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Abstract

An algorithm for inversion in GF(2m) suitable for im-
plementation using a polynomial multiply instruction on
GF(2) is proposed. It is based on the extended Euclid’s al-
gorithm. In the algorithm, operations corresponding to sev-
eral contiguous iterations of the VLSI algorithm proposed
by Brunner et al. is represented as a matrix. They are cal-
culated at once through the matrix efficiently by means of
a polynomial multiply instruction on GF(2). For example,
in the case where the word size of a processor and m are
32 and 571, respectively, the algorithm calculates inversion
with about the half number of instructions of the conven-
tional algorithm on the average.

1 Introduction

Galois field GF(2m), i.e. extension field of GF(2),
plays important roles in many applications, such as error-
correcting codes and cryptography. In widely used ellip-
tic curve cryptography (ECC), the value of m is large,
i.e. 163 or more [1, 2]. Among basic arithmetic opera-
tions in GF(2m), multiplicative inversion is the most time-
consuming. Therefore, there is a demand for a fast algo-
rithm for inversion in GF(2m). In recent years, several
instruction set extensions for cryptosystem have been pro-
posed [3–6]. These instruction set extensions can increase
performance of a processor with small cost. They include
a polynomial multiply instruction on GF(2). In this paper,
we propose a new algorithm for inversion in GF(2m) which
is suitable for implementation using a polynomial multiply
instruction on GF(2).

The algorithm to be proposed is based on the extended
Euclid’s algorithm. In the algorithm, operations corre-
sponding to several contiguous iterations of the conven-
tional algorithm for VLSI implementation [7] are repre-
sented as a matrix which is obtained only with single-word

operations. Then, they are calculated at once through the
matrix efficiently by means of a polynomial multiply in-
struction on GF(2). For example, in the case where the
word size of a processor and m are 32 and 571, respec-
tively, the algorithm calculates inversion with about the half
number of polynomial multiply instructions on GF(2) and
XOR instructions for the conventional algorithm evaluated
in [8] on the average.

This paper is organized as follows. In the next section,
we show conventional algorithms for inversion in GF(2m)
based on the extended Euclid’s algorithm and a polynomial
multiply instruction on GF(2). In Sect. 3, we propose a fast
algorithm for inversion in GF(2m) using polynomial mul-
tiply instruction on GF(2), which is based on the extended
Euclid’s algorithm. In Sect. 4, we evaluate the algorithm.
In Sect. 5, we make several discussions.

2 Preliminaries

2.1 Multiplicative Inverse in GF(2m)

Let

G(x) = xm + gm−1x
m−1 + · · · + g1x + 1

be an irreducible polynomial on GF(2). Then, we can rep-
resent an element in GF(2m) defined by G(x) as

A(x) = am−1x
m−1 + · · · + a1x + a0,

where ai ∈ GF(2) [9].
Addition and subtraction of two elements in GF(2m) are

defined as polynomial addition and subtraction on GF(2),
respectively. Thus, both addition and subtraction are exe-
cuted by exclusive-OR operation for every coefficient. Mul-
tiplication in GF(2m) is defined as a polynomial multipli-
cation modulo G(x). The multiplicative inverse A−1(x) of
A(x) in GF(2m) is defined as the element that satisfies

A(x) · A−1(x) = 1,

where “·” denotes multiplication in GF(2m).



j Rj(x) Uj(x) Wj(x) Qj(x)

−1 x7 + x6 + x3 + x + 1 0 1 —
0 x6 + x4 1 0 —
1 x5 + x4 + x3 + x + 1 x + 1 1 x + 1
2 x4 + x3 + x2 + 1 x2 x + 1 x + 1
3 1 x3 + x + 1 x2 + x + 1 x
4 0 x7 + x6 + x3 + x + 1 x6 + x4 x4 + x3 + x2 + 1

Figure 1. An example of inversion by Algorithm 1 (m = 7, G(x) = x7+x6+x3+x+1 and A(x) = x4+x2).

2.2 Algorithm for Inversion in GF(2m)
based on Extended Euclid’s Algo-
rithm

Euclid’s algorithm for polynomial calculates the great-
est common divisor (GCD) polynomial of two polynomi-
als. The algorithm can be extended for calculating the two
polynomials [9], U(x) and W (x), that satisfy

GCD(A(x), B(x)) = U(x)×A(x) + W (x)×B(x).

The extended Euclid’s algorithm is as follows, where “÷”
denotes the operation that calculates a quotient polynomial.

[Algorithm 1]
(Extended Euclid’s Algorithm)

R−1(x) := B(x); U−1(x) := 0; W−1(x) := 1;
R0(x) := A(x); U0(x) := 1; W0(x) := 0;
j := 0;
repeat

j := j + 1;
Qj(x) := Rj−2(x) ÷ Rj−1(x);
Rj(x) := Rj−2(x) − Qj(x) × Rj−1(x);
Uj(x) := Uj−2(x) − Qj(x) × Uj−1(x);
Wj(x) := Wj−2(x) − Qj(x) × Wj−1(x);

until Rj(x) = 0;

output Rj−1(x), Uj−1(x) and Wj−1(x) as the results.(
Rj−1(x)= GCD(A(x), B(x))

= Uj−1(x) × A(x) + Wj−1(x) × B(x)

)
�

Let G(x) be the irreducible polynomial with degree m
that defines the field, and A(x) be the polynomial repre-
sentation of an element in the field. Since the greatest
common divisor polynomial of A(x) and G(x) is 1, we
can obtain the multiplicative inverse A−1(x) of A(x) as
Uj−1(x) mod G(x) by replacing B(x) with G(x) in Al-

gorithm 1. This is explained as follows.

GCD(A(x), G(x)) = Uj−1(x)×A(x)+Wj−1(x)×G(x)
1 ≡ Uj−1(x) × A(x) (mod G(x))

A−1(x) ≡ Uj−1(x) (mod G(x))

Figure 1 shows an example of inversion by Algorithm
1, where m = 7, G(x) = x7 + x6 + x3 + x + 1 and
A(x) = x6 + x4. In this example, the inverse A−1(x) is
U3(x).

It is reported by Hankerson et al. that an algorithm based
on the extended Euclid’s algorithm is faster than the other
algorithms [8]. The algorithm evaluated in [8] is as follows,
where deg(·) is the function to calculate the degree of a
polynomial.

[Algorithm 2]
(Algorithm for Inversion in GF(2m) Based on Extended Eu-
clid’s Algorithm [8])

S(x) := G(x); V (x) := 0;
R(x) := A(x); U(x) := 1;
while deg(R(x)) �= 0 do

δ := deg(S(x)) − deg(R(x));
if δ < 0 then

temp := S(x); S(x) := R(x); R(x) := temp;
temp := V (x); V (x) := U(x); U(x) := temp;
δ := −δ;

end if
S(x) := S(x) − xδ × R(x);
V (x) := V (x) − xδ × U(x);

end while

output U(x) as the result.
(U(x) = A−1(x))

�

Note that, in Algorithm 1, since calculation of Uj(x)
is independent of calculation of Wj(x), inversion can be
calculated without calculation of Wj(x). Note also that,
Rj(x) and Uj(x) can be calculated by the two most re-
cent polynomials of the series Rj(x) and Uj(x), respec-
tively. Therefore, Algorithm 2 keeps only four polynomi-



R(x) S(x) U(x) V (x) δ

x6 + x4 x7 + x6 + x3 + x + 1 1 0
x6 + x4 x6 + x5 + x3 + x + 1 1 x 1
x6 + x4 x5 + x4 + x3 + x + 1 1 x + 1 0

x5 + x4 + x3 + x + 1 x5 + x2 + x x + 1 x2 + x + 1 −1
x5 + x4 + x3 + x + 1 x4 + x3 + x2 + 1 x + 1 x2 0

x4 + x3 + x2 + 1 1 x2 x3 + x + 1 −1
1 x3 + x2 + 1 x3 + x + 1 x6 + x3 + x + 1 −4

Figure 2. An example of inversion by Algorithm 2 (m = 7, G(x) = x7+x6+x3+x+1 and A(x) = x4+x2).

als, R(x), S(x), U(x), and V (x), that correspond to Rj(x),
Rj−1(x), Uj(x), and Uj−1(x), respectively. Figure 2 shows
an example of inversion by Algorithm 2, where m = 7,
G(x) = x7 + x6 + x3 + x + 1 and A(x) = x6 + x4.

Next, we explain the algorithm for inversion in GF(2m)
based on the extended Euclid’s algorithm proposed by
Brunner et al. [7]. Although the algorithm is developed
for VLSI implementation, we can use it to develop an al-
gorithm suitable for implementation using the polynomial
multiply instruction on GF(2) as we will describe in the
next section. For VLSI implementation, the algorithm tests
only the m-th coefficients of two polynomials in the calcu-
lation of GCD, thus the polynomials are multiplied by some
power of x relative to proper ones. The algorithm is as fol-
lows, where {O1, O2} means that two operations, O1 and
O2, are performed in parallel. rm and sm denote the m-
th coefficients of R(x) and S(x), respectively. δ holds the
difference of deg∗(R(x)) and deg∗(S(x)), where deg∗(·)
denotes the upper bound of the degree of the proper one.

[Algorithm 3]
(VLSI Algorithm for Inversion in GF(2m) [7])

S(x) := G(x); V (x) := 0;
R(x) := A(x); U(x) := 1;
δ := 0;
for i = 1 to 2m do

if rm = 0 then
R(x) := x × R(x);
U(x) := x × U(x);
δ = δ + 1;

else
if sm = 1 then

S(x) := S(x) − R(x);
V (x) := V (x) − U(x);

end if
S(x) := x × S(x);
if δ = 0 then
{R(x) := S(x), S(x) := R(x)};
{U(x) := x × V (x), V (x) := U(x)};
δ := 1;

else

U(x) := U/x;
δ := δ − 1;

end if
end if

end for

output U(x) as the result.
(U(x) = A−1(x))

�
Although the VLSI algorithm proposed in [7] calcu-

lates U(x) and V (x) with modulo G(x) arithmetics, we
do not need modulo reductions by using (m + 1)-bit reg-
isters to hold U(x) and V (x). Figure 3 shows an exam-
ple of inversion by Algorithm 3, where m = 7, G(x) =
x7 + x6 + x3 + x + 1, and A(x) = x6 + x4. When it is im-
plemented in software directly, the algorithm needs multi-
word shifts in each iteration because shift amount in each
iteration is always 1-bit.

2.3 Polynomial Multiply Instruction on
GF(2)

In this paper, we consider the typical multiply instruction
on GF(2) that was proposed in [3–6]. We call it MULGF2
instruction as in [3]. MULGF2 instruction calculates the 2-
word product from two 1-word operands, rs and rt , and
writes the product to two special registers, HI and LO as
shown in Fig.4.

A polynomial multiplier on GF(2) can be very simply
realized as an AND-array followed by an XOR-tree, i.e.
“carry-free” version of an integer multiplier. Since there
are no carry propagation, the multiplier is fast and small.
In addition, we can combine this multiplier with an integer

rs

rt

HI LO

Figure 4. MULGF2 instruction.



i R(x) S(x) U(x) V (x) δ

x6 + x4 x7 + x6 + x3 + x + 1 1 0 0
1 x7 + x5 x7 + x6 + x3 + x + 1 x 0 1
2 x7 + x5 x7 + x6 + x4 + x2 + x 1 x 0
3 x7 + x6 + x5 + x3 + x2 x7 + x5 x2 + x 1 1
4 x7 + x6 + x5 + x3 + x2 x7 + x4 + x3 x + 1 x2 + x + 1 0
5 x7 + x6 + x5 + x3 x7 + x6 + x5 + x3 + x2 x3 x + 1 1
6 x7 + x6 + x5 + x3 x3 x2 x3 + x + 1 0
7 x4 x7 + x6 + x5 + x3 x4 + x2 + x x2 1
8 x5 x7 + x6 + x5 + x3 x5 + x3 + x2 x2 2
9 x6 x7 + x6 + x5 + x3 x6 + x4 + x3 x2 3
10 x7 x7 + x6 + x5 + x3 x7 + x5 + x4 x2 4
11 x7 x7 + x6 + x4 x6 + x4 + x3 x7 + x5 + x4 + x2 3
12 x7 x7 + x5 x5 + x3 + x2 x7 + x6 + x5 + x3 + x2 2
13 x7 x6 x4 + x2 + x x7 + x6 1
14 x7 x7 x3 + x + 1 x7 + x6 0

Figure 3. An example of inversion by Algorithm 3 (m = 7, G(x) = x7+x6+x3+x+1 and A(x) = x6+x4).

multiplier with little cost as described in [10, 11].

3 An Algorithm for Inversion in GF(2m)
Suitable for Implementation Using a Poly-
nomial Multiply Instruction on GF(2)

In this section, we propose an algorithm for inversion
in GF(2m) suitable for implementation using a polynomial
multiply instruction on GF(2). The algorithm is based on
Algorithm 3, and processes multiple bits in each iteration
for fast calculation.

First, we replace the operation “U(x) := U(x)/x;” with
the operation “V (x) := x×V (x);” in Algorithm 3. By this
modification, the final result will become “U(x) = xm ×
A−1(x)”, instead of the desired value “A−1(x)” [12].

Next, we describe a matrix which represents operations
corresponding to several contiguous iterations of Algorithm
3. In Algorithm 3, R(x), S(x), U(x), and V (x) are cal-
culated according to the values of the m-th coefficients of
R(x) and S(x). In the same way, we can decide the oper-
ations for updating R(x), S(x), U(x), and V (x) in several
contiguous iterations of Algorithm 3 according to the val-
ues of several coefficients of R(x) and S(x). Therefore, we
represent the operations to update R(x), S(x), U(x), and
V (x) in several contiguous iterations in a matrix, as pro-
posed in [13] for Montgomery modular inversion case.

The operations in k times iteration of Algorithm 3 can
be calculated as follows, where H(x) is the (2 × 2) matrix
which is obtained by coefficients from degree (m − k +
1) to m of R(x) and S(x), and the elements in H(x) are

polynomials on GF(2) with degree k or less.

(
R(x)
S(x)

)
:= H(x) ×

(
R(x)
S(x)

)
; (1)(

U(x)
V (x)

)
:= H(x) ×

(
U(x)
V (x)

)
; (2)

We explain how to obtain the matrix H(x) by using an
example, where m = 7, G(x) = x7 + x6 + x3 + x + 1,
A(x) = x6+x4, and k = 3. In this case, the initial values of
variables are R(x) = x6+x4, S(x) = x7+x6+x3+x+1,
U(x) = x, and V (x) = 0. In the first iteration of Algorithm
3, the following operations are executed:

R(x) := x × R(x);
U(x) := x × U(x);

These operations can be represented in matrices as follows:

(
R(x)
S(x)

)
:=

(
x 0
0 1

)
×

(
R(x)
S(x)

)
;(

U(x)
V (x)

)
:=

(
x 0
0 1

)
×

(
U(x)
V (x)

)
;

By the above operations, we get R(x) = x7 + x5, S(x) =
x7 + x6 + x3 + x + 1, U(x) = x2, and V (x) = 0. In the
same way, in the next iteration of Algorithm 3, the following
operations are executed:

S(x) := x × (S(x) + R(x));
V (x) := x × (U(x) + V (x));



R (x)
h(x)

R (x) 01R (x)2

0R (x)     h(x)
R (x)     h(x)1

2

R    (x)M−1

R (x)     h(x)

R    (x)     h(x)M−3

R    (x)     h(x)M−2

R    (x)     h(x)M−1

R    (x)M−2

Figure 5. (multi-word × single-word)-multiplication.

These operations can be represented in matrices as follows:(
R(x)
S(x)

)
:=

(
1 0
x x

)
×

(
R(x)
S(x)

)
;(

U(x)
V (x)

)
:=

(
1 0
x x

)
×

(
U(x)
V (x)

)
;

By the above operations, we get R(x) = x7 + x5, S(x) =
x7 +x6 +x4 +x2 +x, U(x) = x, and V (x) = x2. Then, in
the next iteration of Algorithm 3, the following operations
are executed:

{R(x) := x × (S(x) + R(x)), S(x) := R(x)};
{U(x) := x × (V (x) + U(x)), V (x) := U(x)};

These operations can be represented in matrices as follows:(
R(x)
S(x)

)
:=

(
x x
1 0

)
×

(
R(x)
S(x)

)
;(

U(x)
V (x)

)
:=

(
x x
1 0

)
×

(
U(x)
V (x)

)
;

The operations in the above three iterations of Algorithm
3 can be calculated at once by using the following matrix
H(x).

H(x) =
(

x3 + x2 x2

x 0

)

=
(

x x
1 0

)
×

(
1 0
x x

)
×

(
x 0
0 1

)

For the word-level description of the algorithm, we par-
tition a polynomial representation on GF(2m) into polyno-
mials with degree (w−1). Since the degree of a polynomial
representation is up to m, we can represent an element in
GF(2m) by polynomials with degree (w − 1) as follows:

R(x) = RM−1(x)x(M−1)w + · · · + R1(x)xw + R0(x)

Ri(x) = riw+w−1x
w−1 + · · · + riw+1x + riw ,

where M = �(m + 1)/w� and rj = 0 for j > m. The ma-
trix H(x), whose elements are polynomials on GF(2) with

the degree less than w, can be calculated from RM−1(x)
and SM−1(x) by only single-word operations, where w is
the word size of a processor.

Equations (1) and (2) include (multi-word × single-
word)-multiplication. The multiplication is calculated as
follows.

R(x) × h(x)

=(RM−1(x)x(M−1)w +. . .+R1(x)xw +R0(x))×h(x)

= RM−1(x)×h(x)x(M−1)w +RM−2(x)×h(x)x(M−2)w

+. . .+R1(x)×h(x)xw+R0(x)×h(x)

Using MULGF2 instruction this calculation is calculated by
M MULGF2 and (M − 1) word XOR instructions as shown
in Fig. 5. Therefore, we can calculate them efficiently by
using MULGF2 instruction.

An algorithm for inversion in GF(2m) suitable for im-
plementation using a polynomial multiply instruction on
GF(2) is as follows. In the algorithm, we assume that the
degrees of the initial values of R(x) and S(x) are (Mw−1)
instead of m. This assumption does not affect the result.

[Algorithm 4]
(The Proposed Algorithm)

S(x) := G(x); V (x) := 0;
R(x) := A(x); U(x) := x;
M := �(m + 1)/w�;
deg r := Mw − 1;
deg s := Mw − 1;
while deg r > 0 do

C(x) := RM−1(x);
D(x) := SM−1(x);
if C(x) = 0 then

R(x) := xw × R(x);
U(x) := xw × U(x);
deg r := deg r − w;

else

H(x) :=
(

1 0
0 1

)
;

j := 1;



while j < w and deg r > 0 do
j := j + 1;
if cw−1 = 0 then

C(x) := x × C(x);

H(x) :=
(

x 0
0 1

)
× H(x);

deg r := deg r − 1;
else

if deg r = deg s then
deg r := deg r − 1;
if dw−1 = 1 then

temp := C(x);
C(x) := x × (C(x) − D(x)) ;
D(x) := temp;

H(x) :=
(

x x
1 0

)
× H(x);

else
temp := C(x);
C(x) := x × D(x);
D(x) := temp;

H(x) :=
(

0 x
1 0

)
× H(x);

end if
else

deg s := deg s − 1;
if dw−1 = 1 then

D(x) := x × (C(x) − D(x)) ;

H(x) :=
(

1 0
x x

)
× H(x);

else
D(x) := x × D(x);

H(x) :=
(

1 0
0 x

)
× H(x);

end if
end if

end if
end while(

R(x)
S(x)

)
:= H(x) ×

(
R(x)
S(x)

)
;(

U(x)
V (x)

)
:= H(x) ×

(
U(x)
V (x)

)
;

end if
end while

output

{
U(x)/xMw if deg r = 0
V (x)/xMw otherwise

as the result.

�

Note that, we initialize U(x) to x instead of 1. Hereby,
since a result becomes A−1(x)×xMw we can avoid a multi-
word shift at the end of the algorithm. Although it would
seem that U(x) and V (x) need 2M -word, since U(x) and
V (x) are just multiplied by some power of x, U(x) and

V (x) are (M +1)-word or less. Figure 6 shows an example
of inversion by Algorithm 4, where m = 7, w = 4, G(x) =
x7 + x6 + x3 + x + 1, and A(x) = x4 + x2 + x.

4 Evaluation

We have evaluated the proposed algorithm by comparing
the number of MULGF2 and XOR instructions of it with that
of Algorithm 2. We assume that MULGF2 instruction has a
single-cycle latency. We count the number of MULGF2 and
XOR instructions in the following operations in Algorithm 2,
since they need (multi-word × single-word)-multiplication.

R(x) := R(x) − xj × S(x);

U(x) := U(x) − xj × V (x);

In the same way, we count the number of MULGF2 and XOR
instructions in the equations (1) and (2), in Algorithm 4. In
addition, we also count the number of MULGF2 and XOR
instructions in operations for calculating H(x) which is in
the form

H(x) :=
(

h00(x) h01(x)
h10(x) h11(x)

)
× H(x); .

Table 1 shows the number of MULGF2 and XOR instruc-
tions of the above operations. These figures are the aver-
age of inversion of 1000 random elements, and we used
NIST-recommended irreducible polynomials [2]. In the
case where w = 32 and w = 16, Algorithm 4 can calcu-
late inversion faster than Algorithm 2 in almost all m on
the average. Especially, in the case where m and w are 571
and 32, respectively, the algorithm calculates inversion with
about the half number of instructions of Algorithm 2 on the
average. Table 1 also shows no advantage when either the
number of words or the word size is small. In these cases, it
seems that the cost of the calculation for the matrix H(x) is
bigger than the benefit from the calculation at once through
the matrix.

5 Discussion

In the proposed algorithm, from the most significant
words of R(x) and S(x), we can obtain the matrix H(x)
whose elements are polynomials on GF(2) with degree w or
less. Therefore, modifying a polynomial multiply instruc-
tion to calculate w×(w+1)-bit multiplication, the proposed
algorithm will become faster.

We can reduce the calculation time for the matrix H(x)
by using a look-up table. In this case, the table has w ·
22(w−1) entries, and each entry is 4w · �log2 w�-bit. For
large w, we can obtain the matrix H(x) by calculating it
from a smaller table instead of direct table look-up. For



R(x) S(x) U(x) V (x) C(x) D(x) deg r deg s H(x)

x6 + x4 x7 + x6 + x3 + x + 1 x 0 x2 + 1 x3 + x2 7 7
` 1 0

0 1

´

x3 + x x3 + x2 6 7
`

x 0
0 1

´

x3 + x x3 + x2 6 6
“

x 0
x2 x

”
“

x3+x2 x2
x 0

”

x7 + x6 + x5 + x3 + x2 x7 + x5 x4 + x3 x2 x3 + x2 + x x3 + x 5 6
` 1 0

0 1

´

x3 + x2 + x x3 5 5
` 1 0

x x

´

x3 x3 + x2 4 5
“

x2+x x
1 0

”
“

x2+x x2

x3+x2+x x3

”

x7 + x6 + x5 + x3 x3 x6 x7 + x5 + x4 x3 + x2 + x 0 4 4
` 1 0

0 1

´

0 x3 + x2 + x 3 4
` 0 x

1 0

´

0 x3 + x2 + x 2 3
“

0 x2
1 0

”
“

0 x3
1 0

”

x6 x7 + x6 + x5 + x3 x10 + x8 + x7 x6 x2 x3 + x2 + x 1 3
` 1 0

0 1

´

x3 x3 + x2 + x 0 2
`

x 0
0 1

´

x7 x7 + x6 + x5 + x3 x11 + x9 + x8 x6 0 3

⇒ (x11 + x9 + x8)/x8 = x3 + x + 1

Figure 6. An example of inversion by Algorithm 4 (m = 7, w = 4, G(x) = x7 + x6 + x3 + x + 1, and
A(x) = x4 + x2).

Table 1. Comparison of Algorithm 2 and Algorithm 4 by Using MULGF2 instruction.
Algorithm 2 Algorithm 4 Algorithm 4

Algorithm 2
[%]

m w M #MULGF2 #XOR Total #MULGF2 #XOR Total

163

8 21 2551.990 5751.183 8303.173 4429.690 7435.794 11865.484 142.90
16 11 1341.678 2900.299 4241.977 1776.748 2374.208 4150.956 99.45
32 6 733.744 1475.552 2209.296 1092.291 939.702 2031.993 91.97
64 3 437.356 781.916 1219.272 861.820 498.054 1359.874 111.53

233

8 30 5171.630 11782.952 16954.582 8498.470 14869.154 23367.624 137.82
16 15 2686.084 5938.826 8624.910 2967.834 4339.090 7306.924 84.72
32 8 1433.177 3005.143 4438.320 1608.673 1563.986 3172.659 71.48
64 4 811.507 1550.121 2361.628 1189.397 772.566 1961.963 83.08

283

8 36 7606.275 17408.760 25015.035 12114.088 21526.934 33641.022 134.45
16 18 3929.496 8770.623 12700.119 4046.623 6190.736 10237.359 80.61
32 9 2069.663 4420.616 6490.279 1903.184 2005.679 3908.863 60.23
64 5 1150.530 2265.673 3416.203 1519.226 1002.331 2521.557 73.81

409

8 52 15796.999 36401.858 52198.857 24358.389 44466.958 68825.347 131.85
16 26 8090.381 18302.942 26393.323 7594.821 12405.278 20000.099 75.78
32 13 4196.562 9195.477 13392.039 3167.822 3729.663 6897.485 51.50
64 7 2262.231 4673.211 6935.442 2246.086 1664.397 3910.483 56.38

571

8 72 30726.338 71092.647 101818.985 45937.205 85235.844 131173.049 128.83
16 36 15624.255 35652.145 51276.400 13611.722 23396.826 37008.548 72.17
32 18 8019.095 17888.957 25908.052 5130.520 6652.412 11782.932 45.48
64 9 4220.452 9012.505 13232.957 3055.222 2579.882 5635.104 42.58



example, in the case where m = 7, w = 8, G(x) = x7 +
x6 + x3 + x+ 1, and A(x) = x4 +x2 + x. First, according
to coefficients from degree 4 to 7 of C(x) and D(x), we can
obtain the matrix

H1(x) =
(

x3 + x2 x2

x 0

)

from the smaller table. Then, we can update C(x), D(x)
using H1(x), and obtain the matrix

H2(x) =
(

x2 + x x2

x3 + x2 + x x3

)
.

Finally, we can calculate H(x) by H1(x) and H2(x) as fol-
lows:

H(x) = H2(x) × H1(x)

=
(

x5 x4 + x3

x6 + x4 + x3 x5 + x4 + x3

)

6 Concluding Remarks

We have proposed an algorithm for inversion in GF(2m)
suitable for implementation using a polynomial multiply
instruction on GF(2). In the algorithm, operations corre-
sponding to several contiguous iterations of the VLSI al-
gorithm proposed by Brunner et al. is represented as a ma-
trix. They are calculated at once through the matrix. In the
case where the word size of a processor and m are 32 and
571, respectively, the algorithm calculates inversion with
about the half number of polynomial multiply instructions
on GF(2) and XOR instructions for the conventional algo-
rithm for software implementation on the average. We can
accelerate the proposed algorithm by using look-up table.
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