PhySIC_IST: cleaning source trees to infer more informative supertrees.

CELINE SCORNAVACCA, Vincent Berry, Vincent Ranwez et Emmanuel J.P. Douzery

LIRMM, UMR CNRS 5506 ISEM, UMR CNRS 5554 University of Montpellier II

June 16, 2008

Combining data for phylogenetic inferences Vote methods Veto methods

Reconstruction of phylogenies

• INPUT: (different) source datasets

	AAAGCTTTGGAA	AACATTOGAC	16,19,16,19 19,20 16,24
	ABAGCTTTGGAA	CC CB BB BC BB CB	BB EG DD BB .18 18.20 16.24
	ABACCTTTCCAA	CB CB BB BC BB CB	BB EG DD BB 18 18.20 15.24
	ABACCTETOCAL	CB CB BB BC BB CB	BB EI DD BC 18 19.20 16.25
	ABAGGTUNGGBA	CB CB BB BB BB CB	BB EC DD BB 18 19.20 16.25
	hhhooppool	CB CB BB BB BB BB	BB EK DD BB 19 20 21 14 19
	ADDACCTTTICODA	CG CB BB BB BB BB	BB EK DG BB 18 20 20 12 10
	AAACCITIGGAA	CG CE BB BB BB BB	CR EK DD BB 10 10 20 12 20
	AAACCITTGGAA	DB CE BB BB BB BB	CB BC DB BB 10 10 20 12 10
	AAACCTTTGGAA	DB CF BB BB BB BB	CB DC DD BE COURT OF TA IN
	AAACCTTTGGAA	CB CE BB BB BB BB	CB EG DD BF CACGC 20 23.19
_	ANACCTTTGGA	CB CB BB BB BB PB	CB EC DD BP
20 21	19 22 22 20 19	CB BB BB BB BB FB	CB FL DD BF CACGC
20.21	19 22 20 20 10	CB BB BB BB BB FB	CR FL DD BF CACGC
20.10	16 22 20 20 10	C0 00 00 00 00 00 00	CB PT DT BP VCACGC.
20.19	16.22 20.20 10.0	CD 00 00 00 00 10	CD 01 01 01 ACACGC9.19 23.20
20.19	16.22 20.20 19.2	COUCCOUCCUTTA	GGGTGTTCARTCTACACGC3.19 23.20
20.19	16.22 20.20 19.2	CGGCGGCCCTTA	GGGTGTTCAATCTACACGC9.19 23.20
20.15	10 21 20.20 10 1	CGGCGGCCCTTA	GGGTGTTCAATCTACACGC3.20 23.22
21.19	10.21 20.20 19.1	- CGGCGGCCCTTA	CGGTGTTCAATCTACACGC.9.20 22.19
21.19	19.21 20.20 20.1	CGGCGGCCCTTA	GGGTGTTCAATCTACACGC9.20 22.19
21.19	18.24 20.20 19.1	18-SCGGCGGCCCTTA	GGGTGTTCAATCTACACGC9.19 22.19
21.19	18.24 20.20 19.1	19-3CGGCGGCCCTTA	CGGTGTTCAATCTACACGCJ.19 19.19
21.20	18.24 20.20 18.2	19-LOGGCGGCCCTTA	GGGTGTTCAATCTACACGC9.19 18.20
21.20	18.24 20.20 16.2	2 20 ACGGCGGCCCTTA	GGGTGTTCAATCTACACGC, 19 19.20
21.20	21.24 20.20 16.2		CGGTGTTCAATCTACACGC. 20 19.20
21.20	21.24 20.20 15.2	2 19.17	21.20 18.24 20.20 16.22 20.20
			21.20 21.24 20.20 16.22 19.19
			21.20 21.24 20.20 15.22 19.19

Combining data for phylogenetic inferences Vote methods Veto methods

Reconstruction of phylogenies

• INPUT: (different) source datasets

• OUTPUT: A large phylogeny

Combining data for phylogenetic inferences Vote methods Veto methods

Reconstruction of phylogenies for multiple datasets

• Supermatrix approach: assembling datasets

Combining data for phylogenetic inferences Vote methods Veto methods

Reconstruction of phylogenies for multiple datasets

• Supermatrix approach: assembling datasets

• Supertree approach: assembling trees

Combining data for phylogenetic inferences Vote methods Veto methods

Interest of supertrees

Supertrees are useful for:

- Combining heterogeneous data
- Obtaining a phylogeny using several genes:
 - Avoids having to deal with too much missing data
 - Evolutionary models adapted for each gene sequence
- Pointing out problematic areas of the phylogeny
 - agreement and disagreement among input trees.
 - measuring taxon overlap

VETO methods with desirable proprieties STC preprocess Vote methods Veto methods Veto methods Veto methods

Supertree methods can be classified into two categories, depending on the way they deal with incongruent data:

 Introduction
 Combining data for phylogenetic inferences

 VETO methods with desirable proprieties
 Vote methods

 STC preprocess
 Veto methods

Supertree methods VOTE vs VETO methods

Supertree methods can be classified into two categories, depending on the way they deal with incongruent data:

- Vote methods resolve conflicts, opting for the resolution that maximizes their optimization criteria.
- worrying feature: this approach can lead to propose clades contradicting all source trees.

Introduction	Combining data for phylogenetic inferences
VETO methods with desirable proprieties	Vote methods
STC preprocess	Veto methods
Supertree methods VOTE vs VETO methods	

- Veto methods do not allow the resulting supertree to contain clades that a source tree would vote against.
 - pruning some taxa:
 OR
 - proposing multifurcations
- worrying feature: this approach can lead to propose unresolved supertrees.

Physic PhySIC_IST

PhySIC A VETO method with desirable proprieties

• The resulting supertree does not contain relationships contradicting the source trees (non-contradiction property, denoted by PC);

Physic PhySIC_IST

PhySIC A VETO method with desirable proprieties

 The resulting supertree does not contain relationships contradicting the source trees (non-contradiction property, denoted by PC);

Physic PhySIC_IST

PhySIC A VETO method with desirable proprieties

• The resulting supertree only contains relationships that are present in a source tree or collectively induced by several source trees (induction property, denoted by PI).

Physic PhySIC_IST

PhySIC A VETO method with desirable proprieties

• The resulting supertree only contains relationships that are present in a source tree or collectively induced by several source trees (induction property, denoted by PI).

VETO methods with desirable proprieties STC preprocess PhySIC_JST PhySIC PhySIC

• BUT, when T contains numerous contradictions or small overlap, the supertrees built with *PhySIC* can be highly unresolved.

Physic PhySIC_IST

An improved version of *PhySIC*

• To cope with this, we propose a second method that:

Physic PhySIC_IST

An improved version of *PhySIC*

- To cope with this, we propose a second method that:
 - maximizes the information contained in the produced supertree;

Physic PhySIC_IST

An improved version of *PhySIC*

- To cope with this, we propose a second method that:
 - maximizes the information contained in the produced supertree;
 - returns a supertree T that still respects PC and PI by:

Physic PhySIC_IST

An improved version of *PhySIC*

- To cope with this, we propose a second method that:
 - maximizes the information contained in the produced supertree;
 - returns a supertree T that still respects PC and PI by:
 - ★ allowing multifurcations;

Physic PhySIC_IST

An improved version of *PhySIC*

- To cope with this, we propose a second method that:
 - maximizes the information contained in the produced supertree;
 - returns a supertree T that still respects PC and PI by:
 - allowing multifurcations;

AND

pruning rogue taxa:

Physic PhySIC_IST

An improved version of *PhySIC*

- To cope with this, we propose a second method that:
 - maximizes the information contained in the produced supertree;
 - returns a supertree T that still respects PC and PI by:
 - ★ allowing multifurcations;

AND

★ pruning rogue taxa:

Physic PhySIC_IST

An improved version of *PhySIC*

- To cope with this, we propose a second method that:
 - maximizes the information contained in the produced supertree;
 - returns a supertree T that still respects PC and PI by:
 - ★ allowing multifurcations;

AND

★ pruning rogue taxa:

Physic PhySIC_IST

PhySIC_IST Outline of PhySIC_IST

• PhySIC_IST (PHYlogenetic Signal with Induction and non-Contradiction Inserting a Subset of Taxa) is an algorithm that operates successive insertions of taxa on a backbone tree.

Physic PhySIC_IST

PhySIC_IST Outline of PhySIC_IST

• PhySIC_IST (PHYlogenetic Signal with Induction and non-Contradiction Inserting a Subset of Taxa) is an algorithm that operates successive insertions of taxa on a backbone tree.

the order of the insertions has to be chosen carefully!

VETO methods with desirable proprieties STC preprocess
Physic_JST
PhySIC_IST
Outline of PhySIC_IST

- We order taxa in decreasing priority order
- The first taxa to be inserted are those present in as much source trees as possible and involved in as few contradictions as possible
- We build the backbone tree

• Within which region of the backbone tree can a taxon *s* be inserted without contradicting *T*₁ and *T*₂?

Physic PhySIC_IST

PhySIC_IST Outline of PhySIC_IST

• one best supported position (PI) and all trees agree (PC)

Physic PhySIC_IST

PhySIC_IST Outline of PhySIC_IST

- one best supported position (PI) and all trees agree (PC)
- more than one best supported position and/not all trees agree (PI and PC???)

Physic PhySIC_IST

PhySIC_IST Outline of PhySIC_IST

- one best supported position (PI) and all trees agree (PC)
- more than one best supported position and/not all trees agree (PI and PC???)

Physic PhySIC_IST

PhySIC_IST Outline of PhySIC_IST

- one best supported position (PI) and all trees agree (PC)
- more than one best supported position and/not all trees agree (PI and PC???)

• We need to evaluate the amount of information of a tree.

- We need to evaluate the amount of information of a tree.
- We use a variant of the CIC criterion (Thorley, Wilkinson, Charleston 1998) that also takes into account missing taxa and we define it as:

VETO methods with desirable proprieties STC preprocess PhySIC_IST PhySIC_IST

- We need to evaluate the amount of information of a tree.
- We use a variant of the CIC criterion (Thorley, Wilkinson, Charleston 1998) that also takes into account missing taxa and we define it as:

 $CIC(T, n) = - \lg \frac{\text{number of permitted binary trees with } n \text{ taxa}}{\text{number of possible binary trees with } n \text{ taxa}}$

Physic PhySIC_IST

Physic PhySIC_IST

Large-scale simulations Average CIC values

$\mathsf{MRP} \ \triangle, \ \mathsf{PhySIC} \ \bigcirc, \ \mathsf{PhySIC_IST} \ \Box$

Celine Scornavacca

Physic PhySIC_IST

Large-scale simulations Average percentage of type I error

$\mathsf{MRP} \ \triangle, \ \mathsf{PhySIC} \ \bigcirc, \ \mathsf{PhySIC_IST} \ \Box$

Celine Scornavacca

The improvement of *PhySIC_IST* on *PhySIC*

The improvement of *PhySIC_IST* on *PhySIC* is a consequence of three fundamental differences between them:

- the new version operates successive insertions of taxa on a backbone and is not based on a revised version of the Build algorithm (unlike *PhySIC*)
- the two methods do not have the same optimization criterion
 - PhySIC => nb of triplets
 - PhySIC_IST => CIC
- PhySIC_IST can propose non-plenary supertrees

1 Introduction

- Combining data for phylogenetic inferences
- Vote methods
- Veto methods

2 VETO methods with desirable proprieties

- Physic
- PhySIC_IST

3 STC preprocess

Limits of veto methods

 As the amount of available information continues to increase, the number of conflicts between source trees increases
 MRP △, PhySIC ○, PhySIC_IST □

Vote VS veto methods?

Vote VS veto methods?

Vote VS veto methods?

• IDEA: flexible liberal(voting) preprocessing of the input trees before a veto approach.

Source Tree Correction (STC) preprocess

We want to drop the statistically less supported alterative(s), if any exists.

STC preprocess

• After that, the STC preprocess modifies the source trees (*PhySIC_IST*), forcing them not to contain the dropped resolutions.

STC preprocess

- After that, the STC preprocess modifies the source trees (*PhySIC_IST*), forcing them not to contain the dropped resolutions.
- Each modified tree may contain either new multifurcations, or lack some of its former taxa.

STC preprocess

- After that, the STC preprocess modifies the source trees (*PhySIC_IST*), forcing them not to contain the dropped resolutions.
- Each modified tree may contain either new multifurcations, or lack some of its former taxa.
- A threshold α is chosen by the user.

Large-scale simulations (lpha= 0.05) Average *CIC* values

 $\mathsf{MRP} \ \triangle, \ \mathsf{PhySIC} \ \bigcirc, \ \mathsf{PhySIC_IST} \ \Box, \ \mathsf{STC+PhySIC} \ \bullet \ \mathsf{and} \ \mathsf{STC+PhySIC_IST} \ \blacksquare$

Celine Scornavacca

Large-scale simulations ($\alpha = 0.05$) Average percentage of type I error

 $\mathsf{MRP} \ \triangle, \ \mathsf{PhySIC} \ \bigcirc, \ \mathsf{PhySIC_IST} \ \Box, \ \mathsf{STC+PhySIC} \ \bullet \ \mathsf{and} \ \mathsf{STC+PhySIC_IST} \ \blacksquare$

Celine Scornavacca

PhySIC_IST

26/29

Conclusions

- PhySIC_IST: new version of PhySIC
 - more informative but still reliable supertrees
- STC: a statistical preprocess of the source trees to detect and correct artifactual positions of taxa
- This approach has the advantage of separating the liberal resolution of conflicts in the data from the assemblage of the supertree.
 - feedback of the source trees
- Test STC+ PhySIC_IST on biological datasets

Conclusions

http://www.atgc-montpellier.fr/physic_ist/

Thanks

• Olivier Gascuel and Vincent Lefort

• Céline Brochier, Vincent Daubin and Férédric Delsuc