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Abstract

Numerical integration is an operation that is frequently
available in multiple precision numerical software pack-
ages. The different quadrature schemes used are consid-
ered well studied but the rounding errors that result from
the computation are often neglected, and the actual accu-
racy of the results are therefore seldom rigorously proven.

We propose an implementation of the Gauss-Legendre
quadrature scheme with bounded error: given a bound on
the derivatives of a function we are able to compute an in-
terval containing the true value of the integral, in arbitrary
precision. The error analysis is given as well as exper-
imental error measurements and timings, and a complete
quadrature example.

1. Introduction

Numerical integration is readily available in most multi-
ple precision numerical computation software (e.g. Pari/GP,
MuPAD, Mathematica, Maple, . . . ). In those systems the
precision can usually be tuned by the user for each com-
putation (it is generally understood as the “working pre-
cision” but it may also be the number of digits displayed,
when these two values differ). It is however not necessar-
ily clear how many, if any, of the displayed digits are cor-
rect. As a concrete example we ask Maple 10 the value of
I =

∫ 42

17
e−x2

log xdx with the default precision of 10 dig-
its:

> evalf(Int(exp(-x^2)*ln(x), x=17..42));
-126

0.2604007480 10

We may want to ask for a second value with a
greater precision of 20 digits and we would get v2 =
0.34288028340847034512 · 10−126 which has no common
digit with the previous value v1 = 0.2604007480 · 10−126.
As we will see later increasing the precision did in fact
worsen the result.

This experiment is a blunt reminder of the lack of clear
semantics for floating-point computations beyond the ba-
sic operations covered by the IEEE 754 standard [6]. As

soon as computations are composed or transcendental func-
tions like the sine function are used nothing is guaranteed by
the IEEE 754 standard, and multiple-precision arithmetics
is not covered either. This is however not an excuse to rely
only on heuristics to compute accurately, and it is still pos-
sible to obtain guaranteed results.

Several approaches were made to overcome these short-
comings when computing integrals. One can mention the
use of adaptive quadrature functions with an automatic ad-
justment of the integration step to each subinterval (in Mu-
PAD [9]), or dynamic error control (of simple or multiple
integrals [1, 7]). However well these techniques may work
in practice, they rely on heuristics to provide an accurate
answer to an integration problem.

Our work differs from these approaches in that we seek
to give a proven bound on the error that takes into account
all sources of errors, including the rounding errors. What
we compute is in fact an interval containing the result of
the integral, and with a proper choice of parameters one can
use our algorithm to increase arbitrarily the precision on the
result.

This paper is organized as follows. We first recall
briefly the Gauss-Legendre integration from a mathemati-
cal point of view, as well as some definitions and properties
of floating-point arithmetics. In Section 3 we will describe
the algorithms used to compute the Legendre polynomials
and the coefficients of the method, which do not depend on
the function to integrate and can therefore be precomputed
for several functions.

We follow with our main result in Section 4: our quadra-
ture algorithm (Algorithm 2) along with its error analysis
and an error bound summarized in Theorem 3. We give a
complete example of use of our algorithm in Section 5.

2. Reminders
2.1. Gauss-Legendre Rule

We give a description of the Gauss-Legendre quadrature
method. It is a member of the Gaussian family of quadrature
methods which is more generally studied in [2]. Algorithms
for orthogonal polynomials and gaussian quadrature may be
found in [4] also.
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In this paper, f : [a, b]→ R is the C∞ function we want
to integrate on a finite domain [a, b] and n is the number of
points of the Gauss-Legendre method. Let

I =
∫ b

a

f(x)dx

be the exact value of the integral. We define the inner prod-
uct of f and g on [a, b] for the admissible weight function
w as

< f, g >=
∫ b

a

w(x)f(x)g(x)dx.

This leads to the definition of a sequence of orthogonal
polynomials (pi)i≥0 such that:

∀i ∈ N,deg(pi) = i

∀(i, j) ∈ N2, < pi, pj >= δi,j

where δi,j is Kronecker’s delta. For fixed n > 0, pn

has n distinct roots in (a, b) which we name x0 < x1 <
. . . < xn−1. The Gauss quadrature method associated to
the weight function w on [a, b] is the interpolatory method
at evaluation points (xi)0≤i<n such that∫ b

a

w(x)p(x)dx =
n−1∑
i=0

wip(xi)

holds for every polynomial p of degree up to n − 1 (this is
enough to define the weights wi although the method will
be shown to integrate accurately polynomials of degree up
to 2n− 1).

The Gauss-Legendre quadrature method is the Gauss
method for the weight function w = 1. Additionally
the Legendre polynomials (Pn)n≥0 are usually defined on
[−1, 1] and normalized such that Pn(1) = 1 and we will
follow this custom here.

2.2. Legendre Polynomials

In the rest of this paper Pn is the Legendre polynomial
of degree n defined on [−1, 1] as usual. The quadrature
method on [a, b] is derived from the quadrature method on
[−1, 1] from a shifting and scaling in the polynomial. We
will mostly focus on [−1, 1] but the results will be given for
the integration interval [a, b], with the details of the transla-
tion omitted.

We denote by x′0 < x′1 < . . . < x′n−1 the roots of Pn on
[−1, 1] and use the notation x0 < x1 < . . . < xn−1 for the
translated roots on [a, b].

Like other orthogonal polynomial sequences, the poly-
nomials (Pn)n≥0 satisfy a recurrence relationship: P0(X) = 1

P1(X) = X
(n + 1)Pn+1(X) = (2n + 1)XPn(X)−nPn−1(X).

(1)

From (1) we deduce that Pn has only monomials of degree
the parity of n and has rational coefficients. We recall Ro-
drigues’ representation:

Pn =
1

2nn!
dn

dxn
((x2 − 1)n)

which shows that we can use 2n as common denominator
for the polynomial’s coefficients. Thus Pn can be written

Pn(X) =
{

2−nQn(X2) if n is even
2−nXQn(X2) otherwise.

The problem of computing Pn is reduced to the one of com-
puting Qn, which has integer coefficients. The procedure is
detailed in Algorithm 1.

Algorithm 1 Computation of the Legendre Polynomials
INPUT: n ≥ 2.
OUTPUT: Qn.

1: Q0 ← 1
2: Q1 ← 2
3: p← 0 . holds the parity of the polynomial currently

computed
4: for i← 2 to n do
5: Qp ← −4(i− 1)Qp + 2(2i− 1)X1−pQ1−p

6: Qp ← 1
i Qp . exact integer divisions

7: p← 1− p
8: end for
9: return Q1−p

2.3. Mathematical error

In this section we give the bound on the mathematical
error made with the Gauss-Legendre quadrature method. A
generic proof for any weight function w can be found in [2].

Theorem 1. The Gauss-Legendre method on [a, b] with n
points is exact for polynomials of degree ≤ 2n− 1.

Theorem 2. Let M2n be a bound of |f (2n)| on [a, b], then
the error of the Gauss-Legendre integration of f on [a, b]
with infinite precision is bounded by

(b− a)2n+1(n!)4

(2n + 1)[(2n)!]3
M2n.

We will use in Section 5 the composition of the Gauss-
Legendre quadrature method: for an order of composition
m and an integration domain [a, b] the composed Gauss-
Legendre method is the application of the Gauss-Legendre
method on each m intervals {[a, a + b−a

m ], [a + b−a
m , a +

2 b−a
m ], . . . , [b− b−a

m , b]}. The error of the composed method
on [a, b] with infinite precision is therefore bounded by

(b− a)2n+1(n!)4

m2n(2n + 1)[(2n)!]3
M2n.
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2.4. Floating-point Arithmetics

For the error analysis of Algorithm 2, we need a few
useful lemmas concerning the “ulp calculus”, as well as
some definitions. The floating-point numbers are repre-
sented with radix 2 (this could be generalized for any radix
but radix 2 is simpler and is natural on computers). For
this section, p is the working precision, and we assume all
floating-point numbers are normalized, which means in our
notations that the exponent range is unbounded. We denote
by ◦(x) the floating-point number rounded to nearest in pre-
cision p of a given real value x.

Definition 1 (Exponent, Unit in the last place). For a non-
zero real number x we define E(x) := 1 + blog2 |x|c, such
that 2E(x)−1 ≤ |x| < 2E(x), and ulp(x) := 2E(x)−p.

For a real x 6= 0 and a working precision p we always have
2p−1ulp(x) ≤ |x| < 2pulp(x). If x is a floating-point
number, then ulp(x) is the weight of the least significant bit
— zero or not — in the p-bit mantissa of x. For all real x,
ulp(x) is always greater than zero by definition.

Lemma 1. If c 6= 0 and x 6= 0 then c ·ulp(x) < 2 ·ulp(cx).

Lemma 2. Assuming no underflow occurs then in all
rounding modes for a non zero real x we have: ulp(x) ≤
ulp(◦(x)), where ◦(x) is the rounding of x in the chosen
mode with an unbounded exponent range.

Lemma 3. Let x a non-zero real and ◦(x) its rounding to
nearest on p bits. Then |x| ≤ (1 + 2−p)| ◦ (x)|.

Lemma 4. Let a and b be two non-zero floating-point num-
bers of the same sign and precision p then in all rounding
modes

ulp(a) + ulp(b) ≤ 3
2
ulp(◦(a + b)).

PROOF: It suffices to consider the case where a and b are
positive. The definition of ulp gives:

2p−1ulp(a) ≤ a < 2pulp(a),

2p−1ulp(b) ≤ b < 2pulp(b)

thus

2p−1[ulp(a) + ulp(b)] ≤ a + b < 2p[ulp(a) + ulp(b)].

If ulp(a) = ulp(b) we get

2pulp(a) ≤ a + b < 2p+1ulp(a)

and therefore ulp(◦(a + b)) ≥ ulp(a + b) ≥ 2ulp(a) =
ulp(a) + ulp(b) (Lemma 2) and the lemma holds.

Otherwise we can assume without loss of generality that
ulp(a) > ulp(b), that is ulp(a) ≥ 2 · ulp(b). We deduce:

ulp(a) + ulp(b) ≤ 3
2
ulp(a),

and together with ulp(◦(a + b)) ≥ ulp(a + b) ≥ ulp(a)
(Lemma 2) this concludes the proof.

Lemma 5. For x and y real numbers and using rounding
to nearest in precision p we have

| ◦ (◦(x) · ◦(y))− xy| ≤ 5
2
ulp(◦(◦(x) · ◦(y))).

3. Pre-computations

In the integration algorithm the evaluation points and the
weights of the method do not depend on the function to inte-
grate and their computation can thus be shared among sev-
eral executions of the algorithm. We will now explain how
these quantities are computed.

3.1. Evaluation points

Computing the roots (x′i)0≤i<n of Pn reduces to the
computation of the roots of Qn. Let m = bn

2 c and u0 <
u1 < . . . < um−1 be the roots of Qn, we have:{

x′i, x
′
n−1−i

}
= {±

√
ui} , 0 ≤ i < m

and x′m = 0 if n is odd.
The process of computing the roots of Qn involves two

steps:

1. root isolation, that is finding m intervals that contain
exactly one positive root of Qn each,

2. root refinement.

The root isolation is made using Uspensky’s algorithm as
described in [11]. The input of the algorithm is Qn(x), and
the output is a sequence of m intervals of the form ci

2li
where

ci and li are integers and such that [ ci

2li
, ci+1

2li
] contains ex-

actly one root of Qn, namely ui. At this step, log2(ci) bits
of ui are known.

We use the interval Newton iteration described in [10]
for the root refinement. Since this method computes each
root in interval arithmetics, it is computable to arbitrary pre-
cision with a known bound on the error.

We denote by x̂ the value actually computed (i.e., with
all rounding errors) for a given “exact” value x, as would be
computed with an infinite precision from the beginning of
the algorithm. For technical reasons in the error analysis we
need to have the quantities vi = 1+x′

i

2 computed as rounded
to the nearest floating-point number:

|v̂i − vi| ≤
1
2
ulp(v̂i),

x̂i = ◦(◦(v̂i · (b̂− a)) + â).
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We will assume that b − a as well as a were computed as
rounded to nearest of the correct value. The error analysis
for the translated points on [a, b] gives:

| ◦ (v̂i · b̂− a)− vi · (b− a)| ≤ 5
2
ulp(◦(v̂i · b̂− a))

using Lemma 5, then

|x̂i − xi| ≤
1
2
ulp(x̂i) +

5
2
ulp(◦(v̂i · b̂− a)) +

1
2
ulp(â)

≤ 17
4

ulp(x̂i). [Lemma 4]

3.2. Weights

The weights (wi)0≤i<n satisfy the equation

∫ 1

−1

p(x)dx =
n−1∑
i=0

wip(xi)

for every polynomial of degree ≤ 2n− 1 (see Section 2.3).
For i ∈ [0, n − 1] we write Li(x) =

∏
j 6=i(x − xj). No-

tice that Li(x) = Pn(x)
(x−xi)P ′

n(xi)
. L′i has degree n − 2 so by

definition < L′i, Pn >=
∫ 1

−1
Pn(x)L′i(x)dx = 0:

0 = [Pn(x)Li(x)]1−1 −
∫ 1

−1

P ′n(x)Li(x)dx.

P ′nLi has degree 2n − 1 so it is integrated exactly by the
method:

P 2
n(1) + P 2

n(−1)
(1− xi)P ′n(xi)

=
n−1∑
j=0

wjP
′
n(xj)Li(xj).

From Equation (1) we can see that |Pn(±1)| = 1. Moreover
Li(xj) = δi,j so

wi =
2

(1− x2
i )P ′2n (xi)

. (2)

Since we can compute xi to arbitrary precision, we can
use Equation (2) to compute wi with arbitrary accuracy as
well. Recall that P ′n is known exactly and we can get an
error bound on P ′n(xi) (known as running error) using al-
gorithm 5.1 from [5, p. 95]. In the rest of this paper we will
assume that each wi is computed as the rounded to nearest
of the exact value:

|ŵi − wi| ≤
1
2
ulp(ŵi).

Algorithm 2 Gauss-Legendre integration

INPUT: â, b̂− a, (ŵi), f, (v̂i), n . where wi are the
weights and vi is defined in §2.4.
OUTPUT: Î , a p-bit approximation of

∫ b

a
f(x)dx with

error bounded by Theorem 3.
1: for i← 0 to n− 1 do
2: t← ◦((b̂− a) · v̂i)
3: x̂i ← ◦(t + â)
4: f̂i ← ◦(f(x̂i))
5: ŷi ← ◦(f̂i · ŵi)
6: end for
7: Ŝ ← sum(ŷi, i = 0 . . . n− 1) . with Demmel and

Hida algorithm [3]
8: D̂ ← ◦(b̂− a)/2
9: return ◦(D̂Ŝ) = Î

4. Integration Algorithm
In order to provide an error bound on the numerical result

given by the Gauss-Legendre method, we will have a step-
by-step look into Algorithm 2.

In addition to the parameters of Algorithm 2 we need
an upper bound M2n of |f (2n)| on [a, b]; p is the working
precision expressed in the number of bits of the mantissa, â

and b̂− a are given as the rounded to nearest floating-point
number in the desired precision; M1 an upper bound of |f ′|
on [a, b]. We will now prove our main theorem:

Theorem 3. Let δ byi
= 11

4 ulp(ŷi) + 6M1ŵi ulp(x̂i), where
ŷi, ŵi and x̂i are defined in Algorithm 2. When computing
the numerical quadrature of f using Algorithm 2 with p ≥ 2
the total error on the result is bounded by:

Btotal =
21
4

ulp(Î)+
5n

4
D̂·max(δbyi

)+
(b− a)2n+1(n!)4

(2n + 1)[(2n)!]3
M.

In the total error bound Btotal = Bmath +Brounding we will
distinguish between the bound on the mathematical error
Bmath given in Section 2.3, and the bound on the rounding
errors Brounding.

Algorithm 2 can be analyzed in several steps:

1. The computation of f(xi). We assume we have an im-
plementation of f with an error bounded by 1 ulp on
the result with precision p.

Such implementations of mathematical functions in ar-
bitrary precision with bounded error on the result and
even correct rounding for all rounding modes defined
in the IEEE 754 standard can be found for example
in MPFR [13] for non-trivial functions like exp, sin,
arctan and numerous others. The task of providing
an implementation with correct rounding (or weaker,
with bounded error) for arbitrary functions f is make
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possible by the strong semantics of floating-point op-
erations in MPFR but it is not necessarily easy. With
the already estimated error on x̂i we have:

|f(x̂i)− f(xi)| = |f ′(θi)(x̂i − xi)|,

for some θi ∈ [min(xi, x̂i),max(xi, x̂i)] and with an
upper bound on f ′ we can bound this error absolutely.
Let f̂i = ◦(f(x̂i)) be the floating-point number com-
puted. At this step we now have:

δ bfi
= |f̂i − f(xi)| ≤ |f ′(θi)(x̂i − xi)|+ ulp(f̂i)

≤ 17
4

M1 · ulp(x̂i) + ulp(f̂i).

2. Computation of the yi = f(xi) · wi. The accumulated
error so far:

|ŷi − yi| ≤
1
2
ulp(ŷi) + |f̂iŵi − f(xi)wi|

≤ 1
2
ulp(ŷi) +

f̂i|ŵi − wi|+ wi|f̂i − f(xi)|

≤ 1
2
ulp(ŷi) +

1
2
f̂iulp(ŵi) + wiδ bfi

≤ 3
2
ulp(ŷi) +

wi

[
17
4

M1 · ulp(x̂i) + ulp(f̂i)
]

[Lemmas 1 and 2]

≤ 3
2
ulp(ŷi) +

(1 + 2−p)ŵi
17
4

M1 · ulp(x̂i) +

(1 + 2−p)ŵiulp(f̂i)
[Lemma 3]

≤ (
7
2

+ 21−p)ulp(ŷi) +

(1 + 2−p)M1ŵi
17
4

ulp(x̂i)

[Lemmas 1 and 2]

≤ (
7
2

+ 21−p)ulp(ŷi) +(
17
4

+ 17 · 2−p−2

)
M1ŵiulp(x̂i)

= δ byi
.

Remark: when bounding the error on x̂i, f̂i as well as
ŷi, the term with ulp(x̂i) vanishes if the error on x̂i is
zero. One can easily show with our assumption that
no underflow occurs, and that if x̂i = 0 then the error
on x̂i is zero (i.e., xi = 0) and the ill-defined quantity

ulp(x̂i) vanishes. For the error bound we keep track of
only max(δbyi

).

3. Summation of the yi’s: this is done with Demmel and
Hida summation algorithm [3], which guarantees an
error of at most 1.5 ulp on the final result. This algo-
rithm uses a larger working precision p′ ≈ p+log2(n).
Let S =

∑n−1
i=0 yi.

|Ŝ − S| ≤ 3
2
ulp(Ŝ) + n ·max(δbyi

).

4. Multiplication by b−a
2 : I = b−a

2 S. We note D = b−a
2

and assume as before that the input b̂− a was com-
puted as the rounded to nearest of its exact value. Since
the division by 2 is exact in binary we have:

|D̂ −D| ≤ 1
2
ulp(D̂)

|Î − I| ≤ 1
2
ulp(Î) + |ŜD̂ − SD|

≤ 1
2
ulp(Î) +

1
2
|Ŝ|ulp(D̂) + D|Ŝ − S|

≤ 3
2
ulp(Î) + D

3
2
Dulp(Ŝ) +

nD ·max(δbyi
)

[Lemmas 1 and 2]

≤ 3
2
ulp(Î) + (1 + 2−p)D̂

3
2
ulp(Ŝ) +

(1 + 2−p)D̂n ·max(δbyi
)

[Lemma 3]

≤ (
9
2

+ 3 · 2−p)ulp(Î) +

n(1 + 2−p)D̂ ·max(δbyi
).

[Lemmas 1 and 2]

Corollary 1. If we assume furthermore that the sign of f
does not change on [a, b], then we have the following bound:

B′total =
161
4

ulp(Î) +
425
64

nM1D̂ max(ŵiulp(x̂i))

+
(b− a)2n+1(n!)4

(2n + 1)[(2n)!]3
M2n.

PROOF: Let us assume for example that f ≥ 0, knowing
that the Gauss-Legendre weights are positive we have

∀i ∈ [0, n− 1], ŷi = ◦(ŵi · f̂i) ≥ 0

so
ulp(ŷi) ≤ 21−pŷi.

5



Let S̃ =
∑n−1

i=0 ŷi, we know that

|S̃ − Ŝ| ≤ 3
2
ulp(Ŝ)

S̃ ≤ (1 + 3 · 2−p)Ŝ

L =
n−1∑
i=0

(
7
2

+ 21−p)ulp(ŷi)

≤ (
7
2

+ 21−p)21−p
n−1∑
i=0

ŷi

≤ 21−p(
7
2

+ 21−p)(1 + 3 · 2−p)Ŝ

≤ (7 + 22−p)(1 + 3 · 2−p)ulp(Ŝ).

From this we get the following bound on the error on Ŝ:

|Ŝ − S| ≤
(

3
2

+ (7 + 21−p)(1 + 3 · 2−p)
)

ulp(Ŝ)

+nM1

(
17
4

+ 17 · 2−p−2

)
max(ŵiulp(x̂i))

and substituting this expression in the bound of |Î−I| above
yields the announced result.

5. Experiments: a complete example

Algorithm 2 was implemented using the MPFR library
[13]. In addition to the result of the integration, the program
gives the error bounds Bmath and Brounding on the mathemat-
ical and rounding errors, respectively.

We give now as an example how to use our algorithm
to compute an accurate value for the integral given in the
introduction, namely:

I =
∫ 42

17

e−x2
log xdx.

Let f(x) = e−x2
log x. We need to provide a bound on the

derivatives of f on [a, b] = [17, 42]. This bound should be
sharp enough as it will dictate the order n of the method
used for a given target precision (see [12, p. 181]).

We note

g(x) = e−x2

h(x) = log x.

Leibniz’s formula gives

f (n)(x) =
n∑

i=0

(
n

i

)
di

dxi
g(x)

dn−i

dxn−i
h(x).

For i ≥ 1 we can write

h(i)(x) = (−1)i+1(i− 1)!x−i.

The derivatives of g need more work, but we can write

g(i)(x) = Gi(x)e−x2

where Gi(x) is a polynomial and

G0 = 1
Gi+1 = −2xGi(x) + G′i(x) for i ≥ 0. (3)

From Equation (3) we see that Gi is an integer polynomial
of degree i and has only monomials of the same parity as i.
Furthermore the leading coefficient of Gi is (−2)i.

We will now prove by recurrence that for i ≥ 0 the coef-
ficients of Gi are bounded in absolute value by (i + 1)!.

The property is true for G0(x) = 1. Assume the property
true for some i ≥ 0 and write

Gi(x) =
i∑

j=0

ajx
j

Gi+1(x) =
i+1∑
j=0

bjx
j .

For j ≤ i− 1 we have

bj = −2aj−1 + (j + 1)aj+1

|bj | ≤ 2(i + 1)! + (j + 1)(i + 1)!
≤ (j + 3)(i + 1)!
≤ (i + 2)!.

Since bi = 0 and |bi+1| = 2i+1 < (i + 2)! the property
holds for i + 1.

For n ≥ 0 and x ∈ [17, 42] we know that

|Gn(x)| ≤ n · (n + 1)!xn.

We may now bound |f (n)| as follows:

|f (n)(x)| ≤ |Gn(x)|e−x2
log x

+
n−1∑
i=0

(
n

i

)
|Gi(x)|e−x2

(n− i− 1)!xi−n

≤ n · (n + 1)!xne−x2
log x +

n!
n−1∑
i=0

i(i + 1)
n− i

x2i−ne−x2

≤ n · n!e−x2 (
(n + 1)xn log x + (n− 1)xn−2

)
.

In particular the following bound is valid for x ∈ [17, 42]:

|f (n)| ≤ n·n!e−172 (
(n + 1)42n log 42 + (n− 1)42n−2

)
.

Using this bound we have computed the value of I with
our algorithm and several choices of working precisions p:
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p m nopt ppre pmeas t τ

53 16 20 27 37 8 50
113 16 35 87 103 16 80
200 16 54 174 193 96 55
500 32 80 474 498 404 34

1000 32 142 974 998 620 37
2000 32 254 1974 1994 2952 44
5000 32 556 4974 4995 32818 51

Figure 1. Optimized order nopt, predicted precision ppred

and measured precision pmeas for different working preci-
sions p in bits and orders m of composition. The timings t
are given in ms (with τ the percentage of total time taken
by the weights computation) and were done on a 2.4GHz
AMD Opteron™ 250 processor.

53 bits and 113 bits to reproduce the double and quad preci-
sion, and precisions 200, 500, 1000, 2000 and 5000 bits to
observe the behaviour of our algorithm in higher precision.
For several orders m of composition doubling at each step,
we seek to find the smallest value of the number of points
n for which the bound Bmath on the mathematical error is
smaller than the bound Brounding on the rounding errors (see
Figure 1). This value of n is considered optimal in the sense
that increasing it will decrease Bmath with no benefit in the
guaranteed accuracy since Brounding will increase, and us-
ing a smaller value of n means that we are using too high a
working precision. For each set of parameters we give the
number of good bits predicted by the software, and the num-
ber of bits actually correct, as measured against a value that
is assumed to be accurate to a precision higher than what
we will require afterwards. This reference value was com-
puted with a precision p = 5200 bits using the 911-points
Gauss-Legendre quadrature composed 8 times. For this set
of parameters our algorithm gives

Bmath ≤ 2−5599

Brounding ≤ 2−5594

Btotal ≤ 2−5593

and a value v ≈ 1.011 · 2−421 in binary, so the computed
value is accurate to about 5593−421 = 5172 bits of relative
precision, which is enough for our experiments.

The result of this experiment is given in Figure 1. For a
given working precision p we noticed that for several orders
of composition m the number of predicted good bits is the
same (when we pick the optimal order n of the method) so
we kept only the line with the best running time.

In order to study how good the different error bounds
are, we chose to compute I with a working precision of
p = 1000 bits and an order of composition m = 8 and vary
the number of points n of the method.

The results are given in Figure 2 for a comparison of the
predicted error bound and the measured error, and Figure 3
for a comparison of the rounding error bound and the math-
ematical error bound.

Looking at Figure 1 we see that when we use the optimal
number of points n, the accuracy actually achieved is very
close to the working precision: in other words, almost all
bits are correct (except for p = 53 bits). The gap between
the number of bits predicted to be correct and the number
of bits measured to be correct (what we may call our “pes-
simism factor”) is stable at about 25 bits. We may consider
for example that for a working precision of 2000 bits a loss
of 20 in the number of predicted good bits (i.e., 1% of the
working precision) is satisfactory.
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Figure 2. The bound on the total error Btotal and the mea-
sured error when computing I with m = 8 and 1000 bits of
precision, for several numbers of points n of the method.

Looking at Figures 3 and 2 we observe that our pes-
simism stems from the bound on the mathematical error
Bmath. As soon as Bmath ≤ Brounding the number of pre-
dicted good bits follows closely the number of bits mea-
sured correct. Our interpretation is that the estimation of the
rounding error bound is quite good. Because of the overes-
timation of the mathematical error, our algorithm finds the
value nopt = 254 where n ≈ 175 would have been enough.
Considering the cost of computing the coefficients of the
Gauss-Legendre method which is quadratic in n, we may
again consider the performance of the experiment to be sat-
isfactory, considering how little work was needed to estab-
lish Bmath.

For the parameters used in Figure 1 the coefficients com-
puting time is about half of the full running time (Figure
4) of the quadrature algorithm, which is expected since we
kept only the best composition order for each precision. We
tried only powers of 2 as composition orders, but it is ex-
pected that the percentage is closer to 50% when the exper-
iment is done over all possible (m,n) parameters. It is also
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Figure 3. The bounds Brounding on the rounding error and
Bmath on the mathematical error when computing I with
m = 8 and 1000 bits of precision, for several numbers of
points n of the method.

possible to use precomputed values for these coefficients.
As for the actual value of I computed, we get

I ≈ 0.256572850056 · 10−126

which means that the first value v1 given by Maple 10 had
one correct digit out of ten displayed.

Our source code will be released under the GNU LGPL
within a few months.

6. Conclusion

The Gauss-Legendre quadrature scheme provides a ro-
bust numerical integration algorithm, in the sense that an
increase in the order of the method results usually in an in-
crease in the accuracy of the results. This is not true of
the Newton-Cotes quadrature scheme for example, where
the stability suffers from coefficients of different signs for
n ≥ 8, if the working precision is not increased accordingly.

Providing the function f is sufficiently smooth on a finite
integration domain [a, b] and bounds on its derivatives are
known, we were able in this paper to propose a quadrature
algorithm with a complete error analysis. Our bound on the
final error is valid for any precision or order of the method,
and since it is an actual bound and not a mere estimate we
do in fact compute an interval containing the true value of
the integral.

As future work we consider an adaptation of our error
bound when using an adaptive quadrature scheme. If the
bounds on the derivatives of f are known not only globally
for the whole interval but more precisely for sub-intervals,
we may be able to use automatically a higher composition

order on specific sub-intervals, as needed. We are also in-
terested to see how this kind of error bounds could be given
for the double exponential integration [8].
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Figure 4. Total computing time in milliseconds when
computing I with m = 8 and 1000 bits of precision, on
a 2.4GHz AMD Opteron™ 250 processor.
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