximation algorithm gives us a set Z with $|Z| \geq$ $\frac{\left|Z_{1}^{*}\right|}{\rho(n, m)} \geq \frac{\Delta}{n \rho(n, m)}$, and we get a ratio of $\frac{p+(n-1)\left(p-\frac{\Delta}{n \rho(n, m)}\right)}{2 p-\Delta} \leq n-\frac{n-1}{n \rho(n, m)}$ for $\Delta=p$.

Remark 1. We can get, for example, $\rho(n, m)=m n^{m-1}$ using the following algorithm. For any $i \in[m]$, let $G^{i}=\left(A_{1}^{i}, \ldots, A_{n}^{i}\right)$ be the i-th complete n-partite graph. W.l.o.g., suppose that A_{1}^{1} is the largest set among $\left\{A_{j}^{i}\right\}$. Notice that $\left|A_{1}^{1}\right| \geq \frac{O p t}{m}$. The algorithm starts by setting $S_{1}=A_{1}^{1}$ (S_{1} may not be an independent set). Then, for any i from 2 to m, the algorithm set $S_{i}=S_{i-1} \backslash\left(\cup_{j \neq j_{0}} A_{j}^{i}\right)$, where $j_{0}=\arg \max _{j}\left\{\left|S_{i-1} \cap A_{j}^{i}\right|\right\}$. Thus, for any i we have $\left|S_{i}\right| \geq \frac{\left|S_{i-1}\right|}{n}$, and S_{i} is an independent set when considering only edges from $\cup_{l=1}^{i} G^{l}$. Finally, we get an independent set of G of size $\left|S_{m}\right| \geq \frac{S_{1}}{n^{m-1}} \geq \frac{O p t}{m n^{m-1}}$.

3 Exact resolution of sparse instances

The section is devoted to the exact resolution of $\min \sum 0$ for sparse instances where each vector has at most one zero $(\# 0 \leq 1)$. As we have seen in Section 2, $\left(\min \sum 0\right)_{\# 0<1}$ remains NP-hard (even for $n=2$). Thus it is natural to ask if $\left(\min \sum 0\right)_{\# 0<1}$ is polynomial-time solvable for fixed m (for general n). This section is devoted to answer positively to this question. Notice that we cannot extend this result to a more general notion of sparsity as $\left(\min \sum 0\right)_{\# 0 \leq 2}$ is

APX-complete for $m=3$ [5]. However, the question if $\left(\min \sum 0\right)_{\# 0 \leq 1}$ is fixed parameter tractable when parameterized by m is left open.

We first need some definitions, and refer the reader to Figure 3 where an example is depicted.

Definition 1.

- For any $l \in[p], i \in[m]$, we define $B^{(l, i)}=\left\{v_{j}^{i}: v_{j}^{i}[l]=0\right\}$ to be the set of vectors of set i that have their (unique) zero at position l. For the sake of homogeneous notation, we define $B^{(p+1, i)}=\left\{v_{j}^{i}: v_{j}^{i}\right.$ is a 1 vector $\}$. Notice that the $B^{(l, i)}$ form a partition of all the vectors of the input, and thus an input of $\left(\min \sum 0\right)_{\# 0 \leq 1}$ is completely characterized by the $B^{(l, i)}$.
- For any $l \in[p+1]$, the block $B^{l}=\bigcup_{i \in[m]} B^{(l, i)}$.

Informally, the idea to solve $\left(\min \sum 0\right)_{\# 0 \leq 1}$ in polynomial time for fixed m is to parse the input block after block using a dynamic programming algorithm. When arriving at block B^{l} we only need to remember for each $c \subseteq[m]$ the number x_{c} of "partial stacks" that have only one vector for each $V^{i}, i \in c$. Indeed, we do not need to remember what is "inside" these partial stacks as all the remaining vectors from $B^{l^{\prime}}, l^{\prime} \geq l$ cannot "match" (i.e. have their zero in the same position) the vectors in these partial stacks.

Fig. 3: Left: instance I of $\left(\min \sum 0\right)_{\# 0 \leq 1}$ partitionned into blocks. Right: A profile $P=$ $\left\{x_{\{0\}}=2, x_{\{1\}}=1, x_{\{2\}}=1, x_{\{3\}}=1, x_{\{1,2\}}=1, x_{\{1,3\}}=1, x_{\{2,3\}}=1, x_{\{1,2,3\}}=1\right\}$ encoding a set S of partial stacks of I containing two empty stacks. The support of s_{7} is $\sup \left(s_{7}\right)=\{1,3\}$ and has cost $c\left(s_{7}\right)=1$.

Definition 2.

- A partial stack $s=\left\{v_{i_{1}}^{s}, \ldots, v_{i_{k}}^{s}\right\}$ of I is such that $\left\{i_{x} \in[m], x \in[k]\right\}$ are pairwise disjoints, and for any $x \in[k], v_{i_{x}}^{s} \in V^{i_{x}}$. The support of a partial stack s is $\sup (s)=\left\{i_{x}, x \in[k]\right\}$. Notice that a stacks (i.e. non partial) has $\sup (s)=[m]$.
- The cost is extended in the natural way: the cost of a partial stack $c(s)=$ $c\left(\bigwedge_{x \in[k]} v_{i_{x}}^{s}\right)$ is the number of zeros of the bitwise AND of the vectors of s.

We define the notion of profile as follows:
Definition 3. A profile $P=\left\{x_{c}, c \subseteq[m]\right\}$ is a set of 2^{m} positive integers such that $\sum_{c \subseteq[m]} x_{c}=n$.

In the following, a profile will be used to encode a set S of n partial stacks by keeping a record of their support. In other words, $x_{c}, c \subseteq[m]$ will denote the number of partial stacks in S of support c. This leads us to introduce the notion of reachable profile as follows:

Definition 4. Given two profiles $P=\left\{x_{c}: c \subseteq[m]\right\}$ and $P^{\prime}=\left\{x_{c^{\prime}}^{\prime}: c^{\prime} \subseteq[m]\right\}$ and a set $S=\left\{s_{1}, \ldots, s_{n}\right\}$ of n partial stacks, P^{\prime} is said reachable from P through S iff there exist n couples $\left(s_{1}, c_{1}\right),\left(s_{2}, c_{2}\right), \ldots,\left(s_{n}, c_{n}\right)$ such that:

- For each couple $(s, c), \sup (s) \cap c=\emptyset$.
- For each $c \subseteq[m],\left|\left\{\left(s_{j}, c_{j}\right): c_{j}=c, j=1, \ldots, n\right\}\right|=x_{c}$. Intuitively, the configuration c appears in exactly x_{c} couples.
- For each $c^{\prime} \subseteq[m],\left|\left\{\left(s_{j}, c_{j}\right): \sup \left(s_{j}\right) \cup c_{j}=c^{\prime}, j=1, \ldots, n\right\}\right|=x_{c^{\prime}}^{\prime}$. Intuitively, there exist exactly $x_{c^{\prime}}^{\prime}$ couples that, when associated, create a partial of profile c^{\prime}.

Given two profiles P and P^{\prime}, P^{\prime} is said reachable from P, if there exists a set S of n partial stacks such that P^{\prime} is reachable from P through S.

Intuitively, a profile P^{\prime} is reachable from P through S if every partial stack of the set encoded by P can be assigned to a unique partial stack from S to obtain a set of new partial stacks encoded by P^{\prime}.

Remark that, given a set of partial stacks S only their profile is used to determine whether a profile is reachable or not. An example of a reachable profile is given on Figure 4.

We introduce now the following problem Π. We then show that this problem can be used to solve $\left(\min \sum 0\right)_{\# 0 \leq 1}$ problem, and we present a dynamic programming algorithm that solves Π in polynomial time when m is fixed.

Optimization Problem 2Π

Input $\quad(l, P)$ with $l \in[p+1], P$ a profile.
Output A set of n partial stacks $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ such that S is a partition of $\mathcal{B}=\bigcup_{l^{\prime} \geq l} B^{l^{\prime}}$ and for every $c \subseteq[m], \mid\{s \in S \mid \sup (s)=$ $[m] \backslash c\} \mid=x_{c}$ and such that $c(S)=\sum_{j=1}^{n} c\left(s_{j}\right)$ is minimum.

Fig. 4: Example of a profile $P^{\prime}=\left\{x_{\{1,2\}}=1, x_{\{2,4\}}=1, x_{\{1,2,4\}}=2, x_{\{1,2,3,4\}}=1\right\}$ reachable from $P=\left\{x_{\{\emptyset\}}=1, x_{1}=2, x_{\{2,4\}}=1, x_{\{3,4\}}=1\right\}$ through $S=\left\{s_{1}\right.$: $\sup \left(s_{1}\right)=\{1,2,4\}, s_{2}: \sup \left(s_{2}\right)=\{\emptyset\}, s_{3}: \sup \left(s_{3}\right)=\{1,2\}, s_{4}: \sup \left(s_{4}\right)=\{2\}$, $\left.s_{5}: \sup \left(s_{5}\right)=\{2,4\}\right\}$.

Remark that an instance I of $\left(\min \sum 0\right)_{\# 0 \leq 1}$ can be solved optimally by solving optimally the instance $I^{\prime}=\left(1, P=\left\{x_{\emptyset}=n, x_{c}=0, \forall c \neq \emptyset\right\}\right)$ of Π. The optimal solution of I^{\prime} is indeed a set of n partial disjoint stacks of support $[m]$ of minimum cost.

We are now ready to define the following dynamic programming algorithm that solves any instance (l, P) of Π by parsing the instance block after block and branching for each of these blocks on every reachable profile.

```
Function MinSumZeroDP \((l, P)\)
    if \(k==p+1\) then
        return 0 ;
    return \(\min \left(c\left(S^{\prime}\right)+\operatorname{MinSumZeroDP}\left(l+1, P^{\prime}\right)\right)\), with \(P^{\prime}\) reachable from \(P\)
    through \(S^{\prime}\), where \(S^{\prime}\) partition of \(B^{l}\);
```

Note that this dynamic programming assumes the existence of a procedure that enumerates efficiently all the profiles P^{\prime} that are reachable from P. The existence of such a procedure will be shown thereafter.

Lemma 3. For any instance of $\Pi(l, P), \operatorname{MinSumZeroDP}(l, P)=O p t(l, P)$.
Proof. Lemma 3 is true as in a given block l, the algorithm tries every reachable profile, and the zeros of vectors in blocks $\mathcal{B}=\bigcup_{l^{\prime}<l} B^{l^{\prime}}$ cannot be matched with those of vectors in block $\mathcal{B}^{\prime}=\bigcup_{l^{\prime} \geq l} B^{l^{\prime}}$. This is the reason why the support of the already created partial stacks (stored in profile P) is sufficient to keep a record of what have been done (the positions of the zeros in the partial stacks corresponding to P is not relevant).

Let us focus now on the procedure in charge of the enumeration of the reachable profile. A first and intuitive way to perform this operation is by guessing, for all $c, c^{\prime} \subseteq[m], y_{c, c^{\prime}}$ the number of partial stacks in configuration c that will
be turned into configuration c^{\prime} with vectors of current block B^{l}. For each such guess it is possible to greedily verify that each $y_{c, c^{\prime}}$ can be satisfied with the vectors of the current block. As each of the $y_{c, c^{\prime}}$ can take values from 0 to n and c and c^{\prime} can be both enumerated in $\mathcal{O}^{*}\left(n^{2^{m}}\right)$, the previous algorithm runs in $\mathcal{O}^{*}\left(n^{2^{2 m}}\right)$.

This complexity can be improved as follows. The idea is to enumerate every possible profile P^{\prime} and to verify using another dynamic programming algorithm if such a P^{\prime} is reachable from P. We define $\operatorname{Aux}_{P^{\prime}}(P, X)$, that verifies if P^{\prime} is reachable from P by using all vectors of X. If $X=\emptyset$, then the algorithm returns whether P is equal to P^{\prime} or not. Otherwise, we consider the first vector v of X (we fix any arbitrary order) for which a branching is done on every possible assignment of v. More formally, the algorithm returns $\bigvee_{c \subseteq[m], x_{c}>0, c \cap \sup (v)=\emptyset} A u x_{P^{\prime}}\left(P_{2}=\left\{x_{l}^{\prime}\right\}, X \backslash\{v\}\right)$, where $x_{l}^{\prime}=x_{l}-1$ if $l=c$, $x_{l}^{\prime}=x_{l}+1$ if $l=c \cup \sup (v)$, and $x_{l}^{\prime}=x_{l}$ otherwise.

Using $A u x$ in MinSumZeroDP, we get the following theorem.
Theorem 3. $\left(\min \sum 0\right)_{\# 0 \leq 1}$ can be solved in $\mathcal{O}^{*}\left(n^{2^{m+2}}\right)$.
We compute the overall complexity as follows: for each of the $p n^{2^{m}}$ possible values of the parameters of MinSumZeroDP, the algorithm tries the $n^{2^{m}}$ profiles P^{\prime}, and run for each one $A u x_{P^{\prime}}$ in $\mathcal{O}^{*}\left(n^{2^{m}} n m\right)$ (the first parameter of $A u x$ can take $n^{2^{m}}$ values, and the second $n m$ as we just encode how many vectors left in $X)$.

References

1. G. Ausiello and V. T. Paschos. Reductions, completeness and the hardness of approximability. European Journal of Operational Research, 172(3):719-739, 2006.
2. N. Bansal and S. Khot. Inapproximability of hypergraph vertex cover and applications to scheduling problems. In International Colloquium on Automata, Languages and Programming (ICALP), pages 250-261, 2010.
3. M. Bougeret, G. Duvillié, and R. Giroudeau. Approximability and exact resolution of the Multidimensional Binary Vector Assignment problem. Research report, Lirmm ; Université de Montpellier, May 2016. HAL id:lirmm-01310648.
4. T. Dokka, M. Bougeret, V. Boudet, R. Giroudeau, and F. C. Spieksma. Approximation algorithms for the wafer to wafer integration problem. In Approximation and Online Algorithms (WAOA), pages 286-297. Springer, 2013.
5. T. Dokka, Y. Crama, and F. C. Spieksma. Multi-dimensional vector assignment problems. Discrete Optimization, 14:111-125, 2014.
6. G. Duvillié, M. Bougeret, V. Boudet, T. Dokka, and R. Giroudeau. On the complexity of wafer-to-wafer integration. In International Conference on Algorithms and Complexity (CIAC), pages 208-220, 2015.
7. C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. In Proceedings of the twentieth annual ACM symposium on Theory of computing, pages 229-234. ACM, 1988.
8. S. Reda, G. Smith, and L. Smith. Maximizing the functional yield of wafer-towafer 3-d integration. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 17(9):1357-1362, 2009.

[^0]: ${ }^{1}$ Note that $[n]$ stands for $\{1,2, \ldots, n\}$.

[^1]: ${ }^{2}$ i.e. admits an algorithm in $f(p) p o l y(|I|)$ for an arbitrary function f.

[^2]: ${ }^{3}$ Recall that we assume $\forall k \in[p], \exists i, \exists j$ such that $v_{j}^{i}[k]=0$

