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A bit of history...

e Linus Pauling and Emile Zuckerkandl (1962): “molecular
clock hypothesis”.

e Allan Wilson (1967): molecular dating under the molecular
clock assumption.

e 30 years passed...

e Michael Sanderson (1997) and Jeffrey Thorne (1998):
estimation of evolutionary divergence times without the
restriction of a uniform rate across lineages.
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Molecular clock rate and time estimation
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Beyond the molecular clock

e Local clocks

o Substitution rate is organised into a small number of classes,
o Assign each branch to one of these classes.

e Penalized likelihood
e U(R,T): penalty term for rate changes,
e Maximise log(P(D|R,T)) — AU(R,T).
e Bayesian approaches

o Explicit stochastic models of the evolution of the
substitution rate.
o Rate trajectory is continuous or discrete.
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Models of rate evolution (1/2)

e Log-normal model
o u is the mean of the rate at the nodes that begin and end
the branch (r(0) and r(T)).
o log(r(T)) ~ N(log(r(0)),vT).
o Logarithm of the rate undergoes Brownian motion.
e Correlation of mean rates on adjacent branches.
e Exponential model
o p~ Exp(¢).
e No correlation of mean rates.
o Shape of the distribution does not depend on time duration.
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Models of rate evolution (2/2)
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e Compound Poisson process
Rates change in discrete jumps.
r(t) ~ I'(a, B)
Number of jumps: n(T') ~ Poisson(\T)
Correlation of mean rates across branches: governed by A.
AT large: distribution of mean rate is approximately
Normal.
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Implementation of the compound Poisson process

e “Jump” event: Poisson(AAt)
e Substitution rates: I'(«a, 3)

to to

e MCMC — posterior distribution of A and «
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Advantages and drawbacks

e Log-normal

o Computationally tractable
o Crude (deterministic) description of the mean rates.
o Biologically relevant ?

e Exponential

o Computationally tractable.

o Distribution of mean substitution rate does not depend on
time duration.

e No correlation of mean rates across branches.

e Compound Poisson

o Description of rate changes plausible from a biological
perspective.

e Elegant way to account for correlation of mean rates across
branches.

e No analytical solution.
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Outline
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First question
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ri ~I'(a, B). Hence, E(r;) = af, V(r;) = a2
n ~ Poisson(\T).
= > kir;, where k; = %.

| What is the distribution of 1 ?

Work out the distribution of u for a given value of n.

p= > o kir; is well approximated by a Gamma
distribution.
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One jump
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n > 1 jumps
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e Distribution of kg ?

Ae™ 5 (AT — )yt AT—2)

Plto=zln=y) = (NT)ve= 2Ty

- Yp_ w1
= Ty (T —z)¥ .
o After little algebra...
E(lﬂo) = %4.17
B(k) =ty
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n > 1 jumps
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o B(un) = E(ko)E(ro) + B(1 = ko) E(ptn—1) — [ B(tn) = 03]
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n > 1 jumps
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e The variance is a bit more challenging but can be done.

_ 2032 +n(n+ 1)V (pn_1)

Vpn) (n+1)(n+2)

e Solve the recursion:
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Likelihood calculation

Data:

[, an expected number of substitutions.
T, elapsed time.

pw=1/T
Likelihood:

pu(ulA, @, 8,T) = > P(n|\, T)py, (u|a, B,n)

n=0

P(n|\,T): Poisson distribution with mean and variance AT

Pun (u|a, B,n): Gamma distribution with mean a3, and
. 2 2
variance 5%
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The approximation seems good
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Second question
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Two adjacent time intervals: [0,S] and [S, 7.
w1 and pe mean rates in [0, S] and [S, T'] respectively.

p1 and po are correlated because of 7.

What is the joint distribution of @1 and e ?‘

Work out the density p,|,, (u2|ui, A\, o, T = S).
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Second question
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I was unable to find an analytical expression...
First idea: integrate over tq in [0,.5], ¢; in [S,T] and 71 in
[0, o0]...
...didn’t work.
Second idea: use an approximation.
‘Many’ jumps in [0,T]: p1 and ps are independent.
No jump in [0, T: Pus | (uglur) =1 if ug = .
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Second question
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e Use a mizture model:
pa|p1 ~ N (p1,0.01) with probability P(n = 0|\, T),
palpr ~ N (p1,0.04) with probability P(n = 1|\, T),
piz| g ~ N (1,0.09) with probability P(n = 2|\, T),
2 independent from p; with probability P(n > 2|, T).
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pﬂlaﬂz(ub u2|)‘: a, T)) E(n) = 10
Mixture Independent
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P, po (ula u2|)‘7 a, T)7 E(n) =4
Mixture Independent
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P, po (ula u2|)‘7 a, T)7 E(n) =2
Mixture Independent

0

Models of evolution of the rate of evolution The compound Poisson process: an analytical solution



Puq,pz (ula u2|)‘7 «, T), E(n) = 0.002
Mixture Independent
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