Identifiability of Models from Parsimony-Informative Pattern Frequencies

John A. Rhodes University of Alaska Fairbanks

June 10, 2008 MIEP Joint work with

Elizabeth Allman (UAF) Mark Holder (U Kansas)

Thanks to the Isaac Newton Institute

I: Parsimony-informative models:

- Variants of standard Markov substitution models on trees where *only* parsimony-informative patterns are observed
- Useful for phenotypic datasets acquisition bias prevents appropriate sampling of non-informative character patterns (e.g., all equal, all different)

• Despite shortcomings of simple models for phenotypic datasets, statistical approaches such as ML, Bayesian inference might still be preferable to parsimony

• Model proposed by P. Lewis (2001) omits constant patterns; model of Ronquest–Hulsensebeck (2004?) omits parsimony-noninformative patterns; used for combined analysis of sequence and morphological data by Nylander–Ronquest–Hulsenbeck–Nieves-Aldrey (2004)

For this talk focus on

 $GM2_{\text{pars-inf}}$: 2-state General Markov model, with only parsimony-informative characters observed

Parameters: Tree, 2×2 Markov matrix on each edge, arbitrary root distribution

 $CFN_{pars-inf}$: Cavender-Farris-Neyman model, with only parsimony-informative characters observed

Submodel of $GM2_{pars-inf}$ with symmetric Markov matrics, uniform root distribution

But much generalizes to k-state models, k > 2 (in progress...)

II: Identifiability:

For a fixed model,

Given an exact distribution of site-patterns arising from the model

— infinite amounts of 'perfect' data —

can we determine all model parameters?

Identifiability is necessary for statistical consistency of inference

Tree identifiability:

Theorem (Steel–Hendy–Penny, 1993): Identifiability of 4-taxon tree topologies fails for $CFN_{pars-inf}$ (and hence for $GM2_{pars-inf}$).

Proof is to explicitly give two parameter sets leading to same distribution of parimony-informative patterns.

Theorem (Allman-Holder-R): Suppose all Markov matrix parameters are non-singular and have all positive entries. Then topologies of n-taxon trees are identifiable for $GM2_{pars-inf}$ (and hence $CFN_{pars-inf}$) for $n \geq 8$.

Proof:

- Enough to identify all 4-taxon subtrees.
- For subtree relating taxa a_1, a_2, a_3, a_4 , fix some choice of parsimony-informative pattern at all *other* taxa
 - Consider only patterns extending this choice to a_1, \ldots, a_4 .

• Observed frequencies of these extended patterns satisfy certain phylogenetic invariants depending on the 4-taxon topology.

(Invariants are inspired by the 4-point condition using a log-det distance – Cavender-Felsenstein, Steel)

Note: Identifiability of topologies for 5-, 6-, 7-taxon trees unknown.

Numerical parameter identifiability:

Suppose

- the tree topology is known,
- all Markov matrix parameters are non-singular, and
- some parsimony-informative pattern has positive probability of being observed

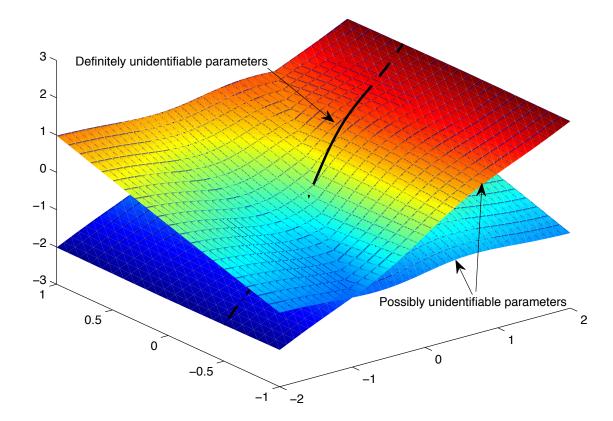
Theorem (Allman-Holder-R): For an *n*-taxon tree with $n \ge 7$, all numerical parameters of $GM2_{pars-inf}$ are identifiable, up to 'label-swapping' at internal nodes. Hence numerical parameters of $CFN_{pars-inf}$ are identifiable.

Theorem (Allman-Holder-R): For a 5-taxon tree generic numerical parameters of $GM2_{pars-inf}$ are identifiable, up to 'label-swapping' at internal nodes.

However, there exists a subset of codimension 1 in the parameter space for which identifiability may fail.

Within this subset of potentially non-identifiable parameters, there is a smaller subset of codimension 2 in the full parameter space for which identifiability definitely fails.

Cartoon of parameter space for 5-taxon trees:

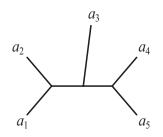


Specializing to $CFN_{pars-inf}$, generic parameters are identifiable.

However, the potentially non-identifiable parameters for 5-taxon trees include those from ultrametric (molecular clock) trees!

Sketch of method of proof of identifiability of numerical parameters: We use

Theorem (Allman–R, 2008): For the 2-state General Markov model on a 5-taxon binary tree as shown, let $\{0,1\}$ denote the set of character states. Let $p_{i_1i_2i_3i_4i_5}$ denote the joint probability of observing state i_j in the sequence at leaf a_j , $j = 1, \ldots, 5$.



Then the ideal of phylogenetic invariants for this model are generated by the 3×3 minors of the following two matrices:

(p_{00000})	p_{00001}	p_{00010}	p_{00011}	p_{00100}	p_{00101}	p_{00110}	p_{00111}
p_{01000}	p_{01001}	p_{01010}	p_{01011}	p_{01100}	p_{01101}	p_{01110}	<i>p</i> 01111
p_{10000}	p_{10001}	p_{10010}	p_{10011}	p_{10100}	p_{10101}	p_{10110}	<i>p</i> ₁₀₁₁₁
p_{11000}	p_{11001}	p_{11010}	p_{11011}	p_{11100}	p_{11101}	p_{11110}	$p_{11111})$

 $\quad \text{and} \quad$

p_{00000}	p_{00001}	p_{00010}	p_{00011}
p_{00100}	p_{00101}	p_{00110}	p_{00111}
p_{01000}	p_{01001}	p_{01010}	p_{01011}
p_{01100}	p_{01101}	p_{01110}	p_{01111} .
p_{10000}	p_{10001}	p_{10010}	p_{10011}
p_{10100}	p_{10101}	p_{10110}	p_{10111}
p_{11000}	p_{11001}	p_{11010}	p_{11011}
p_{11100}	p_{11101}	p_{11110}	$_{p_{11111}}$ /

If we have only probabilities q of patterns conditioned on parsimony-informativeness, then we know only *some* of these entries, but rescaled by an unknown factor.

q 00000	${f q}_{00001}$	q 00010	q_{00011}	q 00100	q_{00101}	q_{00110}	q_{00111}
\mathbf{q}_{01000}	q_{01001}	q_{01010}	q_{01011}	q_{01100}	q_{01101}	q_{01110}	${f q}_{01111}$
\mathbf{q}_{10000}	q_{10001}	q_{10010}	q_{10011}	q_{10100}	q_{10101}	q_{10110}	${f q}_{10111}$
Q_{11000}	q_{11001}	q_{11010}	\mathbf{q}_{11011}	q_{11100}	${f q}_{11101}$	\mathbf{q}_{11110}	q_{11111}

Red entries are unknown; 3×3 minors must still be zero.

Judicious choices of 3×3 minors allows for determination of unknown entries, provided certain 2×2 minors don't vanish. E.g.,

q_{01001}	q_{01010}	q_{01011}	
q_{10001}	q_{10010}	q_{10011}	=0,
q_{11001}	q_{11010}	${f q}_{11011}$	

Expanding the determinant in cofactors by the last column we have

 $\begin{array}{c|ccccc} q_{01011} & q_{10001} & q_{10010} \\ q_{11001} & q_{11010} \end{array} - q_{10011} & q_{01001} & q_{01010} \\ q_{11001} & q_{11010} \end{array} + \mathbf{q}_{11011} & q_{01001} & q_{01010} \\ q_{10001} & q_{10010} \end{array} = 0$

Thus provided

$$\begin{vmatrix} q_{01001} & q_{01010} \\ q_{10001} & q_{10010} \end{vmatrix} \neq 0$$

we can determine \mathbf{q}_{11011} from other q_i where $\mathbf{i} \in S$.

For 5-taxon trees, enough 2×2 minors may be zero to defeat this approach, but still gives understanding of potential non-identifiability.

For trees with at least 7 taxa, enough 2×2 minors must be non-zero to determine all unknown entries.

Determining scaling factor is easy – sum of p_i is 1.