
Estimating the contribution of sequence context to nucleotide substitution rate heterogeneity

Helen Lindsay and Gavin A. Huttley

The Gamma Model

- Yang (1993) used a gamma distribution to model rate variation in α- and βglobin genes
- The gamma distribution is often approximated by four equi-probable bins

Gamma rate variation

Improvements on the Gamma model

- Allow sites to change rates
- Allow clustering of rates
- Consider other/multiple rate distributions

What causes substitution rate variation?

What causes substitution rate variation?

Natural selection

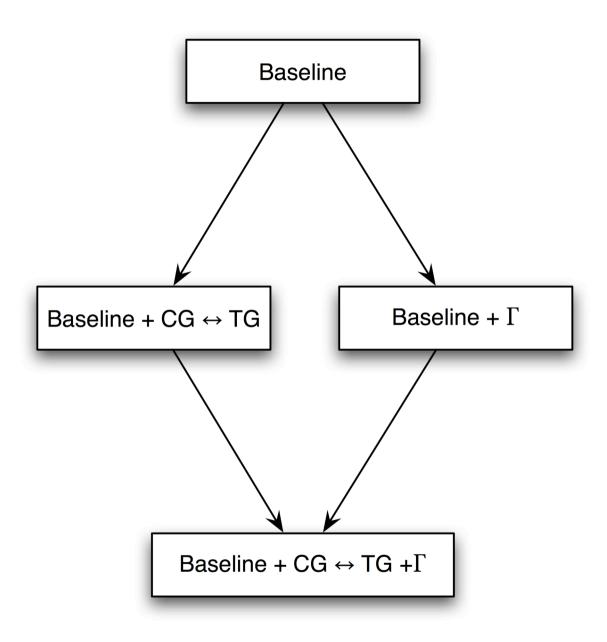
What causes substitution rate variation?

Natural selection

Differential repair

Nucleotide properties

What causes substitution rate variation?


Natural selection

Differential repair

$AG \longrightarrow CG \longrightarrow TG$ (slow) (fast)

Data

- 470 alignments, each 50 000 nucleotides long, of introns from human, chimpanzee and macaque oneto-one orthologs.
- Sampled from Ensembl version 49.

The baseline model

 $q_{i_1i_2,j_1j_2} = \begin{cases} 0 & \text{more than one nucleotide difference} \\ \pi_{j_x}r_{A\leftrightarrow C} & i_1i_2 \text{ and } j_1j_2 \text{ differ by } A \leftrightarrow C \\ \pi_{j_x}r_{A\leftrightarrow G} & i_1i_2 \text{ and } j_1j_2 \text{ differ by } A \leftrightarrow G \\ \pi_{j_x}r_{A\leftrightarrow T} & i_1i_2 \text{ and } j_1j_2 \text{ differ by } A \leftrightarrow T \\ \pi_{j_x}r_{C\leftrightarrow G} & i_1i_2 \text{ and } j_1j_2 \text{ differ by } C \leftrightarrow G \\ \pi_{j_x}r_{C\leftrightarrow T} & i_1i_2 \text{ and } j_1j_2 \text{ differ by } C \leftrightarrow T \end{cases}$

where x is the index at which i_1i_2 and j_1j_2 differ

The CpG model

$$q_{i_{1}i_{2},j_{1}j_{2}} = \begin{cases} 0 & \text{more than one nucleotide difference} \\ \pi_{j_{x}}r_{A\leftrightarrow C} & i_{1}i_{2} \text{ and } j_{1}j_{2} \text{ differ by } A \leftrightarrow C \\ \pi_{j_{x}}r_{A\leftrightarrow G} & i_{1}i_{2} \text{ and } j_{1}j_{2} \text{ differ by } A \leftrightarrow G \\ \pi_{j_{x}}r_{A\leftrightarrow T} & i_{1}i_{2} \text{ and } j_{1}j_{2} \text{ differ by } A \leftrightarrow T \\ \pi_{j_{x}}r_{C\leftrightarrow G} & i_{1}i_{2} \text{ and } j_{1}j_{2} \text{ differ by } C \leftrightarrow G \\ \pi_{j_{x}}r_{C\leftrightarrow T} & i_{1}i_{2} \text{ and } j_{1}j_{2} \text{ differ by } C \leftrightarrow T, \{i, j\} \neq \{\text{CpG}, \text{TpG}\} \\ \pi_{j_{x}}r_{C\leftrightarrow T}r_{CG\leftrightarrow TG} & i_{1}i_{2} \text{ and } j_{1}j_{2} \text{ differ by } C \leftrightarrow T, \{i, j\} = \{\text{CpG}, \text{TpG}\} \end{cases}$$

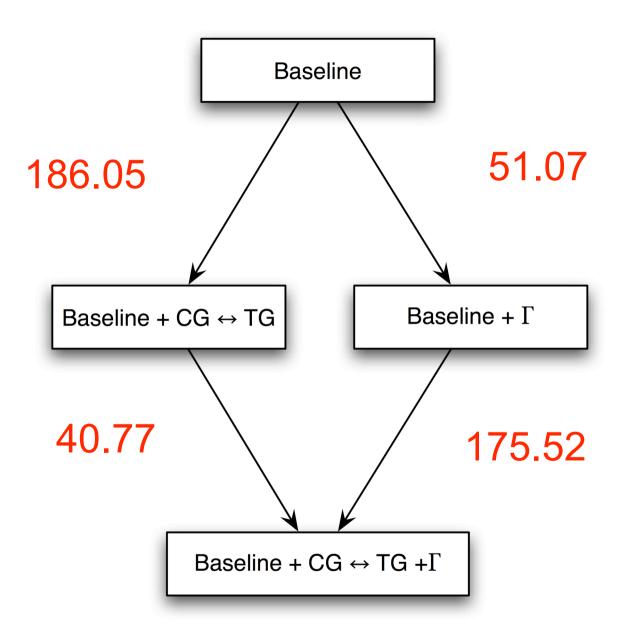
where x is the index at which i_1i_2 and j_1j_2 differ

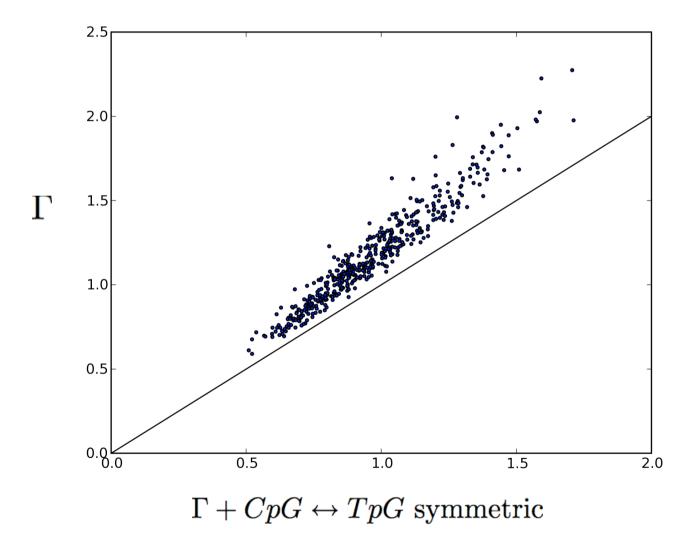
The Gamma Model

 $q_{i_1i_2,j_1j_2} = \begin{cases} 0 & \text{more than one nucleotide difference} \\ \pi_{j_x} r_{A \leftrightarrow C} \Gamma_n & i_1i_2 \text{ and } j_1j_2 \text{ differ by } A \leftrightarrow C \\ \pi_{j_x} r_{A \leftrightarrow G} \Gamma_n & i_1i_2 \text{ and } j_1j_2 \text{ differ by } A \leftrightarrow G \\ \pi_{j_x} r_{A \leftrightarrow T} \Gamma_n & i_1i_2 \text{ and } j_1j_2 \text{ differ by } A \leftrightarrow T \\ \pi_{j_x} r_{C \leftrightarrow G} \Gamma_n & i_1i_2 \text{ and } j_1j_2 \text{ differ by } C \leftrightarrow G \\ \pi_{j_x} r_{C \leftrightarrow T} \Gamma_n & i_1i_2 \text{ and } j_1j_2 \text{ differ by } C \leftrightarrow T \end{cases}$

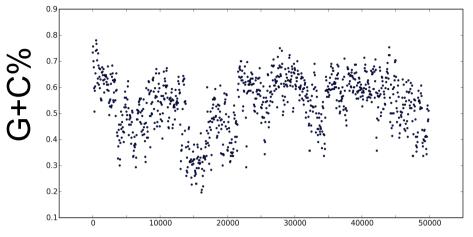
where x is the index at which i_1i_2 and j_1j_2 differ and Γ_n is the rate category of site n.

Gamma vs Dinucleotide models

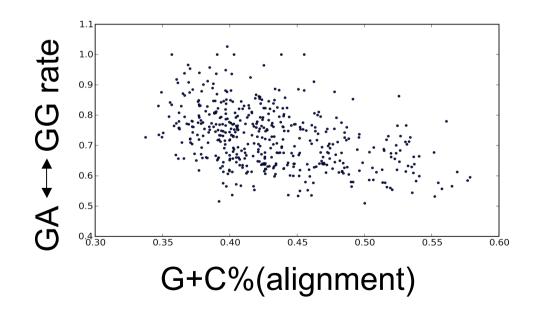

Parameter (P)	${ m LR}~({baseline+P\over baseline})$	${ m LR}~({baseline+P+\Gamma\over baseline+\Gamma})$	${ m LR}~({baseline+P+\Gamma\over baseline+P})$
baseline	-	-	51.07
$TG \leftrightarrow CG$ or $CA \leftrightarrow CG$	186.05	175.52	40.77
$TG \leftrightarrow CG$	89.53	84.79	46.07
$CA \leftrightarrow CG$	84.74	80.08	45.86
$AT \leftrightarrow GT$	28.83	28.01	50.09
$AA \leftrightarrow GA$	25.51	24.66	50.05
$TT \leftrightarrow CT$	23.24	22.48	50.23
$AA \leftrightarrow AG$	19.22	18.31	50.20
$TT \leftrightarrow TC$	15.41	14.63	50.22
$GA \leftrightarrow GG$	14.18	13.53	50.44
$TT \leftrightarrow CC$	10.80	10.43	50.78
$AT \leftrightarrow AC$	9.85	9.33	50.44


Gamma vs Dinucleotide models

Parameter (P)	${ m LR}~({{baseline+P}\over{baseline}})$	${ m LR}~({baseline+P+\Gamma\over baseline+\Gamma})$	$\operatorname{LR}\left(rac{baseline+P+\Gamma}{baseline+P} ight)$
baseline		-	51.07
$TG \leftrightarrow CG$ or $CA \leftrightarrow CG$	186.05	175.52	40.77
$TG \leftrightarrow CG$	89.53	84.79	46.07
$CA \leftrightarrow CG$	84.74	80.08	45.86
$AT \leftrightarrow GT$	28.83	28.01	50.09
$AA \leftrightarrow GA$	25.51	24.66	50.05
$TT \leftrightarrow CT$	23.24	22.48	50.23
$AA \leftrightarrow AG$	19.22	18.31	50.20
$TT \leftrightarrow TC$	15.41	14.63	50.22
$GA \leftrightarrow GG$	14.18	13.53	50.44
$TT \leftrightarrow CC$	10.80	10.43	50.78
$AT \leftrightarrow AC$	9.85	9.33	50.44


Gamma vs Dinucleotide models

Parameter (P)	${ m LR}~({baseline+P\over baseline})$	${ m LR}~({baseline+P+\Gamma\over baseline+\Gamma})$	$\mathrm{LR}~(rac{baseline+P+\Gamma}{baseline+P})$
baseline	-	-	51.07
$TG \leftrightarrow CG$ or $CA \leftrightarrow CG$	186.05	175.52	40.77
$TG \leftrightarrow CG$	89.53	84.79	46.07
$CA \leftrightarrow CG$	84.74	80.08	45.86
$AT \leftrightarrow GT$	28.83	28.01	50.09
$AA \leftrightarrow GA$	25.51	24.66	50.05
$TT \leftrightarrow CT$	23.24	22.48	50.23
$AA \leftrightarrow AG$	19.22	18.31	50.20
$TT \leftrightarrow TC$	15.41	14.63	50.22
$GA \leftrightarrow GG$	14.18	13.53	50.44
$TT \leftrightarrow CC$	10.80	10.43	50.78
$AT \leftrightarrow AC$	9.85	9.33	50.44



- Independent sites
- Reversible
- Compositional variance

Alignment position (nucleotides)

Advantages of dinucleotide models

- Less likelihood computation
- Equivalently parameter-rich
- No assumed distribution of rate variation
- Can incorporate known mutation biases, for example deamination of methylated cytosine.
- Smaller alphabet than amino acids

Acknowledgements

Australian National University

- Gavin Huttley
- Hua Ying

University of Singapore

• Von Bing Yap