
Three Ways to Cover a Graph
Torsten Ueckerdt

Karlsruhe Institute of Technology

Kolja Knauer
Université Montpellier 2

AlGCo : algorithmes, graphes et combinatoire, May 16, 2013

every v represented by an interval
graph edges ⇔ interval intersections

Intersection graphs of intervals
Interval graphs

• efficient recognition
• chordal & perfect
• many applications

• classical graph class

every v represented by ≤ k intervals
graph edges ⇔ interval intersections

Intersection graphs of systems of intervals

Interval number
Harary, Trotter ’79

every v represented by ≤ k intervals
graph edges ⇔ interval intersections

on one line

Intersection graphs of systems of intervals

Track number Interval number
Gyárfás, West ’95 Harary, Trotter ’79

every v represented by ≤ k intervals
graph edges ⇔ interval intersections

at most one on each of k lines on one line

Intersection graphs of systems of intervals

Track number Interval numberLocal track number
Gyárfás, West ’95 Harary, Trotter ’79

every v represented by ≤ k intervals
graph edges ⇔ interval intersections

at most one on each of k lines

at most one on each line

on one line

Intersection graphs of systems of intervals

Some Results

KU ’12

Kostochka, West ’99

Gonçalves, Ochem ’09

Scheinermann, West ’83

track nr. local track nr. interval nr.

outerplanar 2 2 2

bip. planar 4 3 3

planar 4 ? 3

tw ≤ k k + 1 k k

dg ≤ k 2k k + 1 k + 1

at most one on each of k lines

at most one on each line

on one line

Intersection graphs of systems of intervals

Track number Interval numberLocal track number
Gyárfás, West ’95 Harary, Trotter ’79

at most one on each of k lines

at most one on each line

on one line

Intersection graphs of systems of intervals

≤ k interval graphs

edges covered by

Track number Interval numberLocal track number
Gyárfás, West ’95 Harary, Trotter ’79

at most one on each of k lines

at most one on each line

on one line

Intersection graphs of systems of intervals

≤ k interval graphs

interval graphs, ≤ k at each vertex

edges covered by

Track number Interval numberLocal track number
Gyárfás, West ’95 Harary, Trotter ’79

at most one on each of k lines

at most one on each line

on one line

Intersection graphs of systems of intervals

≤ k interval graphs

interval graphs, ≤ k at each vertex

homomorphism from an interval graph,

each vertex hit ≤ k times

edges covered by

Track number Interval numberLocal track number
Gyárfás, West ’95 Harary, Trotter ’79

◦ Global, Local, and Folded Covers

◦ Formal Definitions

◦ Local and Folded Linear Arboricity
◦ Templates = Collections of Paths

◦ Interrelations
◦ Templates = Forests, Pseudo-Forests, Star Forests

◦ What is known and what is open

◦ Templates = Interval Graphs

More Formally

ϕ cover !
ϕ : T1 t · · · t Tk → G

edge-surjective homomorphism

ϕ injective ! ϕ restricted to each Ti injective

size of ϕ ! # template graphs in preimage

More Formally

ϕ cover !
ϕ : T1 t · · · t Tk → G

edge-surjective homomorphism

ϕ injective ! ϕ restricted to each Ti injective

size of ϕ ! # template graphs in preimage

global
cTg (G) = min{size of ϕ : ϕ injective cover of G}

local

folded

cT` (G) = min{maxv∈V (G) |ϕ−1(v)| : ϕ injective cover of G}

cTf (G) = min{maxv∈V (G) |ϕ−1(v)| : ϕ cover of G of size 1}

Basic Properties

We consider template classes that are
closed under disjoint union.

1) cTg (G) ≥ cT` (G) ≥ cTf (G) for every G

define cTi (G) := sup{cTi (G) : G ∈ G} (G graph class)

2) cTi (G) ≤ cTi (G′) G ⊆ G′

3) cTi (G) ≥ cT
′

i (G) T ⊆ T ′

Lemma:

Unifying Concept

Global Covering Number

Local Covering Number

Folded Covering Number

star arboricity

thickness

track number

bipartite degree

interval number

splitting number

bar visibility number

clique covering number

caterpillar arboricity

arboricity

linear arboricity

edge-chromatic number

outer-thickness

bipartite dimension

◦ Global, Local, and Folded Covers

◦ Formal Definitions

◦ Local and Folded Linear Arboricity
◦ Templates = Collections of Paths

◦ Interrelations
◦ Templates = Forests, Pseudo-Forests, Star Forests

◦ What is known and what is open

◦ Templates = Interval Graphs

Global and Local Linear Arboricity

template class

T = {linear forests}

host graph
G = Petersen Graph

Global and Local Linear Arboricity

template class

T = {linear forests}

host graph
G = Petersen Graph

Global and Local Linear Arboricity

template class

T = {linear forests}

host graph
G = Petersen Graph

linear arboricity

cTg (G) = la(G) = 2

Global and Local Linear Arboricity

template class

T = {linear forests}

host graph
G = Petersen Graph

linear arboricity

cTg (G) = la(G) = 2

Linear Arboricity Conjecture

la(G) ≤ d∆+1
2
e

Akiyama et. al. ’80

Global and Local Linear Arboricity

template class

T = {linear forests}

host graph
G = Petersen Graph

local linear arboricity

cT` (G) = la`(G) = 2

Global and Local Linear Arboricity

template class

T = {linear forests}

host graph
G = Petersen Graph

local linear arboricity

cT` (G) = la`(G) = 2

Local Linear Arboricity
Conjecture

la`(G) ≤ d∆+1
2
e

Folded Linear Arboricity

template class

T = {linear forests}

host graph
G = Petersen Graph

folded linear arboricity

cTf (G) = laf (G) = 2

Folded Linear Arboricity

template class

T = {linear forests}

host graph
G = Petersen Graph

folded linear arboricity

cTf (G) = laf (G) = 2

Folded Linear Arboricity
Theorem[KU]

laf (G) ≤ d∆+1
2
e

Folded Linear Arboricity
Theorem[KU]

laf (G) ≤ d∆+1
2
e

Folded Linear Arboricity
Theorem[KU]

laf (G) ≤ d∆+1
2
e

∆ even:
◦ add vertices and edges to

obtain Eulerian
◦ take Eulertour
◦ all visited ≤ ∆

2 times
◦ start-vertex once more
◦ 1 + ∆

2 = d∆+1
2 e

Proof: (easy)

Folded Linear Arboricity
Theorem[KU]

laf (G) ≤ d∆+1
2
e

∆ even:
◦ add vertices and edges to

obtain Eulerian
◦ take Eulertour
◦ all visited ≤ ∆

2 times
◦ start-vertex once more
◦ 1 + ∆

2 = d∆+1
2 e

∆ odd:
◦ add vertices and edges to

obtain Eulerian
◦ take Eulertour
◦ all visited ≤ ∆+1

2 times
◦ start-vertex once more
◦ start on added vertex
◦ d∆+1

2 e

Proof: (easy)

◦ Global, Local, and Folded Covers

◦ Formal Definitions

◦ Local and Folded Linear Arboricity
◦ Templates = Collections of Paths

◦ Interrelations
◦ Templates = Forests, Pseudo-Forests, Star Forests

◦ What is known and what is open

◦ Templates = Interval Graphs

F = {forests} P = {pseudo-forests} S = {star forests}

F = {forests} P = {pseudo-forests} S = {star forests}

cFg (G) = a(G)

Arboricity

a(G) = max
S⊆V (G)

⌈ |E[S]|
|S| − 1

⌉[Nash-Williams ’64]

F = {forests} P = {pseudo-forests} S = {star forests}

cFg (G) = a(G)

Arboricity

a(G) = max
S⊆V (G)

⌈ |E[S]|
|S| − 1

⌉[Nash-Williams ’64]

cPg (G) = p(G)

Pseudo-Arboricity

p(G) = max
S⊆V (G)

⌈ |E[S]|
|S|

⌉[Picard et al. ’82]

F = {forests} P = {pseudo-forests} S = {star forests}

cFg (G) = a(G)

Arboricity

a(G) = max
S⊆V (G)

⌈ |E[S]|
|S| − 1

⌉[Nash-Williams ’64]

cPg (G) = p(G)

Pseudo-Arboricity

p(G) = max
S⊆V (G)

⌈ |E[S]|
|S|

⌉[Picard et al. ’82]

p(G) ≤ a(G) ≤ p(G) + 1

F = {forests} P = {pseudo-forests} S = {star forests}

cFg (G) = a(G)

Arboricity

a(G) = max
S⊆V (G)

⌈ |E[S]|
|S| − 1

⌉[Nash-Williams ’64]

cPg (G) = p(G)

Pseudo-Arboricity

p(G) = max
S⊆V (G)

⌈ |E[S]|
|S|

⌉[Picard et al. ’82]

p(G) ≤ a(G) ≤ p(G) + 1

cSg (G) = sa(G)

Star Arboricity

F = {forests} P = {pseudo-forests} S = {star forests}

cFg (G) = a(G)

Arboricity

a(G) = max
S⊆V (G)

⌈ |E[S]|
|S| − 1

⌉[Nash-Williams ’64]

cPg (G) = p(G)

Pseudo-Arboricity

p(G) = max
S⊆V (G)

⌈ |E[S]|
|S|

⌉[Picard et al. ’82]

cSg (G) = sa(G)

Star Arboricity

cS` (G) = sa`(G)

Local
Star Arboricity

p(G) ≤ a(G) ≤ sa`(G) ≤ p(G) + 1

F = {forests} P = {pseudo-forests} S = {star forests}

cFg (G) = a(G)

Arboricity

a(G) = max
S⊆V (G)

⌈ |E[S]|
|S| − 1

⌉[Nash-Williams ’64]

cPg (G) = p(G)

Pseudo-Arboricity

p(G) = max
S⊆V (G)

⌈ |E[S]|
|S|

⌉[Picard et al. ’82]

cSg (G) = sa(G)

Star Arboricity

cS` (G) = sa`(G)

Local
Star Arboricity

p(G) ≤ a(G) ≤ sa`(G) ≤ p(G) + 1

p(G) ≤ a(G) ≤ sa`(G) ≤ p(G) + 1.Thm.: We have

(where any of these inequalites can be strict)

Moreover, p(G) = sa`(G) iff G has an orientation with:

◦ outdeg(v) ≤ p(G) for every v ∈ V (G)

◦ outdeg(v) = p(G) only if deg(v) = p(G)

p(G) ≤ a(G) ≤ sa`(G) ≤ p(G) + 1.Thm.: We have

(where any of these inequalites can be strict)

Moreover, p(G) = sa`(G) iff G has an orientation with:

◦ outdeg(v) ≤ p(G) for every v ∈ V (G)

◦ outdeg(v) = p(G) only if deg(v) = p(G)

Proofsketch:

p(G) ≤ a(G) ≤ sa`(G) ≤ p(G) + 1.Thm.: We have

(where any of these inequalites can be strict)

Moreover, p(G) = sa`(G) iff G has an orientation with:

◦ outdeg(v) ≤ p(G) for every v ∈ V (G)

◦ outdeg(v) = p(G) only if deg(v) = p(G)

Proofsketch:

orient edges
towards center

outdeg(v) ≤ sa`(G)
p(G) ≤ sa`(G)

p(G) ≤ a(G) ≤ sa`(G) ≤ p(G) + 1.Thm.: We have

(where any of these inequalites can be strict)

Moreover, p(G) = sa`(G) iff G has an orientation with:

◦ outdeg(v) ≤ p(G) for every v ∈ V (G)

◦ outdeg(v) = p(G) only if deg(v) = p(G)

Proofsketch:

orient edges
towards center

stars of
incoming edges

p(G) ≤ sa`(G) ≤ p(G) + 1

p(G) ≤ a(G) ≤ sa`(G) ≤ p(G) + 1.Thm.: We have

(where any of these inequalites can be strict)

Moreover, p(G) = sa`(G) iff G has an orientation with:

◦ outdeg(v) ≤ p(G) for every v ∈ V (G)

◦ outdeg(v) = p(G) only if deg(v) = p(G)

Remains to show a(G) ≤ sa`(G):

◦ W.l.o.g. p(G) = sa`(G)

◦ Orientation with max outdeg p(G)
attained only at degree-p(G) vertices

◦ Remove degree-p(G) vertices

◦ p(G′) ≤ p(G)− 1, thus a(G′) ≤ p(G)

◦ Reinsert degree-p(G) vertices

◦ a(G) ≤ p(G) = sa`(G)

p(G) ≤ a(G) ≤ sa`(G) ≤ p(G) + 1.Thm.: We have

(where any of these inequalites can be strict)

Moreover, p(G) = sa`(G) iff G has an orientation with:

◦ outdeg(v) ≤ p(G) for every v ∈ V (G)

◦ outdeg(v) = p(G) only if deg(v) = p(G)

Remains to show a(G) ≤ sa`(G):

◦ W.l.o.g. p(G) = sa`(G)

◦ Orientation with max outdeg p(G)
attained only at degree-p(G) vertices

◦ Remove degree-p(G) vertices

◦ p(G′) ≤ p(G)− 1, thus a(G′) ≤ p(G)

◦ Reinsert degree-p(G) vertices

◦ a(G) ≤ p(G) = sa`(G)

every edge into
a different forest

Corollary
Local star arboricity can be computed in polynomial time.

[Hakimi, Mitchem, Schmeichel ’96]

Deciding sa(G) ≤ 2 is NP-complete.

[Alon, McDiarmid, Reed ’92]

sa(G) ≤ 2a(G) and this is best possible.

We have p(G) ≤ a(G) ≤ sa`(G) ≤ p(G) + 1.
Theorem

Conclusions (concerning local star arboricity)

◦ Global, Local, and Folded Covers

◦ Formal Definitions

◦ Local and Folded Linear Arboricity
◦ Templates = Collections of Paths

◦ Interrelations
◦ Templates = Forests, Pseudo-Forests, Star Forests

◦ What is known and what is open

◦ Templates = Interval Graphs

What else is known

Star Forests Caterpillar Forests

g ` = f g ` f

outerplanar 3 3 3 3 3

bip. planar 4 3 4 3 3

planar 5 4 4 4 4

tw ≤ k k + 1 k + 1 k + 1 k + 1 k + 1

dg ≤ k 2k k + 1 2k k + 1 k + 1

What else is known

Star Forests Caterpillar Forests

g ` = f g ` f

outerplanar 3 3 3 3 3

bip. planar 4 3 4 3 3

planar 5 4 4 4 4

tw ≤ k k + 1 k + 1 k + 1 k + 1 k + 1

dg ≤ k 2k k + 1 2k k + 1 k + 1

KU ’12

What else is known

Star Forests Caterpillar Forests

g ` = f g ` f

outerplanar 3 3 3 3 3

bip. planar 4 3 4 3 3

planar 5 4 4 4 4

tw ≤ k k + 1 k + 1 k + 1 k + 1 k + 1

dg ≤ k 2k k + 1 2k k + 1 k + 1

KU ’12

Kostochka, West ’99 Scheinermann, West ’83

Gonçalves ’07 Hakimi et. al. ’96

Ding et. al. ’98Algor, Alon ’89 Alon et. al. ’92

What is open

Linear Arboricity Conjecture

la`(G) ≤ d∆+1
2
e

Local

Local track number of planars

3 ≤ t` ≤ 4

Are there T and k, where cTg (G) ≤ k is poly,

but cT` (G) ≤ k or cTf (G) ≤ k NP-hard?

How much can cT` (G) and cTf (G) differ?

What is open

Linear Arboricity Conjecture

la`(G) ≤ d∆+1
2
e

Local

Local track number of planars

3 ≤ t` ≤ 4

Are there T and k, where cTg (G) ≤ k is poly,

but cT` (G) ≤ k or cTf (G) ≤ k NP-hard?

How much can cT` (G) and cTf (G) differ?

...three ways to pack a graph

