Three Ways to Cover a Graph

Kolja Knauer Université Montpellier 2

Torsten Ueckerdt Karlsruhe Institute of Technology

AIGCo : algorithmes, graphes et combinatoire, May 16, 2013

Interval graphs Intersection graphs of intervals

every v represented by an interval graph edges \Leftrightarrow interval intersections

Some Results

	track nr.	local track nr.	interval nr.
outerplanar	2	2	2
bip. planar	4	3	3
planar	4	?	3
$\mathrm{tw} \leq k$	k+1	k	k
$\mathrm{dg} \leq k$	2k	k+1	k+1

Kostochka, West '99

Scheinermann, West '83

Gonçalves, Ochem '09

KU '12

Intersection graphs of systems of intervals

Intersection graphs of systems of intervals

- Global, Local, and Folded Covers
 - Templates = Interval Graphs
- Formal Definitions
- Local and Folded Linear Arboricity
 Templates = Collections of Paths
- \circ Interrelations
 - $\circ~$ Templates = Forests, Pseudo-Forests, Star Forests
- What is known and what is open

More Formally

φ cover	$\leftrightarrow \rightarrow$	$\varphi: T_1 \sqcup \cdots \sqcup T_k \to G$ edge-surjective homomorphism
φ injective	$\leftrightarrow \rightarrow$	φ restricted to each T_i injective
size of φ	$\leftrightarrow \rightarrow$	# template graphs in preimage

More Formally

φ cover	$\leftrightarrow \rightarrow$	$\varphi: T_1 \sqcup \cdots \sqcup T_k \to G$ edge-surjective homomorphism
φ injective	$\leftrightarrow \rightarrow$	φ restricted to each T_i injective
size of φ	$\leftrightarrow \rightarrow$	# template graphs in preimage

$$c_{\ell}^{\mathcal{T}}(G) = \min\{\max_{v \in V(G)} |\varphi^{-1}(v)| : \varphi \text{ injective cover of } G\}$$

folded

 $c_f^{\mathcal{T}}(G) = \min\{\max_{v \in V(G)} |\varphi^{-1}(v)| : \varphi \text{ cover of } G \text{ of size } 1\}$

Basic Properties

We consider template classes that are closed under disjoint union.

Lemma:1)
$$c_g^{\mathcal{T}}(G) \ge c_\ell^{\mathcal{T}}(G) \ge c_f^{\mathcal{T}}(G)$$
for every G define $c_i^{\mathcal{T}}(\mathcal{G}) := \sup\{c_i^{\mathcal{T}}(G) : G \in \mathcal{G}\}$ (\mathcal{G} graph class)2) $c_i^{\mathcal{T}}(\mathcal{G}) \le c_i^{\mathcal{T}}(\mathcal{G}')$ $\mathcal{G} \subseteq \mathcal{G}'$ 3) $c_i^{\mathcal{T}}(\mathcal{G}) \ge c_i^{\mathcal{T}'}(\mathcal{G})$ $\mathcal{T} \subseteq \mathcal{T}'$

Global Covering Number star arboricity arboricity outer-thickness caterpillar arboricity edge-chromatic number clique covering number thickness bipartite dimension track number linear arboricity Unifying Concept

Folded Covering Number

bar visibility number

interval number

splitting number

Local Covering Number

bipartite degree

- $_{\circ}\,$ Global, Local, and Folded Covers
 - \circ Templates = Interval Graphs
- Formal Definitions
- Local and Folded Linear Arboricity
 Templates = Collections of Paths
- Interrelations
 - \circ Templates = Forests, Pseudo-Forests, Star Forests
- What is known and what is open

template class

host graph G = Petersen Graph

template class

host graph G =Petersen Graph

template class

host graph G =Petersen Graph

linear arboricity

 $c_q^{\mathcal{T}}(G) = \operatorname{la}(G) = 2$

template class

Akiyama et. al. '80 Linear Arboricity Conjecture $la(G) \leq \lceil \frac{\Delta+1}{2} \rceil$

host graph G =Petersen Graph

linear arboricity

 $c_q^{\mathcal{T}}(G) = \operatorname{la}(G) = 2$

template class

host graph G = Petersen Graph

local linear arboricity

 $c_{\ell}^{\mathcal{T}}(G) = \mathrm{la}_{\ell}(G) = 2$

template class

Local Linear Arboricity Conjecture $la_{\ell}(G) \leq \lceil \frac{\Delta+1}{2} \rceil$

local linear arboricity $c_{\ell}^{\mathcal{T}}(G) = \operatorname{la}_{\ell}(G) = 2$

host graph

G =Petersen Graph

Folded Linear Arboricity

Folded Linear Arboricity

Folded Linear Arboricity Theorem[KU] $la_f(G) \leq \lceil \frac{\Delta+1}{2} \rceil$

Folded Linear Arboricity Theorem[KU] $la_f(G) \leq \lceil \frac{\Delta+1}{2} \rceil$

Proof: *(easy)*

Δ even:

- add vertices and edges to obtain Eulerian
- take Eulertour
- all visited $\leq \frac{\Delta}{2}$ times
- start-vertex once more

 $\circ \ 1 + \frac{\Delta}{2} = \left\lceil \frac{\Delta + 1}{2} \right\rceil$

Folded Linear Arboricity Theorem[KU] $la_f(G) \leq \left\lceil \frac{\Delta+1}{2} \right\rceil$

Proof: *(easy)*

Δ even:

- add vertices and edges to obtain Eulerian
- take Eulertour
- all visited $\leq \frac{\Delta}{2}$ times
- start-vertex once more

 $\circ \ 1 + \frac{\Delta}{2} = \left\lceil \frac{\Delta + 1}{2} \right\rceil$

Δ odd:

- add vertices and edges to obtain Eulerian
- take Eulertour
- all visited $\leq \frac{\Delta+1}{2}$ times
- start-vertex once more
- start on added vertex

$$\circ \int \frac{\Delta+1}{2}$$

- $\circ\,$ Global, Local, and Folded Covers
 - \circ Templates = Interval Graphs
- Formal Definitions
- Local and Folded Linear Arboricity
 Templates = Collections of Paths
- Interrelations
 Templates = Forests, Pseudo-Forests, Star Forests
- $_{\circ}\,$ What is known and what is open

[Nash-Williams '64] $a(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S| - 1} \right\rceil$

 $\label{eq:cg} \begin{array}{l} \textbf{Arboricity} \\ c_g^{\mathcal{F}}(G) = a(G) \end{array}$

Pseudo-Arboricity $c_g^{\mathcal{P}}(G) = p(G)$

[Nash-Williams '64] [Picard et al. '82] $a(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S| - 1} \right\rceil \quad p(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|} \right\rceil$

Pseudo-Arboricity $c_g^{\mathcal{P}}(G) = p(G)$

 $\begin{bmatrix} \mathsf{Nash-Williams '64} & [\mathsf{Picard et al. '82}] \\ a(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S| - 1} \right\rceil \quad p(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|} \right\rceil$

 $p(G) \le a(G) \le p(G) + 1$

Pseudo-Arboricity $c_g^{\mathcal{P}}(G) = p(G)$ Star Arboricity $c_g^{\mathcal{S}}(G) = \operatorname{sa}(G)$

[Nash-Williams '64] [Picard et al. '82] $a(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S| - 1} \right\rceil \quad p(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|} \right\rceil$

 $p(G) \le a(G) \le p(G) + 1$

Pseudo-Arboricity $c_g^{\mathcal{P}}(G) = p(G)$ Star Arboricity $c_g^{\mathcal{S}}(G) = \operatorname{sa}(G)$

[Nash-Williams '64] [Picard et al. '82] Local $a(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S| - 1} \right\rceil \quad p(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|} \right\rceil \quad \frac{|E[S]|}{|S|}$

 $p(G) \le a(G) \le \operatorname{sa}_{\ell}(G) \le p(G) + 1$

Pseudo-Arboricity $c_g^{\mathcal{P}}(G) = p(G)$ Star Arboricity $c_g^{\mathcal{S}}(G) = \operatorname{sa}(G)$

[Nash-Williams '64] [Picard et al. '82] Local $a(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S| - 1} \right\rceil \quad p(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|} \right\rceil \quad \frac{|E[S]|}{|S|}$

 $p(G) \le a(G) \le \operatorname{sa}_{\ell}(G) \le p(G) + 1$

Thm.: We have $p(G) \le a(G) \le \operatorname{sa}_{\ell}(G) \le p(G) + 1$. (where any of these inequalites can be strict) Moreover, $p(G) = \operatorname{sa}_{\ell}(G)$ iff G has an orientation with: $\circ \operatorname{outdeg}(v) \le p(G)$ for every $v \in V(G)$

• $\operatorname{outdeg}(v) = p(G)$ only if $\operatorname{deg}(v) = p(G)$

(where any of these inequalites can be strict)

Moreover, $p(G) = \operatorname{sa}_{\ell}(G)$ iff G has an orientation with:

- $\operatorname{outdeg}(v) \le p(G)$ for every $v \in V(G)$
- $\circ \ \operatorname{outdeg}(v) = p(G) \ \operatorname{only} \ \operatorname{if} \ \operatorname{deg}(v) = p(G)$

Proofsketch:

(where any of these inequalites can be strict)

Moreover, $p(G) = \operatorname{sa}_{\ell}(G)$ iff G has an orientation with:

- $\operatorname{outdeg}(v) \le p(G)$ for every $v \in V(G)$
- $\circ \text{ outdeg}(v) = p(G) \text{ only if } \deg(v) = p(G)$

Thm.: We have $p(G) \le a(G) \le \operatorname{sa}_{\ell}(G) \le p(G) + 1.$ (where any of these inequalites can be strict)

Moreover, $p(G) = \operatorname{sa}_{\ell}(G)$ iff G has an orientation with:

- $outdeg(v) \le p(G)$ for every $v \in V(G)$
- $\circ \ \operatorname{outdeg}(v) = p(G) \text{ only if } \deg(v) = p(G)$

(where any of these inequalites can be strict)

Moreover, $p(G) = \operatorname{sa}_{\ell}(G)$ iff G has an orientation with:

- $\operatorname{outdeg}(v) \le p(G)$ for every $v \in V(G)$
- $\operatorname{outdeg}(v) = p(G)$ only if $\operatorname{deg}(v) = p(G)$

Remains to show $a(G) \leq \operatorname{sa}_{\ell}(G)$:

• W.I.o.g.
$$p(G) = \operatorname{sa}_{\ell}(G)$$

- $\circ\,$ Orientation with max outdeg p(G) attained only at degree-p(G) vertices
- $\circ~\operatorname{Remove}\,\operatorname{degree-}p(G)$ vertices
- $\circ \ p(G') \leq p(G) 1 \text{, thus } a(G') \leq p(G)$
- $\circ~\operatorname{Reinsert}~\operatorname{degree-}p(G)$ vertices

•
$$a(G) \le p(G) = \operatorname{sa}_{\ell}(G)$$

(where any of these inequalites can be strict)

Moreover, $p(G) = \operatorname{sa}_{\ell}(G)$ iff G has an orientation with:

- $\operatorname{outdeg}(v) \le p(G)$ for every $v \in V(G)$
- $\circ \ \operatorname{outdeg}(v) = p(G) \text{ only if } \operatorname{deg}(v) = p(G)$

Remains to show $a(G) \leq \operatorname{sa}_{\ell}(G)$:

- W.I.o.g. $p(G) = \operatorname{sa}_{\ell}(G)$
- Orientation with max $outdeg \ p(G)$ attained only at degree-p(G) vertices
- $\circ~{\sf Remove~degree-} p(G)~{\sf vertices}$

$$\circ \ p(G') \leq p(G) - 1$$
, thus $a(G') \leq p(G)$

 \circ Reinsert degree-p(G) vertices

$$\circ \ a(G) \le p(G) = \operatorname{sa}_{\ell}(G)$$

every edge into a different forest

Conclusions (concerning local star arboricity)

Theorem

We have $p(G) \le a(G) \le \operatorname{sa}_{\ell}(G) \le p(G) + 1$.

Corollary

Local star arboricity can be computed in polynomial time.

[Hakimi, Mitchem, Schmeichel '96] Deciding $sa(G) \le 2$ is NP-complete.

[Alon, McDiarmid, Reed '92] $sa(G) \le 2a(G)$ and this is best possible.

- Global, Local, and Folded Covers
 - \circ Templates = Interval Graphs
- Formal Definitions
- Local and Folded Linear Arboricity
 Templates = Collections of Paths
- Interrelations
 - Templates = Forests, Pseudo-Forests, Star Forests
- What is known and what is open

What else is known

	Star Forests		Caterpillar Forests		
	g	$\ell = f$	g	ℓ	f
outerplanar	3	3	3	3	3
bip. planar	4	3	4	3	3
planar	5	4	4	4	4
$\mathrm{tw} \leq k$	k+1	k + 1	k+1	k+1	k+1
$\mathrm{dg} \leq k$	2k	k+1	2k	k+1	k+1

What else is known

	Star Forests		Caterpillar Forests		
	g	$\ell = f$	g	l	f
outerplanar	3	3	3	3	3
bip. planar	4	3	4	3	3
planar	5	4	4	4	4
$\mathrm{tw} \leq k$	k + 1 k + 1		k+1	k+1	k+1
$\mathrm{dg} \leq k$	2k	k+1	2k	k+1	k+1

What else is known

	Star Forests		Caterpillar Forests		
	g	$\ell = f$	g	ℓ	f
outerplanar	3	3	3	3	3
bip. planar	4	3	4	3	3
planar	5	4	4	4	4
$\mathrm{tw} \leq k$	k + 1 k + 1		k+1	k+1	k+1
$\mathrm{dg} \leq k$	2k	k+1	2k	k+1	k+1

Kostochka, West '99Scheinermann, West '83Algor, Alon '89Alon et. al. '92Ding et. al. '98Gonçalves '07KU '12Hakimi et. al. '96

What is open

What is open

...three ways to pack a graph