

Quantifying the Equilibrium and Irreversibility Properties of the Nucleotide Substitution Process

Federico Squartini and Peter. F. Arndt

Max Planck Institute for Molecular Genetics

We will talk about disequilibrium and irreversibility...

Markovian Sequence Evolution

Nucleotide substitution models: i.i.d Markov models of evolution, i.e. a master equation:

$$\frac{\partial}{\partial t}\rho_{\beta}(t) = \sum_{\alpha} Q_{\beta\alpha}\rho_{\alpha}(t) \qquad \alpha, \beta \in \{\mathbf{A}, \mathbf{G}, \mathbf{C}, \mathbf{T}\}$$

Markovian Sequence Evolution

Nucleotide substitution models: i.i.d Markov models of evolution, i.e. a master equation:

$$\begin{aligned} \frac{\partial}{\partial t}\rho_{\beta}(t) &= \sum_{\alpha} Q_{\beta\alpha}\rho_{\alpha}(t) & \alpha, \beta \in \{A, G, C, T\} \\ A & C & G & T \\ Q &= \begin{pmatrix} A & C & G & T \\ & & & \\ C & & & & \\ G & & & & \\ C & & & & \\ Q_{CA} & \cdot & & & \\ Q_{CG} & Q_{GC} & Q_{GT} \\ & & & & \\ Q_{TA} & & & & \\ Q_{TC} & & & & \\ \end{pmatrix}. \end{aligned}$$

Markovian Sequence Evolution

Nucleotide substitution models: i.i.d Markov models of evolution, i.e. a master equation:

$$\frac{\partial}{\partial t}\rho_{\beta}(t) = \sum_{\alpha} Q_{\beta\alpha}\rho_{\alpha}(t) \qquad \alpha, \beta \in \{\mathbf{A}, \mathbf{G}, \mathbf{C}, \mathbf{T}\}$$

The solution to this equation, with initial condition ρ_0 , is:

$$\rho_{\beta}(t) = \left[e^{Qt}\rho_{0}\right]_{\beta}$$
$$P(t) = e^{Qt}$$

Such a model is not complete...

Specifying an evolutionary mode \Rightarrow postulating a form for the rate matrix:

$$Q = \begin{pmatrix} A & C & G & T \\ & & Q_{AC} & Q_{AG} & Q_{AT} \\ & & Q_{CA} & \cdot & Q_{CG} & Q_{CT} \\ & & & Q_{GA} & Q_{GC} & \cdot & Q_{GT} \\ & & & Q_{TA} & Q_{TC} & Q_{TG} & \cdot \end{pmatrix}$$

Specifying an evolutionary mode \Rightarrow postulating a form for the rate matrix:

$$Q = \begin{pmatrix} A & C & G & T \\ & & \\ C & & \\ G & & \\ T & & \\$$

Widely used models:

$$Q = \begin{array}{cccc} T & C & A & G \\ T & \mu & \mu & \mu \\ C & \mu & \mu & \mu \\ \mu & \mu & \cdot & \mu \\ \mu & \mu & \mu & \cdot \end{array}$$

Jukes-Cantor

Specifying an evolutionary mode \Rightarrow postulating a form for the rate matrix:

$$Q = \begin{pmatrix} A & C & G & T \\ \\ A & Q_{AC} & Q_{AG} & Q_{AT} \\ Q_{CA} & \cdot & Q_{CG} & Q_{CT} \\ Q_{GA} & Q_{GC} & \cdot & Q_{GT} \\ Q_{TA} & Q_{TC} & Q_{TG} & \cdot \end{pmatrix}$$

Widely used models:

$$Q = \begin{array}{cccc} T & C & A & G \\ T & & \alpha & \beta & \beta \\ C & & \alpha & \beta & \beta \\ \beta & \beta & \cdot & \alpha \\ \beta & \beta & \alpha & \cdot \end{array}$$

Kimura

Specifying an evolutionary mode \Rightarrow postulating a form for the rate matrix:

$$Q = \begin{pmatrix} A & C & G & T \\ \\ C & Q_{AC} & Q_{AG} & Q_{AT} \\ Q_{CA} & \cdot & Q_{CG} & Q_{CT} \\ Q_{GA} & Q_{GC} & \cdot & Q_{GT} \\ Q_{TA} & Q_{TC} & Q_{TG} & \cdot \end{pmatrix}$$

Widely used models:

$$Q = \begin{bmatrix} T & C & A & G \\ T & \pi_T & \pi_T & \pi_T \\ C & \pi_C & & \pi_C & \pi_C \\ \pi_A & \pi_A & & \pi_A \\ \pi_G & \pi_G & \pi_G & \cdot \end{bmatrix}$$

Felsenstein

Specifying an evolutionary mode \Rightarrow postulating a form for the rate matrix:

$$Q = \begin{pmatrix} A & C & G & T \\ \\ C & Q_{AC} & Q_{AG} & Q_{AT} \\ Q_{CA} & \cdot & Q_{CG} & Q_{CT} \\ Q_{GA} & Q_{GC} & \cdot & Q_{GT} \\ Q_{TA} & Q_{TC} & Q_{TG} & \cdot \end{pmatrix}$$

Widely used models:

$$Q = \begin{bmatrix} \mathbf{T} & \mathbf{C} & \mathbf{A} & \mathbf{G} \\ \mathbf{T} & \mathbf{K} & \pi_{\mathbf{T}} & \pi_{\mathbf{T}} & \pi_{\mathbf{T}} \\ \mathbf{C} & \mathbf{K} & \pi_{\mathbf{C}} & \mathbf{\pi}_{\mathbf{T}} & \pi_{\mathbf{T}} \\ k & \pi_{\mathbf{C}} & \mathbf{K} & \pi_{\mathbf{C}} & \pi_{\mathbf{C}} \\ \pi_{\mathbf{A}} & \pi_{\mathbf{A}} & \mathbf{K} & \mathbf{K} \\ \pi_{\mathbf{G}} & \pi_{\mathbf{G}} & k & \mathbf{K} \\ \end{bmatrix}$$

Hasegawa-Kishino-Yano

Specifying an evolutionary mode \Rightarrow postulating a form for the rate matrix:

$$Q = \begin{pmatrix} A & C & G & T \\ \\ C & Q_{AC} & Q_{AG} & Q_{AT} \\ Q_{CA} & \cdot & Q_{CG} & Q_{CT} \\ Q_{GA} & Q_{GC} & \cdot & Q_{GT} \\ Q_{TA} & Q_{TC} & Q_{TG} & \cdot \end{pmatrix}.$$

Widely used models:

$$Q = \begin{bmatrix} \mathbf{T} & \mathbf{C} & \mathbf{A} & \mathbf{G} \\ \mathbf{T} & \mathbf{K}_{1} \pi_{\mathbf{T}} & \pi_{\mathbf{T}} & \pi_{\mathbf{T}} \\ \mathbf{C} & \mathbf{k}_{1} \pi_{\mathbf{C}} & \cdot & \pi_{\mathbf{C}} & \pi_{\mathbf{C}} \\ \mathbf{k}_{1} \pi_{\mathbf{C}} & \cdot & \pi_{\mathbf{C}} & \pi_{\mathbf{C}} \\ \pi_{\mathbf{A}} & \pi_{\mathbf{A}} & \cdot & k_{2} \pi_{\mathbf{A}} \\ \pi_{\mathbf{G}} & \pi_{\mathbf{G}} & k_{2} \pi_{\mathbf{G}} & \cdot \end{bmatrix}$$

Tamura-Nei

Two Evolutionary Models

All preceding models are nested into the following:

$$Q_{\text{GTR}} = \begin{array}{cccc} A & G & T & C \\ A & \alpha \pi_{\text{A}} & b\pi_{\text{A}} & c\pi_{\text{A}} \\ G & \alpha \pi_{\text{G}} & \cdot & d\pi_{\text{G}} & e\pi_{\text{G}} \\ \pi_{\text{G}} & \cdot & d\pi_{\text{G}} & e\pi_{\text{G}} \\ b\pi_{\text{T}} & d\pi_{\text{T}} & \cdot & f\pi_{\text{T}} \\ c\pi_{\text{C}} & e\pi_{\text{C}} & f\pi_{\text{C}} & \cdot \end{array} \right)$$

A possible alternative:

$$Q_{\text{RCS}} = \begin{array}{ccc} A & C & G & T \\ A & r_{\text{AC}} & r_{\text{AG}} & r_{\text{AT}} \\ C & r_{\text{GT}} & r_{\text{AC}} & r_{\text{AG}} & r_{\text{AT}} \\ r_{\text{GT}} & r_{\text{CG}} & r_{\text{CT}} \\ r_{\text{CT}} & r_{\text{CG}} & \cdot & r_{\text{GT}} \\ r_{\text{AT}} & r_{\text{AG}} & r_{\text{AC}} & \cdot \end{array} \right).$$

Two Evolutionary Models - 2

Two Evolutionary Models - 2

Two Evolutionary Models - 2

Estimating Parameters

For a given triple alignment $\vec{\alpha}^i$ of nucleotide sequences from 3 species, the likelihood of the alignment is:

$$L = \prod_{k=1}^{N} \sum_{\alpha^{0}, \alpha^{4} \in \{\mathbf{A}, \mathbf{C}, \mathbf{G}, \mathbf{T}\}} \rho_{\alpha^{0}}^{0} \ [P^{30}]_{\alpha_{k}^{3} \alpha^{0}} \ [P^{40}]_{\alpha^{4} \alpha^{0}} \ [P^{24}]_{\alpha_{k}^{2} \alpha^{4}} \ [P^{14}]_{\alpha_{k}^{1} \alpha^{4}}$$

The vector ρ^0 represents the ancestral nucleotide distribution at the root node.

Equilibrium

The stationarity index

The equilibrium distribution of a Markov process is defined by:

 $Q\pi=0$

Just taking the difference between present and stationary distribution:

$$\Delta_{\alpha} = \rho_{\alpha} - \pi_{\alpha}$$

And rearrange the terms:

The STI - Reverse complement symmetry

Substituting the equilibrium distribution:

$$(1 - \pi_{CG}, \pi_{CG}, \pi_{CG}, 1 - \pi_{CG})$$

Where:

$$\pi_{\rm CG} = \frac{r_{\rm GT} + r_{\rm CT}}{r_{\rm AC} + r_{\rm AG} + r_{\rm GT} + r_{\rm CT}}$$

For the reverse complement symmetric model the STI has a simple form:

$$\begin{aligned} \mathbf{STI}_1 &= \rho_{\mathbf{GC}} - \pi_{\mathbf{GC}} \\ \mathbf{STI}_2 &= (\rho_{\mathbf{A}} - \rho_{\mathbf{T}}) \\ \mathbf{STI}_3 &= (\rho_{\mathbf{C}} - \rho_{\mathbf{G}}). \end{aligned}$$

Analysis of the Fly Genome

Results about the time reversal properties for the evolution of the fly genome:

- \blacktriangleright Alignment of 3 Drosophilas: sechellia, simulans and melanogaster
- Removed annotated coding regions
- Rates have been estimated using a maximum likelihood algorithm
- Sliding window analysis, 50kbp length
- For each window we have calculated the stationarity index in the simulans lineage

Analysis of the Fly Genome - Stationarity

Reversibility

Time Reversibility: the Detailed Balance

Time reversibility is usually defined in terms of the **detailed balance conditions**:

$$Q_{ji}\pi_i = Q_{ij}\pi_j$$

From which one can derive the General Time Reversible (GTR) Parameterization:

$$Q_{\text{GTR}} = \begin{array}{cccc} A & G & T & C \\ A & \alpha \pi_{\text{A}} & b\pi_{\text{A}} & c\pi_{\text{A}} \\ G & \alpha \pi_{\text{G}} & \cdot & d\pi_{\text{G}} & e\pi_{\text{G}} \\ a\pi_{\text{G}} & \cdot & d\pi_{\text{G}} & e\pi_{\text{G}} \\ b\pi_{\text{T}} & d\pi_{\text{T}} & \cdot & f\pi_{\text{T}} \\ c\pi_{\text{C}} & e\pi_{\text{C}} & f\pi_{\text{C}} & \cdot \end{array} \right)$$

Time reversibility: Kolmogorov Cycle Conditions

A lesser known formulation of time reversibility:

Definition. A Markov process is said to satisfy the Kolmogorov cycle conditions if the following equality on generators holds:

$$Q_{i_{1}i_{n}}Q_{i_{n}i_{n-1}}\dots Q_{i_{2}i_{1}} = Q_{i_{1}i_{2}}\dots Q_{i_{n-1}i_{n}}Q_{i_{n}i_{1}} \qquad \forall i_{1},\dots,i_{n} \in \mathcal{C}$$
(-2)

Time reversibility: Kolmogorov Cycle Conditions - 2

Moreover the following proposition (relevant when analyzing biological sequences) holds:

Proposition. If the coefficients of the rate matrix are strictly positive and if Kolmogorov conditions hold for three cycles then they hold for cycles of arbitrary length.

Proposition. Given a four states Markov process with strictly positive rate matrix coefficients, if the conditions:

$$Q_{\alpha\delta}Q_{\delta\gamma}Q_{\gamma\beta}Q_{\beta\alpha} = Q_{\alpha\beta}Q_{\beta\gamma}Q_{\gamma\delta}Q_{\delta\alpha}, \qquad (-2)$$

hold for $(\alpha, \beta, \gamma, \delta)$ equal to (A, G, C, T), (A, G, T, C) and (A, C, G, T)then Kolmogorov conditions hold for 3-cycles.

Ans lastly:

Proposition. If the coefficients of the rate matrix are strictly positive and if Kolmogorov conditions hold for four cycles then they hold for cycles of arbitrary length.

IRI - The general iid case

To check reversibility for nucleotide sequences we need to check the following conditions on four cycles:

$$\begin{split} & \mathsf{IRI}_1 := \frac{Q_{\mathsf{A}\mathsf{G}}Q_{\mathsf{G}\mathsf{C}}Q_{\mathsf{C}\mathsf{T}}Q_{\mathsf{T}\mathsf{A}} - Q_{\mathsf{A}\mathsf{T}}Q_{\mathsf{T}\mathsf{C}}Q_{\mathsf{C}\mathsf{G}}Q_{\mathsf{G}\mathsf{A}}}{Q_{\mathsf{A}\mathsf{G}}Q_{\mathsf{G}\mathsf{C}}Q_{\mathsf{C}\mathsf{T}}Q_{\mathsf{T}\mathsf{A}} + Q_{\mathsf{A}\mathsf{T}}Q_{\mathsf{T}\mathsf{C}}Q_{\mathsf{C}\mathsf{G}}Q_{\mathsf{G}\mathsf{A}}} \\ & \mathsf{IRI}_2 := \frac{Q_{\mathsf{A}\mathsf{C}}Q_{\mathsf{C}\mathsf{T}}Q_{\mathsf{T}\mathsf{G}}Q_{\mathsf{G}\mathsf{A}} - Q_{\mathsf{A}\mathsf{G}}Q_{\mathsf{G}\mathsf{T}}Q_{\mathsf{T}\mathsf{C}}Q_{\mathsf{C}\mathsf{A}}}{Q_{\mathsf{A}\mathsf{C}}Q_{\mathsf{C}\mathsf{T}}Q_{\mathsf{T}\mathsf{G}}Q_{\mathsf{G}\mathsf{A}} + Q_{\mathsf{A}\mathsf{G}}Q_{\mathsf{G}\mathsf{T}}Q_{\mathsf{T}\mathsf{C}}Q_{\mathsf{C}\mathsf{A}}} \\ & \mathsf{IRI}_3 := \frac{Q_{\mathsf{A}\mathsf{C}}Q_{\mathsf{C}\mathsf{G}}Q_{\mathsf{G}\mathsf{T}}Q_{\mathsf{T}\mathsf{A}} - Q_{\mathsf{A}\mathsf{T}}Q_{\mathsf{T}\mathsf{G}}Q_{\mathsf{G}\mathsf{C}}Q_{\mathsf{C}\mathsf{A}}}{Q_{\mathsf{A}\mathsf{C}}Q_{\mathsf{C}\mathsf{G}}Q_{\mathsf{G}\mathsf{T}}Q_{\mathsf{T}\mathsf{A}} + Q_{\mathsf{A}\mathsf{T}}Q_{\mathsf{T}\mathsf{G}}Q_{\mathsf{G}\mathsf{C}}Q_{\mathsf{C}\mathsf{A}}} \end{split}$$

Iri for the Reverse Complement Symmetric Model

Out of the previous indices we get a specialized version of the IRI:

$$\begin{split} \text{IRI}_{1} &= \frac{r_{\text{AG}}^{2} r_{\text{GT}}^{2} - r_{\text{AC}}^{2} r_{\text{CT}}^{2}}{r_{\text{AG}}^{2} r_{\text{GT}}^{2} + r_{\text{AC}}^{2} r_{\text{CT}}^{2}}\\ \text{IRI}_{2} &= 0\\ \text{IRI}_{3} &= 0 \end{split}$$

The IRI₁ will thus be comprised in the interval [-1, 1] and if the system under study evolves time symmetrically:

 $\mathsf{IRI}_1 = 0$

Irreversibility in the Fly Genome

Plots of the IRI for the Drosophila simulans genome and for the null model:

IRI Quantifying the Equilibrium and Irreversibility Properties of the Nucleotide Substitution Process – p.19

If water is around...

Cytosine can easily decay into Uracil:

If water is around...

Cytosine can easily decay into Uracil:

On the other hand GpC pairs often occur in a methylated form:

The net effect is the decay of CpG pairs into TpG and CpA pairs.

A Nucleotide Substitution Model with CpG Decay

We need to extend the configuration space:

$$\mathcal{C} = s_1 \times \ldots \times s_N \qquad s_i \in \{A, C, G, T\}.$$

We assume the following form for the generator:

$$\mathcal{Q} = \sum_{i=1}^{N} \mathcal{Q}_i + \sum_{i=1}^{N-1} \mathcal{Q}_{i,i+1}^{\texttt{CpG}}.$$

Where:

$$\mathcal{Q}_i = \underbrace{\mathbb{I} \otimes \ldots \otimes \mathbb{I}}_{i-1} \otimes Q \otimes \underbrace{\mathbb{I} \otimes \ldots \otimes \mathbb{I}}_{N-i}.$$

And:

$$\mathcal{Q}_{i,i+1}^{\mathsf{CpG}} = \underbrace{\mathbb{I} \otimes \ldots \otimes \mathbb{I}}_{i-1} \otimes Q^{\mathsf{CpG}} \otimes \underbrace{\mathbb{I} \otimes \ldots \otimes \mathbb{I}}_{N-i-1}.$$

The IRI of a Process with CpG Decay

We get two IRI's in this case:

$$\begin{split} \mathrm{IRI}_{1} &:= \frac{r_{\mathrm{AG}}^{2} r_{\mathrm{GT}}^{2} - r_{\mathrm{AC}}^{2} r_{\mathrm{CT}}^{2}}{r_{\mathrm{AG}}^{2} r_{\mathrm{GT}}^{2} + r_{\mathrm{AC}}^{2} r_{\mathrm{CT}}^{2}} \\ \mathrm{IRI}_{\mathrm{CpG}} &:= \frac{r_{\mathrm{GT}}^{2} (r_{\mathrm{AG}} + r_{\mathrm{CpG}})^{2} - (r_{\mathrm{CT}} + r_{\mathrm{CpG}}^{\mathrm{rev}})^{2} r_{\mathrm{AC}}^{2}}{r_{\mathrm{GT}}^{2} (r_{\mathrm{AG}} + r_{\mathrm{CpG}})^{2} + (r_{\mathrm{CT}} + r_{\mathrm{CpG}}^{\mathrm{rev}})^{2} r_{\mathrm{AC}}^{2}} \end{split}$$

Analysis of the Human Genome

- Alignment of Human, Chimp and Rhesus Macaque genomes
- Rates have been estimated using a maximum likelihood algorithm
- Sliding window analysis, 1 Mbp length
- For each window we have calculated the STIs, IRI_{RC} and IRI_{CpG} in the human lineage

STI Human

IRI Human

Summary

- Commonly used evolutionary models assume equilibrium and reversibility
- We have introduced indices to test for equilibrium (STI) and reversibility(IRI) on each single branch of a given phylogeny
- Analysis in Drosophila and Human show clear violation of the equilibrium/reversibility.
- Further work has to be done to asses how this violations affect specific bioinformatic algorithms.

It's Evolution Baby...

Thank you!