Evolution of the rate of evolution

An analytical solution to the compound Poisson process

Stéphane Guindon

Department of Statistics, University of Auckland, New Zealand. LIRMM, UMR 5506 CNRS Montpellier, France.

Models of evolution of the rate of evolution

Outline

Models of evolution of the rate of evolution

The compound Poisson process: an analytical solution

Models of evolution of the rate of evolution

A bit of history...

- Linus Pauling and Emile Zuckerkandl (1962): "molecular clock hypothesis".
- Allan Wilson (1967): molecular dating under the molecular clock assumption.
- 30 years passed...
- Michael Sanderson (1997) and Jeffrey Thorne (1998): estimation of evolutionary divergence times without the restriction of a uniform rate across lineages.

Models of evolution of the rate of evolution

Molecular clock rate and time estimation

Models of evolution of the rate of evolution

Beyond the molecular clock

- Local clocks
 - Substitution rate is organised into a small number of classes,
 - Assign each branch to one of these classes.
- Penalized likelihood
 - $\Psi(R,T)$: penalty term for rate changes,
 - Maximise $log(P(D|R,T)) \lambda \Psi(R,T)$.
- Bayesian approaches
 - Explicit stochastic models of the evolution of the substitution rate.
 - Rate trajectory is continuous or discrete.

Models of rate evolution (1/2)

- Log-normal model
 - μ is the mean of the rate at the nodes that begin and end the branch (r(0) and r(T)).
 - $log(r(T)) \sim \mathcal{N}(log(r(0)), \nu T).$
 - Logarithm of the rate undergoes *Brownian motion*.
 - Correlation of mean rates on adjacent branches.
- Exponential model
 - $\mu \sim Exp(\phi)$.
 - No correlation of mean rates.
 - Shape of the distribution does not depend on time duration.

Models of rate evolution (2/2)

• Compound Poisson process

- Rates change in discrete jumps.
- $r(t) \sim \Gamma(\alpha, \beta)$
- Number of jumps: $n(T) \sim Poisson(\lambda T)$
- Correlation of mean rates across branches: governed by λ .
- λT large: distribution of mean rate is approximately Normal.

Implementation of the compound Poisson process

• "Jump" event: $Poisson(\lambda \Delta t)$

• MCMC \rightarrow posterior distribution of λ and α

Models of evolution of the rate of evolution

Advantages and drawbacks

- Log-normal
 - Computationally tractable
 - Crude (deterministic) description of the mean rates.
 - Biologically relevant ?
- Exponential
 - Computationally tractable.
 - Distribution of mean substitution rate does not depend on time duration.
 - No correlation of mean rates across branches.
- Compound Poisson
 - Description of rate changes plausible from a biological perspective.
 - Elegant way to account for correlation of mean rates across branches.
 - No analytical solution.

Outline

Models of evolution of the rate of evolution

The compound Poisson process: an analytical solution

Models of evolution of the rate of evolution

First question

- $r_i \sim \Gamma(\alpha, \beta)$. Hence, $E(r_i) = \alpha \beta$, $V(r_i) = \alpha \beta^2$.
- $n \sim Poisson(\lambda T)$.

•
$$\mu = \sum_{i=0}^{n} k_i r_i$$
, where $k_i = \frac{\Delta t_i}{T}$.

What is the distribution of μ ?

- Work out the distribution of μ for a given value of n.
- $\mu = \sum_{i=0}^{n} k_i r_i$ is well approximated by a Gamma distribution.

Models of evolution of the rate of evolution

•
$$\mu = k_0 r_0 + (1 - k_0) r_1$$

• Distribution of $t_0 = k_0 T$?

$$P(t_0 = x | n = 1) = \frac{\lambda e^{-\lambda x} \times e^{-\lambda (T-x)}}{\lambda T e^{-\lambda T}}$$
$$= \frac{1}{T}.$$

- $k_0 \sim U[0,1] \to E(k_0) = \frac{1}{2}$ and $V(k_0) = \frac{1}{12}$.
- $E(\mu) = E(k_0)E(r_0) + E(1-k_0)E(r_1) = \alpha\beta.$
- $V(\mu) = V(k_0r_0) + V((1-k_0)r_1) + 2Cov(k_0r_0, (1-k_0)r_1) = \frac{2}{3}\alpha\beta^2.$

Models of evolution of the rate of evolution

$n \ge 1$ jumps

• Distribution of k_0 ?

$$P(t_0 = x | n = y) = \frac{\lambda e^{-\lambda x} \times (\lambda (T - x))^{y-1} e^{-\lambda (T - x)}}{(\lambda T)^y e^{-\lambda T} / y!}$$
$$= \frac{y}{T^y} (T - x)^{y-1}.$$

• After little algebra...

•
$$E(k_0) = \frac{1}{n+1},$$

• $E(k_0^2) = \frac{2}{(n+1)(n+2)},$

Models of evolution of the rate of evolution

$n \geq 1 \text{ jumps}$

•
$$\mu = k_0 r_0 + k_1 r_1 + k_2 r_2 + k_3 r_3.$$

•
$$\mu_n = k_0 r_0 + (1 - k_0) \mu_{n-1}$$
.

•
$$E(\mu_n) = E(k_0)E(r_0) + E(1-k_0)E(\mu_{n-1}) \to E(\mu_n) = \alpha\beta$$

Models of evolution of the rate of evolution

$n \ge 1$ jumps

• The variance is a bit more challenging but can be done.

$$V(\mu_n) = \frac{2\alpha\beta^2 + n(n+1)V(\mu_{n-1})}{(n+1)(n+2)}$$

• Solve the recursion:

$$V(\mu_n) = \frac{2}{n+2}\alpha\beta^2$$

Models of evolution of the rate of evolution

Likelihood calculation

- Data:
 - *l*, an expected number of substitutions.
 - T, elapsed time.
- $\mu = l/T$
- Likelihood:

$$p_{\mu}(u|\lambda,\alpha,\beta,T) = \sum_{n=0}^{\infty} P(n|\lambda,T) p_{\mu_n}(u|\alpha,\beta,n)$$

- $P(n|\lambda, T)$: Poisson distribution with mean and variance λT .
- $p_{\mu_n}(u|\alpha,\beta,n)$: Gamma distribution with mean $\alpha\beta$, and variance $\frac{2}{n+2}\alpha\beta^2$.

Models of evolution of the rate of evolution

The approximation seems good

Models of evolution of the rate of evolution

The compound Poisson process: an analytical solution

 $\lambda = 0.1 \ (E(n) = 1)$

Second question

- Two adjacent time intervals: [0, S] and [S, T].
- μ_1 and μ_2 mean rates in [0, S] and [S, T] respectively.
- μ_1 and μ_2 are correlated because of r_1 .

What is the joint distribution of μ_1 and μ_2 ?

• Work out the density $p_{\mu_2|\mu_1}(u_2|u_1, \lambda, \alpha, T-S)$.

Models of evolution of the rate of evolution

Second question

- I was unable to find an analytical expression...
- First idea: integrate over t_0 in [0, S], t_1 in [S, T] and r_1 in $[0, \infty]$...
- ...didn't work.
- Second idea: use an approximation.
 - 'Many' jumps in [0, T]: μ_1 and μ_2 are independent.
 - No jump in [0,T]: $p_{\mu_2|\mu_1}(u_2|u_1) = 1$ if $u_2 = u_1$.

Second question

• Use a *mixture model*:

- $\mu_2 | \mu_1 \sim \mathcal{N}(\mu_1, 0.01)$ with probability $P(n = 0 | \lambda, T)$,
- $\mu_2 | \mu_1 \sim \mathcal{N}(\mu_1, 0.04)$ with probability $P(n = 1 | \lambda, T)$,
- $\mu_2 | \mu_1 \sim \mathcal{N}(\mu_1, 0.09)$ with probability $P(n = 2 | \lambda, T)$,
- μ_2 independent from μ_1 with probability $P(n > 2|\lambda, T)$.

Models of evolution of the rate of evolution

Acknowledgements

- The University of Auckland.
- Dumont d'Urville programme:
 - Ministry of Research, Science & Technology, New Zealand.
 - EGIDE, France.
- Allen Rodrigo, Olivier Gascuel and Vincent Lefort.