
Worst Cases of a Periodic Function for Large Arguments

Guillaume Hanrot∗ Vincent Lefèvre† Damien Stehlé‡ Paul Zimmermann§

Abstract

One considers the problem of finding hard to round cases
of a periodic function for large floating-point inputs, more
precisely when the function cannot be efficiently approxi-
mated by a polynomial. This is one of the last few issues
that prevents from guaranteeing an efficient computation of
correctly rounded transcendentals for the whole IEEE-754
double precision format. The first non-naive algorithm for
that problem is presented, with a heuristic complexity of
O(20.676p) for a precision of p bits. The efficiency of the
algorithm is shown on the largest IEEE-754 double preci-
sion binade for the sine function, and some corresponding
bad cases are given. We can hope that all the worst cases
of the trigonometric functions in their whole domain will be
found within a few years, a task that was considered out of
reach until now.

1. Introduction

One of the most important paradigms of the IEEE-754
standard on floating-point arithmetic [3] is correct round-
ing. Although this correct rounding can often be efficiently
computed for basic arithmetical operations and algebraic
functions [4], the case of general functions is more difficult.

A general strategy, due to Ziv [10], helps one to guar-
antee the rounding by computing an approximation y to a
function value f(x), together with an upper bound on the
corresponding error, including both the mathematical error
and the roundoff error. This amounts to finding a small in-
terval [y − ε, y + ε] in which the actual value f(x) lies. The

∗INRIA/LORIA, Projet CACAO, Bâtiment A, 615 rue
du jardin botanique, F-54602 Villers-lès-Nancy Cedex,
guillaume.hanrot@loria.fr

†INRIA/LIP, École Normale Supérieure de Lyon, 46 allée d’Italie, F-
69364 Lyon Cedex 07, vincent.lefevre@ens-lyon.fr

‡CNRS/LIP, École Normale Supérieure de Lyon, 46 allée d’Italie,
F-69364 Lyon Cedex 07, damien.stehle@ens-lyon.fr. Work
started when the author was hosted and partially funded by the MAGMA
group, within the University of Sydney.

§INRIA/LORIA, Projet CACAO, Bâtiment A, 615 rue
du jardin botanique, F-54602 Villers-lès-Nancy Cedex,
paul.zimmermann@loria.fr

monotonicity of the various rounding modes allows one to
determine the correct rounding as soon as y − ε and y + ε
round to the same floating-point number. If this is not the
case, one increases the working precision until this happens.
For a target precision of p bits, let p′ denote the small-
est intermediate precision such that an error bounded by
ε = 2−p′ |f(x)| allows to guarantee the correct rounding
of f(x). Floating-point numbers x such that p′ is large are
called “worst cases of f in precision p” (in a loose sense,
see Definition 2 for a more precise definition).

A probabilistic argument tells us that the additional pre-
cision p′−p needed to guarantee the correct rounding in pre-
cision p — except particular cases that can be determined
for each function — should be of the order of log2 |M| +
O(1), whereM is the set of numbers x under consideration.
For IEEE-754 double precision numbers, i.e., with p = 53
and |M| ≤ 264, this means that, in order to be able to cor-
rectly round f(x) for any input x, computing approxima-
tions up to a precision slightly larger than 117 bits should
be sufficient.

A search for worst cases of usual functions in double pre-
cision was initiated by Lefèvre and Muller in the late 90’s.
In particular, they proposed the first non-naive algorithm,
see [5] and the references therein. The key idea is to split
the tested domain into intervals, and in each interval, re-
place the function by a linear approximation, for which
worst cases can be determined by a continued fraction type
method.

In 2003, Stehlé, Lefèvre and Zimmermann (SLZ for
short) improved Lefèvre and Muller’s method by using
higher degree approximations [8]. The worst cases of the
corresponding polynomial approximations are then found
by a method due to Coppersmith [1]. By using the works of
Lefèvre, Muller, Stehlé and Zimmermann, almost all worst
cases of univariate functions in double precision are within
reach. So far, there remained one exception amongst the
usual functions: worst cases of sin, cos and tan for large ar-
guments. The present paper fills this gap, thus making fea-
sible the computation of the worst cases of all the common
univariate functions over their full domains of definition, for
the IEEE double precision.

More precisely, we study the specific case where we are
trying to find the worst cases of a periodic function for very

1

large arguments. In a nutshell, the problem in that setting
is that a priori, we can no longer use a small degree poly-
nomial approximation. Indeed, the sampling is so sparse
that we lose any smoothness: even if x and x′ are two con-
secutive floating-point numbers, the values f(x) and f(x′)
can be completely different. Using the periodicity of the
function and a range reduction, we present an idea group-
ing input numbers by arithmetic progressions, allowing to
recover polynomial approximations. By using the methods
described above, we devise a family of algorithms finding
worst cases for a set of N consecutive floating-point num-
bers, especially suited to the case of large arguments. The
complexities of these algorithms range from N4/5+ε down
to N7−2

√
10+ε ≤ N0.676.

Roadmap of the paper. In §2, we describe precisely the
tackled problem and state our main result. In §3, we briefly
recall the main known methods to find worst cases of uni-
variate functions: we will use these algorithms as subrou-
tines. In §4, we describe the algorithm finding the worst
cases of periodic functions for large arguments. This algo-
rithm is analysed in §5. Finally, in §6, we demonstrate the
efficiency of the algorithm, by giving some bad cases for
sinx in IEEE-754 double precision.

Notation. If x ∈ R and y ∈ R\{0}, we define x cmod y to
be a representative of x+Zy which lies in [−y/2, y/2], i.e.,
the difference between x and a closest multiple of y, taking
whatever choice if x is exactly the middle of two consecu-
tive multiples of y. In this paper, we define a floating-point
number as a fraction of the form r = m · 2−t, where m
and t are integers. For such numbers, we define size (r) =
size (m) + |t|. For complexity statements, we adopt the
bit-complexity model, and let P(n1, . . . , nk) denote some
polynomial in n1, . . . , nk. We define �a, b� = [a, b] ∩ Z,
for any a, b ∈ R. If �b = (b1, . . . , bd) is a vector, its
L1-norm is denoted by ‖�b‖1 =

∑d
i=1 |bi|. Finally, if P

and Q are univariate polynomials, we denote their resultant
by Res(P, Q).

2. Searching for Bad Cases of a Periodic Func-
tion

In the whole paper, we consider floating-point numbers
in radix 2 and precision p:

x = ±m · 2e,

where e ∈ Z is the exponent of x, and m is the p-bit sig-
nificand in [1/2, 1), i.e., with m ∈ 2−p · �

2p−1, 2p − 1
�

.
However, the results presented here are radix-independent.
Indeed, in §4.1, the algorithm is described in terms of pow-
ers λ, µ of the radix, and nothing is specific to the binary
case. See also [6].

Definition 1 The significand m(y) and the exponent
Exp(y) of a non-zero real number y are defined by |y| =
m(y)·2Exp(y) such that 1/2 ≤ m(y) < 1, and Exp(y) ∈ Z.

A bad case of a function f is a floating-point number x
for which the value f(x) is hard to round in the given pre-
cision:

Definition 2 Let f be a real valued function and ε > 0. An
ε-bad case of f in precision p is a real x such that:

|2p · m(f(x)) cmod 1| ≤ ε.

A worst case of the function f over a finite set M is any in-
put x ∈ M minimising the quantity |2p · m(f(x)) cmod 1|.

In other words, an ε-bad case corresponds to an f(x) at
distance less or equal to ε unit in last place (ulp) from the
nearest p-bit floating-point number. This definition corre-
sponds to bad cases for the directed rounding modes. This is
enough to cover all IEEE-754 rounding modes, since any ε-
bad case for the rounding to nearest mode in precision p is
a (2ε)-bad case in precision p + 1 for directed rounding.

Let f be a periodic function, with period Π. We want
to find bad cases of f when the input numbers x are much
larger than the period. Apart from the naive method — com-
pute f(x) with sufficient precision for all x in the studied
domain —, the classical methods (Lefèvre, SLZ) work in
the following way:

1. Split the interval under study into sub-intervals.

2. In each sub-interval, approximate the function f by a
degree-d polynomial P , e.g., a Taylor polynomial. If
the approximation error is bounded by ε2ulp(f(x)),
the ε1-bad cases of f must be (ε1+ε2)-bad cases of P .

3. The (ε1 + ε2)-bad cases of P are computed, by an ad
hoc method: Lefèvre’s (based on continued fraction
expansion) for d = 1, or SLZ (based on Coppersmith’s
method) for d ≥ 2.

4. Check if the (ε1 +ε2)-bad cases of P found are ε1-bad
for f .

In our setting, the difference between two consecutive
machine numbers may be so large that small-degree poly-
nomial approximations are valid in intervals with too few
floating-point numbers, thus we cannot use classical meth-
ods like Lefèvre’s or the SLZ algorithms directly.

Example. Consider sin x in [21023, 21024), which corre-
sponds to the largest binade of the IEEE-754 double pre-
cision. The difference between two consecutive machine
numbers in that binade is µ = 2971, which is a huge quan-
tity compared to the period of the sine function. Reducing
µ modulo 2π does not help either, since µ ≈ 1.95 mod 2π.
This example shows the two problems we are faced:

2

1. an argument reduction is needed to reduce the (large)
input x to the fundamental interval [−Π/2, Π/2];

2. even after that argument reduction, consecutive
floating-point numbers x and x′ in precision p give un-
related values f(x) and f(x′), since ulp(x) mod Π is
usually not small.

To demonstrate the second problem, consider the first
floating-point numbers xi = (252 + i)µ of the largest IEEE-
754 double precision binade, still with µ = 2971; the cor-
responding values of sinxi are: sin x0 ≈ 0.563, sinx1 ≈
−0.976, sin x2 ≈ 0.160, sin x3 ≈ 0.858, sinx4 ≈ −0.795.
We see that even determining a priori the binade [2h−1, 2h)
in which |f(x)| lies is a non-trivial problem (see §4.3).

In the present paper, we describe the first non-naive al-
gorithm that finds the worst cases of a periodic function for
large arguments. More precisely:

Theorem 1 Let f be a periodic C∞ function. Given
as input a precision p, an exponent e and a bad case
bound ε, the algorithm described in §4 finds all the values x
in 2e−p ·�2p−1, 2p − 1

�
such that |2p · m(f(x)) cmod 1| ≤

ε. Moreover, if one chooses the parameter d = 5, if ε =
2−p+O(1) and if α → ∞, then the running time of the al-
gorithm can be heuristically bounded by 2p·(7−2

√
10+o(1)),

after a precomputation of precision e + O(1) bits.

Note that since the function is C∞ and periodic, its suc-
cessive derivatives are bounded over R. This fact will prove
important when we will use the complexity results on the
SLZ algorithm.

3. Lefèvre’s and SLZ Algorithms

Two non-naive algorithms are known to find the worst
cases of a univariate function. Suppose that we want to
search for the worst cases of a function f , where f is C∞

with uniformly bounded derivatives. For example, we can
consider f = sin over [1/2, 1) with p = 53. We expect the
worst case to be an ε-bad case for ε ≈ 2−p. We are thus
interested in solving equations of the type:

|λ · f(µt) cmod 1| ≤ ε with t ∈ �t0, t0 + N� (1)

where λ, µ, and ε are positive real numbers and t0, N ∈ Z.
In the classical search for directed rounding, if we con-

sider the restriction of f over the input interval [2e−1, 2e),
and assuming all outputs are in [2h−1, 2h), we have λ =
2p−h, µ = 2e−p, t0 = N = 2p−1, and ε = 2−p+O(1).

Lefèvre’s and the SLZ algorithms can be adapted to
solve Equation (1). In Lefèvre’s algorithm, the inter-
val �t0, t0 + N� is subdivided into sub-intervals; on each
of these sub-intervals, the function f is approximated by a

linear function; finally, the bad cases of the linear functions
are computed with a variant of Euclid’s algorithm for com-
puting greatest common divisors.

In the SLZ algorithm, the linear approximations are re-
placed by higher degree approximations (though usually
still quite small degrees), and Euclid’s algorithm is replaced
by the LLL-based Coppersmith method for computing the
small roots of bivariate polynomials modulo an integer. The
SLZ algorithm was originally described in [8]. Its complex-
ity analysis was improved later in [7].

The SLZ algorithm is described in Figure 1. This de-
scription is slightly different from the one of [7]: the quan-
tities 1/µ and ε can now be real numbers. This modification
does not create any problem for the correctness and com-
plexity analysis of the algorithm. The following theorem is

Input: Integers t0, N > 0, real numbers λ, µ, ε > 0.
Parameters: T, d, α ∈ Z.
Output: All the solutions t ∈ �t0, t0 + N� to Equation (1).

1. n := (α+1)(dα+2)
2

, r := α(α+1)
2

,T ′ := T, S := ∅,
{e1, . . . , en} := {xiyj , i + dj ≤ dα}.

2. t := t0. While t ≤ t0 + N , do
3. If t + 2T ′ ≥ t0 + N , T ′ :=

¨
t0+N−t

2

˝
.

4. If T ′ = 0, then
5. Add t in S if it is solution to Equation (1).
6. t := t + 1, T ′ := T .
7. Else
8. tm := t + T ′, P (x) := f(µtm) + f ′(µtm)µx+

. . . + 1
d!

f (d)(µtm)(µx)d.

9. ε′ :=
“
maxx∈[0,1]

˛̨
˛f (d+1)(x)

˛̨
˛
”
· λ

(d+1)!
(µT ′)d+1.

10. {g1, . . . , gr} := {xi (λP (x) + y)j , i + j ≤ α}.
11. Create the r × n matrix B such that Bk,l is the

coefficient of the monomial el in the polynomial
gk (xT ′, (ε + ε′)y).

12. LLL-reduce the rows of B. Let�b1,�b2 be the two
shortest vectors of the reduced basis.

13. z := 1. If ‖�b1‖1 ≥ 1 or ‖�b2‖1 ≥ 1, z := 0.
14. Let Q1(x, y),Q2(x, y) be the polynomials

corresponding to�b1 and�b2.
15. R(x) := Resy(Q1(x, y), Q2(x, y)). If R(x) = 0,

then z := 0.
16. If z = 0, then T ′ := �T ′/2�.
17. Else, for any root x of R belonging to �−T ′, T ′�,

add tm + x in S if it is a solution to Equation (1),
t := t + 2T ′ + 1, T ′ := T .

18. Return S.

Figure 1. The SLZ algorithm.

a direct consequence of the main result of [7].

Theorem 2 Let d ≥ 1 be a constant integer. Let t0, N
be positive integers and λ, µ, ε be positive reals. Sup-
pose that 1/µ ≥ t0 + N . Let T, α be positive integers,

3

with T ≤ N . Given t0, N , λ, µ, ε, T , d and α as input,
the algorithm of Figure 1 outputs all the solutions to Equa-
tion (1). Moreover, if the variable z is never set to 0 at
Step 15, then the algorithm finishes in time:

P (size (µ) , size (λ) , size (ε) , α) · N

T
,

as long as ε ≤ µλ and:

log2 T ≤ min
(

n1 − m + n2 + O(1)
d + 1

,

n1 − (n1 + n2)2

4(m + n2)
(1 + ε1) + ε2

)
,

with n1 = − log2 µ, n2 = log2 λ, m = − log2 ε and, for α
growing to ∞:

ε1 = O(1/α)

ε2 =
1

m + n2
O(α2) +

n1

m + n2
O(α)

+(m + n1 + n2)O(1/α).

Note that the complexity statement of the theorem above
is only heuristic. The claimed complexity bound holds as
long as the variable z is never set to 0 at any Step 15 of the
algorithm, which means that all pairs of bivariate polyno-
mials whose resultants are computed are algebraically inde-
pendent. This assumption seems to be satisfied in practice
for any non-algebraic function f .

By using λ = 2p, µ = 2−p, t0 = N = 2p−1,
ε = 2−p+O(1), α → ∞ while α = o(p), and d = 3,
this provides an algorithm to find the worst case of a func-
tion f : [1/2, 1) → [1/2, 1) with precision p in heuristic
time 2p(1/2+o(1)). This is the best algorithm known so far
for solving this problem when the target precision p goes to
infinity. (We are mainly interested here in the case of the
IEEE-754 double precision, i.e., p = 53.)

4. The Algorithm

4.1. High Level Description

Analyzing why the original SLZ algorithm fails for large
arguments of periodic functions leads one to the solution.
The key remark is that, though consecutive values of x in
the range under study yield unrelated values of f(x), non-
consecutive values of x can yield very close values of f(x).

Indeed, consider the values of x cmod Π, where Π is the
period of f . (Here, and in the rest of the paper, we shall
assume that Π is an irrational number.) Since we have many
values of x cmod Π uniformly distributed in [−Π/2, Π/2],
the idea is to split this latter interval into sub-intervals over
which we will be able to use polynomial approximations
of f .

There is still one difficulty to overcome: the methods
mentioned above require the floating-point numbers x we
consider as potential bad cases to be in some arithmetic
progression. Our solution to this problem is illustrated in
Figure 2. Remember that we want to solve Equation (1):

|λ · f(µt) cmod1| ≤ ε with t ∈ �t0, t0 + N� .

The idea is the following: consider an integer q such that
τ := qµ cmod Π is small. A natural choice is to take
for q the denominator of a continued fraction convergent
from µ/Π. Each t ∈ �t0, t0 + N� can be uniquely written
t = sq + r, where 0 ≤ r < q. Then µt in Equation (1)
becomes τs + µr mod Π, and thus Equation (1) is now:

|λ · gr(τs) cmod 1| ≤ ε with s ∈
�

t0 − r

q
,
t0 + N − r

q

�
,

where gr(x) := f(rµ + x). We have thus transformed a
problem for the function f with parameters λ, µ, t0, N into
q similar problems for the functions gr, 0 ≤ r < q, with
parameters λ, τ, t0−r

q , N/q.
Writing x0 = t0µ and xN = (t0+N)µ, we then decom-

pose the interval �t0, t0 + N�µ as

[x0, xN] =
q−1⋃
r=0

µ · A(q, r)

where A(q, r) is the part of the arithmetic progression
r mod q which is within the interval [t0, t0 + N], and the
notation µ· means that we apply a homothety (a scaling) of
factor µ.

Let Ir = µ ·A(q, r) be an interval in the partition defined
above. Over this interval, we have f(µt) = f(µqs + µr) =
f(τs + µr). The point is now that, τs being small over
this latter interval, if f is regular enough, f(τs + µr) can
rightfully be approximated by the Taylor polynomial

f(µr) + τsf ′(µr) +
d∑

k=2

(τs)k f (k)(µr)
k!

,

with an error of the order of (τs)d+1. We are thus back to
the classical case, where Lefèvre’s or the SLZ algorithms
apply. One difference is that the distance between two con-
secutive numbers to check is τ which is irrational instead of
2e−p, but this makes no difference for Lefèvre’s algorithm
or SLZ.

Following the principle of worst cases algorithms, we
might have to split our “intervals” Ir into smaller “sub-
intervals”: in that case, we split each arithmetic progression
A(q, r) into sub-progressions1.

1We do not write “intervals” any more, since the numbers are not ad-
jacent; however these subsets of numbers still form a partition of the N
numbers to test.

4

++
++

++

x0

x1

x2

x3

x4

x5

+

+

+

++

+
x0

x1

x2

x3

x4

x5

++
++
++

x0

x8

x16

x24

x32

x40

Figure 2. Top: Over [0, 2π), successive
floating-point numbers are close and in arith-
metic progression. Middle: For a large bi-
nade, successive floating-point numbers are
not necessarily close modulo 2π; here, the
first points of the binade [269, 270]. Bottom:
For a large binade, there exists q such that
the first, the (q + 1)-th, the (2q + 1)-th, . . .
floating-point numbers are close modulo 2π
and in arithmetic progression. Here, same bi-
nade as above, with q = 8.

In order to reduce the error coming from the use of Tay-
lor’s formula, we want τ to be as small as possible. This
implies that q must be large, since one can expect τ ≈ Π/q.
However, using a too large q is not a good idea since we
have to deal with q different progressions. The solution of
this optimization problem is given in §5.

Input: Integers t0, N > 0 and real numbers λ, µ, ε, Π > 0,
with µ “large”.

Parameters: T, Q, d, α ∈ Z.
Output: All the solutions t ∈ �t0, t0 + N� to Equation (1).

1. Find the largest continued fraction convergent q ≤ Q of
the quantity µ/Π.

2. Compute τ ≈ qµ cmod Π with the algorithm of Figure 4.
3. for t := t0 to t0 + q − 1 do
4. Apply the SLZ algorithm (Figure 1) with t0 = t,

N = �(t1 − t)/q�, µ = τ , λ = 2p−Exp(f(µt)),
and with the parameters d, α and T := N .

Figure 3. Sketch of the main algorithm

4.2. Required Working Precision

We study here the precision required in the different
steps of the main algorithm (Figure 3). Only one large argu-
ment reduction is required, namely for the computation of
qµ cmod Π; all subsequent computations can be performed
with precision O(p).

Lemma 1 The worst case search with large arguments in a
binade [2e−1, 2e] can be implemented with a working pre-
cision of 3p+O(1) bits, after a precomputation with e+3p
bits.

Proof. Since the expected worst cases correspond to ε ≈
2−p, it suffices to compute f(x) with relative precision 2p+
O(1). Since x = µr+τs cmod Π with r < 2p and |τs| < 1,
it suffices to compute µ with relative precision 3p + O(1)
and τ with relative precision 2p + O(1), which is what the
algorithm in Figure 4 does.

Take a function f of period Π such that 2h−1 ≤ Π < 2h.
We denote by ◦w(·) the rounding to nearest in precision w.

The error on α is at most 2h−w−1; since 2h−1 ≤ α ≤ 2h,
we have k ≤ 2e−(h−1), thus kα ≤ 2e+1, and the error on
◦w(kα) is at most 2e−w+1. Now Exp(β) ≤ h, and the error
on β is bounded by 2−3p−1 + 2e−w+1 ≤ 2−3p+2.

The error on γ is bounded by 2−2p−1 + 2−2p+2 ≤
2−2p+3; we have l ≤ 2p+1, thus lα ≤ 2p+h+1, and
the error on ◦h+3p(lα) is bounded by 2−2p + 2h−e−2p ≤
2−2p+1. Finally |τ | ≤ 2h and the error on τ is bounded by
2−2p−1 + 2−2p+3 + 2−2p+1 ≤ 2−2p+4. �

Example: Consider sin x for x an IEEE-754 double pre-
cision number in [21023, 21024). We have µ = ulp(x) =

5

Input: A precision p, µ = 2e with e ≥ h where
h = Exp(Π), an integer q < 2p.

Output: Approximations of µ cmod Π and qµ cmod Π.

1. w := e + 3p.
2. α := ◦w(Π).
3. k := �◦w(2e/α)
.
4. β := ◦h+3p(2e − ◦w(kα)).
5. γ := ◦h+3p(qβ).
6. l := �◦3p(γ/α)
.
7. τ := ◦h+2p(γ − ◦h+3p(lα)).
8. Return β ≈ µ cmod Π, τ ≈ qµ cmod Π.

Figure 4. Approximation of µ cmodΠ and
qµ cmod Π.

2971 ≈ 1.95 cmod(2π). Consider q = 15106909301, then
τ = qµ cmod (2π) ≈ 0.441 · 10−12. The next conver-
gent has denominator q = 14233796029594, which gives
τ ≈ −0.757 · 10−13. Note that the value of q depends on
the considered binade: for the binade [2511, 2512), where
µ = ulp(x) = 2459 ≈ 0.109 cmod(2π), we can choose
q = 93888452023, which gives τ ≈ 0.371 · 10−11, or
q = 1668824993486, which gives τ ≈ −0.101 · 10−11.

Remark. The idea described above (splitting the values of
x according to their repartition modulo Π) can be pushed
further; given a value x0 + kµ where x0 = t02e−p and
µ = ulp(x0), one can give a complete description of the
set of integers 	 such that x0 + 	µ cmodΠ is close to
x0 + kµ cmod Π, i.e., (− k)µ cmod Π ≈ 0, in terms of
the denominators qi of the convergents of the continued
fraction of µ/Π. However, if using this idea reduces the
number of intervals under study, it significantly increases
the number of variables (an element 	 being described as∑

i aiqi + r for ai in a given interval). The fact that Cop-
persmith’s method behaves badly when the number of vari-
ables increases seems, however, to make this refinement of
our idea pointless.

4.3. Determining the Output Exponents

An additional problem is to compute the output expo-
nent — Exp(f(µt)) in Figure 3 — for a given subset
{(sq + r)µ, t0 ≤ sq + r ≤ t0 + N}, and to check that
exponent is constant on that subset. Let x0 = r′µ cmodΠ,
t0 ≤ r′ < t0 + q, and τ = qµ cmod Π. The corresponding
reduced subset is {x0 + sτ, s ∈ S} for some interval S of
width less than
N/q�. The arguments in the reduced subset
are thus all in the interval [x0, x0 + h] with h = τ
N/q�.
The width h is usually small: since τ ≤ Π/q, we have
h ≤ ΠN/q2. For example with the largest IEEE-754

double precision binade [21023, 21024) and the sine func-
tion with q = 15106909301, one gets
N/q� = 298116
and h ≈ 0.132 · 10−6.

For the sine function, it suffices to check that sin x0 and
sin(x0 +h) lie in the same binade. Indeed, the sine function
is decreasing on [−π,−π/2], increasing on [−π/2, π/2],
and then decreasing on [π/2, π]. Around the points −π/2
and π/2 where the derivative sign changes, one has 1/2 ≤
| sin x| ≤ 1 in an interval of width 2π/3 > h.

In practice, one does not need to evaluate sinx0 and
sin(x0 + h), since sin x admits a constant exponent on
[sin−1 1

2k , sin−1 1
2k−1]; given precomputed approximations

a and b such that sin−1 1
2k ≤ a and b ≤ sin−1 1

2k−1 , it
suffices to check that [x0, x0 + h] ⊂ [a, b].

5. Complexity Analysis

The algorithm consists in solving the equations:

|λ · f(rµ + τs) cmod 1| ≤ ε,

with 0 ≤ r < q and s ∈
�

t0−r
q , t0+N−r

q

�
. Note that, by the

classical Dirichlet theorem, for any Q one can find 0 ≤ q ≤
Q such that the corresponding τ has |τ | ≤ Π/Q = O(1/Q).

The overall cost of the algorithm is thus bounded by Q
times the cost of solving a single of the above equations.
These equations can be solved by using Lefèvre’s algo-
rithm or the SLZ algorithm. To analyse the algorithm
of the previous section, it thus suffices to adequately use
Theorem 2. We are to apply this theorem with µ := τ ,
λ := 2p−Exp(f(x)), N := 2p−1/q and ε ≥ 2−p. Several
parameters can be set in order to optimise the complexity of
the algorithm: the degree d of the polynomials approxima-
tions, the parameter α of Coppersmith’s method, the upper
bound Q for the chosen convergent of the continued fraction
expansion of µ/Π, the size T of the sub-intervals within
Lefèvre’s algorithm or the SLZ algorithm, and the quality ε
of the computed bad cases.

We now use Theorem 2. For our choice of parameters,
the condition “ε ≤ µλ” is satisfied2. We fix a constant
parameter d.

Let m = − log2 ε. With the given parameters, we
have ε1 = O(1/α) and ε2 = 1

pO(α2) + O(α) + pO(1/α).
Let ε3 > 0 be an arbitrarily small constant. We fix α so
that |ε1| ≤ ε3 and |ε2| ≤ ε3 · p when p is larger than
some p0. Our goal is to maximise the parameter T under

2We have µλ = τ2p−Exp(f(x)). Since f is periodic and C∞, it is
bounded in absolute value by some constant C, which together with τ ≥
2−p yields µλ ≥ 1/C, and on the other hand ε goes to zero.

6

the following conditions:

log2 T ≤ min
(

n1 − m + p

d + 1
,

n1 − (n1 + p)2

4(m + p)
(1 + ε3) − ε3 · p

)
,

m ≤ p

T ≤ 2p/q

where n1 = − log2 µ. We now choose to set T = 2p−n1−c

for an adequate constant c ≥ 0, which fulfills the third con-
dition (remember µ = τ = O(1/q)). With this choice
for T , the first condition is implied by:

2n1

1 + ε3
≥ O(1) + p + max

(
m + p

d + 1
,
(n1 + p)2

4(m + p)

)
. (2)

Since the overall complexity is roughly 2p/T and T =
2p−n1−c, we are trying to minimise n1. For any fixed de-
gree d, the best n1 is reached when both values maximised
are equal. This gives the relation:

2
1 + ε3

n1 − p = O(1) +
m + p

d + 1
= O(1) +

(n1 + p)2

4(m + p)
.

There exists a constant c′ such that the following choice of
parameters satisfies Equation (2):

n1 = (1 + c′ε3)
8d + 9 + 6

√
d + 1

16d + 15
· p + O(1),

m =
12(d + 1)(

√
d + 1 − 1) − d

16d + 15
· p.

Furthermore, this choice of parameters is extremely close to
the optimal choice.

Unfortunately, it implies ε ≤ 2−p as soon as d ≥ 5. This
means that to take advantage of a larger d, we would need
a much smaller ε, but we would no longer find any ε-bad
case: no ε-bad case with ε significantly smaller than 2−p is
expected to exist. If we fix m = p−O(1), then Equation (2)
can be rewritten as:

2
1 + ε3

n1 − p ≥ O(1) + max
(

2p

d + 1
,

(n1 + p)2

8p + O(1)

)
.

With simple computations, we find the optimal solu-
tion n1 = (1 + c′′ε3)(7 − 2

√
10) · p and d = 5 for some

constant c′′ > 0.

This completes the proof of Theorem 1. The following
table sums up the best parameters for d ≤ 5.

d Q ε T

1 2(4/5)p ≈ 20.800·p 2−(1/5)p 2(1/5)p

2 2(3/4)p ≈ 20.750·p 2−(1/2)p 2(1/4)p

3 2(5/7)p ≈ 20.714·p 2−(5/7)p 2(2/7)p

4 ≈ 20.689·p ≈ 2−0.889·p ≈ 20.311p

5 ≈ 20.675·p 2−p ≈ 20.325p

Remark: The analysis of this section does not provide the
bounds given in the table above for d = 1 and d = 2.
These bounds can be obtained by using Lefèvre’s algorithm
(for d = 1) and the refined analysis of the SLZ algorithm in
the particular case d = 2, which can be found in [9].

6. Numerical Results and Conclusion

We have implemented the algorithm from §4 on top of
the GMP library [2]. To demonstrate the efficiency of the al-
gorithm, we have applied it to the largest IEEE-754 double
precision binade, namely [21023, 21024), for the sine func-
tion. In that binade, no bad cases were known so far, even
for a moderately small ε ≈ 2−30.

6.1. Estimates of the Running Time for the
[21023, 21024) Binade

This binade corresponds to µ = ulp(x) = 2971. We
used the value q = 15106909301, with the parameters
d = 3 (degree-3 Taylor approximation) and α = 2. The
integer q is a denominator of a convergent of µ/(2π), and
gives τ = qµ cmod (2π) ≈ 0.441 · 10−12. For that value
of q, each arithmetic progression sq + r for a given r has
at most 298116 elements in the range [252, 253), thus the
maximal value of T ′ for the SLZ algorithm (Figure 1) is
about 149058. Those values correspond to an error ε′ ≈
7 · 10−15 at step 9 of the algorithm (in comparison, degree
d = 2 would give ε′ ≈ 4 · 10−7 only).

With those parameters, we were able to find the follow-
ing bad cases — for directed rounding — in a few days of
computing time, where 143 is a shortcut for a sequence of
43 consecutive ones:
sin(4621478864517314 · 2971) =

−0.0 10010110001110101110010000111100111100010000000100000
| {z }

53

143 0001...

sin(5501214608935005 · 2971) =

0.00 10011000110011100101110100111100011011010010001111111
| {z }

53

045 1011...

As a comparison, one can estimate the time needed to
find such bad cases with a naive algorithm. On a 2.4 Ghz
Opteron, our naive implementation, which does a single
huge argument reduction for all tested values, can check one
million of sin x values around x = 21023 in about 6 seconds,
in double precision with ε = 2−40. Then one needs about
244 random trials to find a bad case with a run of 45 zeros
or ones after the 53-bit significand. This would correspond
to more than 3 expected years to find a 2−45-bad case, and
about 850 years to check the whole binade [21023, 21024).
With an implementation of the algorithm from §4, checking
298116 values t · 2971 with 252 ≤ t = sq + r < 253 takes
only 0.008 second on the same machine. This corresponds
to about 4 years to check the whole binade [21023, 21024).

7

6.2. Handling the Output Exponents

Checking the exponent ranges for all q arithmetic pro-
gressions with the method described in §4.3 took less than
90 minutes. We obtained the following repartition, where
a row “exponent e” indicates the number of arithmetic pro-
gressions with constant exponent e, 2e−1 ≤ | sinx| < 2e,
and the row “non-constant exponent” gives the number of
remaining progressions where the exponent changes (two
or more values):

exponent 0 10071272234
exponent −1 2605518908
exponent −2 1224792482
exponent −3 603844405
exponent −4 300884230
exponent −5 150312764
exponent −6 75139690
exponent −7 37567206
exponent −8 18782720
exponent −9 9390695
exponent −10 4694711
exponent −11 2346722
exponent −12 1172728
exponent −13 585732
exponent −14 292234
exponent −15 145484
exponent −16 72110
exponent −17 35421
exponent −18 17078
exponent −19 7906
exponent −20 3320
exponent −21 1028
non-constant exponent 29493
Total 15106909301

The same computation can be performed on the cosine
function without any major modification. On the contrary,
things worsen for the tan function, because it is not C∞

over R. This should not be a major issue since the in-
put floating-point numbers x for which tan(x) is large can
be computed, and then we could restrict the domain under
study to [−π/2+c, π/2−c] for some small constant c > 0,
instead of (−π/2, π/2). In this smaller interval, any suc-
cessive derivative is bounded.

One of the main reasons for computing the tables of
worst cases is to provide tight upper bound on the required
internal precision to compute correctly the main elemen-
tary functions in double precision, e.g., all C99 univariate
functions. It is thus crucial to guarantee that the found bad
cases are indeed the worst. The algorithm described in the
present paper, and those described in [5, 8] are proved cor-
rect, but their implementations could be incorrect. A natural
question is thus the following: is it possible to have an in-
dependent verification of the worst cases found over a given

domain, possibly by keeping part of some intermediate val-
ues computed by the algorithms?
Acknowledgements. The authors would like to thank the
anonymous referees, whose comments helped to improve
the presentation of the paper.

References

[1] COPPERSMITH, D. Finding small solutions to small degree
polynomials. In Proceedings of the 2001 Cryptography and
Lattices Conference (CALC’01) (2001), vol. 2146 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 20–31.

[2] GNU MP: The GNU Multiple Precision Arithmetic Library,
4.2.1 ed., 2006. http://www.swox.se/gmp/#DOC.

[3] IEEE STANDARDS COMMITTEE 754. ANSI/IEEE standard
754-1985 for binary floating-point arithmetic. Reprinted in
SIGPLAN Notices, 22(2):9–25, 1987.

[4] LANG, T., AND MULLER, J.-M. Bounds on runs of ze-
ros and ones for algebraic functions. In Proceedings of the
15th IEEE Symposium on Computer Arithmetic (ARITH’15)
(2001), IEEE Computer Society, pp. 13–20.

[5] LEFÈVRE, V., AND MULLER, J.-M. Worst cases for cor-
rect rounding of the elementary functions in double preci-
sion. In Proceedings of the 15th IEEE Symposium on Com-
puter Arithmetic (ARITH’15) (2001), IEEE Computer Soci-
ety Press, pp. 111–118.

[6] LEFÈVRE, V., STEHLÉ, D., AND ZIMMERMANN, P.
Worst cases for the exponential function in the ieee
754r decimal64 format. In Reliable Implementation
of Real Number Algorithms: Theory and Practice
(2006), P. Hertling, C. M. Hoffmann, W. Luther, and
N. Revol, Eds., no. 06021 in Dagstuhl Seminar Pro-
ceedings, Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany.
<http://drops.dagstuhl.de/opus/volltexte/2006/748>.

[7] STEHLÉ, D. On the randomness of bits generated by suf-
ficiently smooth functions. In Proceedings of ANTS VII
(2006), vol. 4078 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 257–274.

[8] STEHLÉ, D., LEFÈVRE, V., AND ZIMMERMANN, P. Worst
cases and lattice reduction. In Proceedings of the 16th Sym-
posium on Computer Arithmetic (ARITH’16) (2003), IEEE
Computer Society Press, pp. 142–147.

[9] STEHLÉ, D., LEFÈVRE, V., AND ZIMMERMANN, P.
Searching worst cases of a one-variable function. IEEE
Transactions on Computers 54, 3 (2005), 340–346.

[10] ZIV, A. Fast evaluation of elementary mathematical func-
tions with correctly rounded last bit. ACM Transactions on
Mathematical Software 17, 3 (1991), 410–423.

8

