Three Ways to Cover a Graph

Kolja Knauer
Université Montpellier 2

Torsten Ueckerdt Karlsruhe Institute of Technology

AIGCo : algorithmes, graphes et combinatoire, May 16, 2013

Interval graphs
 Intersection graphs of intervals

every v represented by an interval graph edges \Leftrightarrow interval intersections

- classical graph class
- efficient recognition
- chordal \& perfect
- many applications

Intersection graphs of systems of intervals
every v represented by $\leq k$ intervals graph edges \Leftrightarrow interval intersections

Intersection graphs of systems of intervals

every v represented by $\leq k$ intervals graph edges \Leftrightarrow interval intersections

Intersection graphs of systems of intervals
every v represented by $\leq k$ intervals graph edges \Leftrightarrow interval intersections

Intersection graphs of systems of intervals
every v represented by $\leq k$ intervals graph edges \Leftrightarrow interval intersections

Some Results

	track nr.	local track nr.	interval nr.
outerplanar	2	2	2
bip. planar	4	3	3
planar	4	$?$	3
$\mathrm{tw} \leq k$	$k+1$	k	k
$\mathrm{dg} \leq k$	$2 k$	$k+1$	$k+1$

Kostochka, West '99 Scheinermann, West '83

Gonçalves, Ochem '09 KU '12

Intersection graphs of systems of intervals

Intersection graphs of systems of intervals

edges covered by

Track number Gyarfás, West '95

at most one on each line

Intersection graphs of systems of intervals

Intersection graphs of systems of intervals

- Global, Local, and Folded Covers
- Templates $=$ Interval Graphs
- Formal Definitions
- Local and Folded Linear Arboricity
- Templates = Collections of Paths
- Interrelations
- Templates $=$ Forests, Pseudo-Forests, Star Forests
- What is known and what is open

More Formally
 $\varphi: T_{1} \sqcup \cdots \sqcup T_{k} \rightarrow G$ edge-surjective homomorphism

φ injective
 $\leftrightarrow u$
 φ restricted to each T_{i} injective size of $\varphi \quad \not \quad \#$ template graphs in preimage

More Formally $\varphi: T_{1} \sqcup \cdots \sqcup T_{k} \rightarrow G$ edge-surjective homomorphism

φ injective $\quad \leadsto \quad \varphi$ restricted to each T_{i} injective
size of $\varphi \quad$ \# template graphs in preimage
$(G)=\min \{\operatorname{size}$ of $\varphi: \varphi$ injective cover of $G\}$
$c_{\ell}^{\mathcal{T}}(G)=\min \left\{\max _{v \in V(G)}\left|\varphi^{-1}(v)\right|: \varphi\right.$ injective cover of $\left.G\right\}$

folded

$$
c_{f}^{\mathcal{T}}(G)=\min \left\{\max _{v \in V(G)}\left|\varphi^{-1}(v)\right|: \varphi \text { cover of } G \text { of size } 1\right\}
$$

Basic Properties

We consider template classes that are closed under disjoint union.

Lemma:

1) $c_{g}^{\mathcal{T}}(G) \geq c_{\ell}^{\mathcal{T}}(G) \geq c_{f}^{\mathcal{T}}(G)$
for every G
define $c_{i}^{\mathcal{T}}(\mathcal{G}):=\sup \left\{c_{i}^{\mathcal{T}}(G): G \in \mathcal{G}\right\} \quad$ (\mathcal{G} graph class)
2) $c_{i}^{\mathcal{T}}(\mathcal{G}) \leq c_{i}^{\mathcal{T}}\left(\mathcal{G}^{\prime}\right)$
$\mathcal{G} \subseteq \mathcal{G}^{\prime}$
3) $c_{i}^{\mathcal{T}}(\mathcal{G}) \geq c_{i}^{\mathcal{T}^{\prime}}(\mathcal{G})$
$\mathcal{T} \subseteq \mathcal{T}^{\prime}$

Global Covering Number

star arboricity arboricity outer-thickness caterpillar arboricity edge-chromatic number
clique covering number thickness bipartite dimension track number
linear arboricity

Unifying Concept

 bar visibility number

Local Covering Number bipartite degree
interval number
splitting number

- Global, Local, and Folded Covers
- Templates = Interval Graphs
- Formal Definitions
- Local and Folded Linear Arboricity - Templates $=$ Collections of Paths
- Interrelations
- Templates $=$ Forests, Pseudo-Forests, Star Forests
- What is known and what is open

Global and Local Linear Arboricity

template class

Global and Local Linear Arboricity

template class

Global and Local Linear Arboricity

linear arboricity

$$
c_{g}^{\mathcal{T}}(G)=\operatorname{la}(G)=2
$$

host graph
$G=$ Petersen Graph

Global and Local Linear Arboricity

linear arboricity
$c_{g}^{\mathcal{T}}(G)=\operatorname{la}(G)=2$

host graph
$G=$ Petersen Graph
template class

Akiyama et. al. '80
Linear Arboricity Conjecture

$$
1 a(G) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil
$$

Global and Local Linear Arboricity

local linear arboricity $c_{\ell}^{\mathcal{T}}(G)=\operatorname{la}_{\ell}(G)=2$

host graph
$G=$ Petersen Graph

Global and Local Linear Arboricity

local linear arboricity $c_{\ell}^{\mathcal{T}}(G)=\operatorname{la}_{\ell}(G)=2$

template class

Local Linear Arboricity Conjecture
host graph
$G=$ Petersen Graph

$$
\operatorname{la}_{\ell}(G) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil
$$

Folded Linear Arboricity

folded linear arboricity

$$
c_{f}^{\mathcal{T}}(G)=\operatorname{la}_{f}(G)=2
$$

host graph
$G=$ Petersen Graph

Folded Linear Arboricity

folded linear arboricity

$$
c_{f}^{\mathcal{T}}(G)=\operatorname{la}_{f}(G)=2
$$

template class

Folded Linear Arboricity Theorem[KU]

$$
\operatorname{la}_{f}(G) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil
$$

Folded Linear Arboricity Theorem[KU]

$$
\operatorname{la}_{f}(G) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil
$$

Folded Linear Arboricity Theorem[KU]

$$
\operatorname{la}_{f}(G) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil
$$

Proof: (easy)
Δ even:

- add vertices and edges to obtain Eulerian
- take Eulertour
- all visited $\leq \frac{\Delta}{2}$ times
- start-vertex once more
- $1+\frac{\Delta}{2}=\left\lceil\frac{\Delta+1}{2}\right\rceil$

Folded Linear Arboricity Theorem[KU]

$$
\operatorname{la}_{f}(G) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil
$$

Proof: (easy)
Δ even:

- add vertices and edges to obtain Eulerian
- take Eulertour
- all visited $\leq \frac{\Delta}{2}$ times
- start-vertex once more
- $1+\frac{\Delta}{2}=\left\lceil\frac{\Delta+1}{2}\right\rceil$

Δ odd:

- add vertices and edges to obtain Eulerian
- take Eulertour
- all visited $\leq \frac{\Delta+1}{2}$ times
- start-vertex once more
- start on added vertex
- $\left\lceil\frac{\Delta+1}{2}\right\rceil$
- Global, Local, and Folded Covers
- Templates = Interval Graphs
- Formal Definitions
- Local and Folded Linear Arboricity
- Templates = Collections of Paths
- Interrelations
- Templates $=$ Forests, Pseudo-Forests, Star Forests
- What is known and what is open

Arboricity

$c_{g}^{\mathcal{F}}(G)=a(G)$
[Nash-Williams '64]
$a(G)=\max _{S \subseteq V(G)}\left\lceil\frac{|E[S]|}{|S|-1}\right\rceil$

Arboricity

$$
c_{g}^{\mathcal{F}}(G)=a(G)
$$

[Nash-Williams '64]
$a(G)=\max _{S \subseteq V(G)}\left\lceil\frac{|E[S]|}{|S|-1}\right\rceil \quad p(G)=\max _{S \subseteq V(G)}\left\lceil\frac{|E[S]|}{|S|}\right\rceil$

Arboricity

$$
c_{g}^{\mathcal{F}}(G)=a(G)
$$

Pseudo-Arboricity

$$
c_{g}^{\mathcal{P}}(G)=p(G)
$$

[Picard et al. '82]
$a(G)=\max _{S \subseteq V(G)}\left\lceil\frac{|E[S]|}{|S|-1}\right\rceil \quad p(G)=\max _{S \subseteq V(G)}\left\lceil\frac{|E[S]|}{|S|}\right\rceil$

$$
p(G) \leq a(G) \leq p(G)+1
$$

Arboricity

$$
c_{g}^{\mathcal{F}}(G)=a(G)
$$

Pseudo-Arboricity

$$
c_{g}^{\mathcal{P}}(G)=p(G)
$$

Star Arboricity
$c_{g}^{\mathcal{S}}(G)=\operatorname{sa}(G)$
[Nash-Williams '64]
[Picard et al. '82]
$a(G)=\max _{S \subseteq V(G)}\left\lceil\frac{|E[S]|}{|S|-1}\right\rceil \quad p(G)=\max _{S \subseteq V(G)}\left\lceil\frac{|E[S]|}{|S|}\right\rceil$

$$
p(G) \leq a(G) \leq p(G)+1
$$

Arboricity

$$
c_{g}^{\mathcal{F}}(G)=a(G)
$$

[Nash-Williams '64]
$a(G)=\max _{S \subseteq(G)}\left\lceil\frac{|E[S]|}{|S|-1}\right\rceil$

$$
p(G)=\max _{S \subseteq V(G)}\left\lceil\frac{|E[S]|}{|S|}\right\rceil
$$

Star Arboricity

$$
c_{g}^{\mathcal{S}}(G)=\operatorname{sa}(G)
$$

Star Arboricity $c_{\ell}^{\mathcal{S}}(G)=\mathrm{sa}_{\ell}(G)$

$$
p(G) \leq a(G) \leq \operatorname{sa}_{\ell}(G) \leq p(G)+1
$$

Arboricity

$$
c_{g}^{\mathcal{F}}(G)=a(G)
$$

[Nash-Williams '64]
$a(G)=\max _{S \subseteq V(G)}\left\lceil\frac{|E[S]|}{|S|-1}\right\rceil$

$$
p(G)=\max _{S \subseteq V(G)}\left\lceil\frac{|E[S]|}{|S|}\right\rceil
$$

Pseudo-Arboricity

$$
c_{g}^{\mathcal{P}}(G)=p(G)
$$

[Picard et al. '82]

Star Arboricity

$$
c_{g}^{\mathcal{S}}(G)=\operatorname{sa}(G)
$$

Local
Star Arboricity $c_{\ell}^{\mathcal{S}}(G)=\mathrm{sa}_{\ell}(G)$

$$
p(G) \leq a(G) \leq \operatorname{sa}_{\ell}(G) \leq p(G)+1
$$

Thm.: We have $\quad p(G) \leq a(G) \leq \operatorname{sa}_{\ell}(G) \leq p(G)+1$.
(where any of these inequalites can be strict)
Moreover, $p(G)=\mathrm{sa}_{\ell}(G)$ iff G has an orientation with:

- outdeg $(v) \leq p(G)$ for every $v \in V(G)$
- outdeg $(v)=p(G)$ only if $\operatorname{deg}(v)=p(G)$

Thm.: We have $p(G) \leq a(G) \leq \operatorname{sa}_{\ell}(G) \leq p(G)+1$.
(where any of these inequalites can be strict)
Moreover, $p(G)=\operatorname{sa}_{\ell}(G)$ iff G has an orientation with:

- outdeg $(v) \leq p(G)$ for every $v \in V(G)$
- outdeg $(v)=p(G)$ only if $\operatorname{deg}(v)=p(G)$

Proofsketch:

Thm.: We have $\quad p(G) \leq a(G) \leq \operatorname{sal}_{\ell}(G) \leq p(G)+1$.
(where any of these inequalites can be strict)
Moreover, $p(G)=\operatorname{sa}_{\ell}(G)$ iff G has an orientation with:

- outdeg $(v) \leq p(G)$ for every $v \in V(G)$
- $\operatorname{outdeg}(v)=p(G)$ only if $\operatorname{deg}(v)=p(G)$

Proofsketch:

Thm.: We have $\quad p(G) \leq a(G) \leq \operatorname{sa}_{\ell}(G) \leq p(G)+1$.
(where any of these inequalites can be strict)
Moreover, $p(G)=\operatorname{sa}_{\ell}(G)$ iff G has an orientation with:

- outdeg $(v) \leq p(G)$ for every $v \in V(G)$
- $\operatorname{outdeg}(v)=p(G)$ only if $\operatorname{deg}(v)=p(G)$

Proofsketch:

Thm.: We have $p(G) \leq a(G) \leq \operatorname{sa}_{\ell}(G) \leq p(G)+1$.
(where any of these inequalites can be strict)
Moreover, $p(G)=\operatorname{sa}_{\ell}(G)$ iff G has an orientation with:

- outdeg $(v) \leq p(G)$ for every $v \in V(G)$
- $\operatorname{outdeg}(v)=p(G)$ only if $\operatorname{deg}(v)=p(G)$

Remains to show $a(G) \leq \operatorname{sa\ell }(G)$:

- W.I.o.g. $p(G)=\operatorname{sa}_{\ell}(G)$
- Orientation with max outdeg $p(G)$ attained only at degree- $p(G)$ vertices
- Remove degree- $p(G)$ vertices
- $p\left(G^{\prime}\right) \leq p(G)-1$, thus $a\left(G^{\prime}\right) \leq p(G)$
- Reinsert degree- $p(G)$ vertices
- $a(G) \leq p(G)=\operatorname{sa}_{\ell}(G)$

Thm.: We have $\quad p(G) \leq a(G) \leq \operatorname{sa}_{\ell}(G) \leq p(G)+1$.
(where any of these inequalites can be strict)
Moreover, $p(G)=\mathrm{sa}_{\ell}(G)$ iff G has an orientation with:

- outdeg $(v) \leq p(G)$ for every $v \in V(G)$
- $\operatorname{outdeg}(v)=p(G)$ only if $\operatorname{deg}(v)=p(G)$

Remains to show $a(G) \leq \operatorname{sa}_{\ell}(G)$:

- W.I.o.g. $p(G)=\operatorname{sa}_{\ell}(G)$
- Orientation with max outdeg $p(G)$ attained only at degree- $p(G)$ vertices
- Remove degree- $p(G)$ vertices
- $p\left(G^{\prime}\right) \leq p(G)-1$, thus $a\left(G^{\prime}\right) \leq p(G)$
- Reinsert degree- $p(G)$ vertices
- $a(G) \leq p(G)=\operatorname{sa}_{\ell}(G)$
every edge into a different forest

Conclusions (concerning local star arboricity)

Theorem
We have $p(G) \leq a(G) \leq \operatorname{sa}_{\ell}(G) \leq p(G)+1$.

Corollary
Local star arboricity can be computed in polynomial time.
[Hakimi, Mitchem, Schmeichel '96]
Deciding $\operatorname{sa}(G) \leq 2$ is NP-complete.
[Alon, McDiarmid, Reed '92]
$\mathrm{sa}(G) \leq 2 a(G)$ and this is best possible.

- Global, Local, and Folded Covers
- Templates = Interval Graphs
- Formal Definitions
- Local and Folded Linear Arboricity
- Templates = Collections of Paths
- Interrelations
- Templates $=$ Forests, Pseudo-Forests, Star Forests
- What is known and what is open

What else is known

	Star Forests	Caterpillar Forests			
	g	$\ell=f$	g	ℓ	f
outerplanar	3	3	3	3	3
bip. planar	4	3	4	3	3
planar	5	4	4	4	4
$\mathrm{tw} \leq k$	$k+1$	$k+1$	$k+1$	$k+1$	$k+1$
$\mathrm{dg} \leq k$	$2 k$	$k+1$	$2 k$	$k+1$	$k+1$

What else is known

	Star Forests	Caterpillar Forests			
	g	$\ell=f$	g	ℓ	f
outerplanar	3	3	3	3	3
bip. planar	4	3	4	3	3
planar	5	4	4	4	4
$\mathrm{tw} \leq k$	$k+1$	$k+1$	$k+1$	$k+1$	$k+1$
$\mathrm{dg} \leq k$	$2 k$		$k+1$	$2 k$	$k+1$

What else is known

	Star Forests	Caterpillar Forests		
	$g \quad \ell=f$	g	ℓ	f
outerplanar	3 3	3	3	3
bip. planar	4 3	4	3	3
planar	5 - 4	4	4	4
tw $\leq k$	$k+1 \underline{k+1}$	$k+1$	$k+1$	$k+1$
$\mathrm{dg} \leq k$	2k $k+1$	$2 k$	$k+1$	$k+1$
Kostochka, West '99		Scheinermann, West '83		
Algor, Alon '89	Alon et. al.		Ding	al. '98
Gonçalves '07	KU '12		kimi	al. '96

What is open

Local

Linear Arboricity Conjecture

$$
\operatorname{la}_{\ell}(G) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil
$$

Local track number of planars

$$
3 \leq t_{\ell} \leq 4
$$

How much can $c_{\ell}^{\mathcal{T}}(G)$ and $c_{f}^{\mathcal{T}}(G)$ differ?
Are there \mathcal{T} and k, where $c_{g}^{\mathcal{T}}(G) \leq k$ is poly, but $c_{\ell}^{\mathcal{T}}(G) \leq k$ or $c_{f}^{\mathcal{T}}(G) \leq k$ NP-hard?

What is open

Local

Linear Arboricity Conjecture

$$
\operatorname{la}_{\ell}(G) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil
$$

Local track number of planars

$$
3 \leq t_{\ell} \leq 4
$$

How much can $c_{\ell}^{\mathcal{T}}(G)$ and $c_{f}^{\mathcal{T}}(G)$ differ?

> Are there \mathcal{T} and k, where $c_{g}^{\mathcal{T}}(G) \leq k$ is poly, but $c_{\ell}^{\mathcal{T}}(G) \leq k$ or $c_{f}^{\mathcal{T}}(G) \leq k$ NP-hard?

