Fixed parameter tractability and kernels for feedback set problems on generalization of tournaments

Alessandro Maddaloni

University of Southern Denmark
LIRMM, February 7

Joint work with
Jørgen Bang-Jensen and Saket Saurabh

Feedback sets

Problem (FVS (FAS))

Given a digraph D, find a minimum $F \subset V(D)(F \subset A(D))$ s.t. $D-F$ is acyclic?

It is known that Both problems are NP-complete (even if restricted to tournaments).

Feedback sets

Problem (FVS (FAS))

Given a digraph D, find a minimum $F \subset V(D)(F \subset A(D))$ s.t. $D-F$ is acyclic?

It is known that Both problems are NP-complete (even if restricted to tournaments).

Problem (Parametrized feedback set problems)
Given D and $k \in \mathbb{N}$, is there $F \subset V(D)(F \subset A(D))$ s.t. $|F| \leq k$ and $D-F$ is acyclic?

Theorem (Chen,Liu,Lu,O'Sullivan,Razgon)

Parametrized FVS (and thus FAS) is FPT.

Polynomial kernels for FVS

Problem

Given D and $k, g \in \mathbb{N}$, is there $F \subset V(D)$ s.t. $|F| \leq k$ and $g(D-F)>g$?

Polynomial kernels for FVS

Problem

Given D and $k, g \in \mathbb{N}$, is there $F \subset V(D)$ s.t. $|F| \leq k$ and $g(D-F)>g$?

A sunflower with h petals is a collection of sets S_{1}, \ldots, S_{h} s.t. $\forall i \neq j S_{i} \cap S_{j}=Y$.

Lemma (Erdös-Rado)

Among $d!k^{d}$ sets of size $\leq d$ there is a sunflower with $k+1$ petals.

Theorem

The previous problem has an $O\left(g \cdot g!\cdot k^{g}\right)$ kernel.

Proof sketch.

- Make a list \mathcal{F} of all the cycles of length $\leq g$
- For every sunflower with $>k+1$ petals in \mathcal{F}. Delete one of the petals. (If the $Y=\emptyset$ answer NO)
- If no sunflower is found there are $O\left((k+1)^{g} \cdot g!\right)$ sets. Output the digraph induced by all the edges of the sets (size $O\left(k^{g} \cdot g!\cdot g\right)$).
- D acyclic iff $g(D)>2 \alpha(D)+1$.

Corollary

$k-F V S$ has an $O\left(k^{2 \alpha+1}\right)$ kernel for digraph with independence number α, (in particular $O\left(k^{3}\right)$ for tournaments)

Modules

H an induced subdigraph of D is a module if

$$
\forall a, b \in V(H), v \in V(D \backslash H) \quad \mu(v a)=\mu(v b), \mu(a v)=\mu(b v) .
$$

(If D is simple, we simply say that every vertex of H must have the same in and out neighborhood)

Decomposable digraphs

D is decomposable if \exists partition of V into modules $H_{1}, \ldots H_{s}$, $s \geq 2$. We write $D=S\left[H_{1}, \ldots, H_{s}\right]$, where S is the adjacency (or quotient) digraph of $H_{1}, \ldots H_{s}$.

Decomposable digraphs

D is decomposable if \exists partition of V into modules $H_{1}, \ldots H_{s}$, $s \geq 2$. We write $D=S\left[H_{1}, \ldots, H_{s}\right]$, where S is the adjacency (or quotient) digraph of $H_{1}, \ldots H_{s}$.

Decomposable digraphs

D is decomposable if \exists partition of V into modules $H_{1}, \ldots H_{s}$, $s \geq 2$. We write $D=S\left[H_{1}, \ldots, H_{s}\right]$, where S is the adjacency (or quotient) digraph of $H_{1}, \ldots H_{s}$.

Φ class of digraphs. D is totally Φ-decomposable if either $D \in \Phi$ or $D=S\left[H_{1}, \ldots, H_{s}\right]$, with $S \in \Phi$ and H_{i} totally Φ-decomposable, $i=1, \ldots, s$.
The digraph in the figure is totally Φ-decomposable with $\Phi=P_{3} \cup C_{3} \cup P_{1}$

- D is round if we can label its vertices v_{1}, \ldots, v_{n} so that $\forall i$,
$N^{+}\left(v_{i}\right)=\left\{v_{i+1}, \ldots, v_{i+d^{+}(i)}\right\}$ and
$N^{-}\left(v_{i}\right)=\left\{v_{i-d^{-}(i)}, \ldots, v_{i-1}\right\}$.

Round digraphs

- D is round if we can label its vertices v_{1}, \ldots, v_{n} so that $\forall i$, $N^{+}\left(v_{i}\right)=\left\{v_{i+1}, \ldots, v_{i+d^{+}(i)}\right\}$ and
$N^{-}\left(v_{i}\right)=\left\{v_{i-d^{-}(i)}, \ldots, v_{i-1}\right\}$.
- D is round decomposable if $D=R\left[H_{1}, \ldots, H_{r}\right]$, where R is a round digraph and H_{1}, \ldots, H_{r} are semicomplete digraphs.

FVS on round (decomposable)

Observation

FVS is poly on round digraphs (One among $\left(N^{+}(v), N^{-}(v)\right)_{v \in V}$ must be killed, and it is enough)

Theorem

$k-F V S$ has an $O\left(k^{3}\right)$ kernel on round decomposable digraphs.
(1) Decompose $D=R\left[H_{1}, \ldots, H_{r}\right]$.
(2) Find non-trivial modules $K_{1},,,, K_{h}$ and kernelize each of them (keep the size $>k$ if it was before)
(3) Find a min FVS M for Q.
(4) Keep M the K_{i} 's kernels and the $2 k$ modules around them (k left and k right).
(5) Contract the gaps into I_{k+1}.

Locally semicomplete digraphs (LSD): $\forall x \in V, N^{+}(x), N^{-}(x)$ are semicomplete :

Theorem (Guo)

A connected LSD is either

- round decomposable, or
- Every cycle induces a cycle on ≤ 4 vertices.

Theorem

$k-F V S$ has an $O\left(k^{4}\right)$ kernel on LSD.

FVS on totally Φ-decomposable

We say that a kernel is virgin if it contains all minimal solutions Let Φ be s.t.

- \exists poly algorithm to find total Φ-decomposition
- k-FVS has an $O(f(k))$ virgin kernel on Φ.

Theorem

$k-F V S$ has a $O(k \cdot f(k))$ kernel on totally Φ-decomposable digraphs.
(1) Decompose $D=Q\left[M_{1}, \ldots, M_{q}\right]$
(2)

3
(1)

(1) Decompose $D=Q\left[M_{1}, \ldots, M_{q}\right]$
(2) Find recursively virgin kernels K_{1}, \ldots, K_{h} for the cyclic modules.
3
(1)

(1) Decompose $D=Q\left[M_{1}, \ldots, M_{q}\right]$
(2) Find recursively virgin kernels K_{1}, \ldots, K_{h} for the cyclic modules.
(3) Find a virgin kernel K for Q.
(4)

(1) Decompose $D=Q\left[M_{1}, \ldots, M_{q}\right]$
(2) Find recursively virgin kernels K_{1}, \ldots, K_{h} for the cyclic modules.
(3) Find a virgin kernel K for Q.
(4) Output $\left(K \cup \bigcup_{K_{i} \nless K} K_{i}, k\right)$.

Justification

- If YES, then $O(k)$ kernels recursively constructed.
- KERNEL \subset ORIGINAL DIGRAPH
- VIRGINITY \Rightarrow (YES KERNEL \leftrightarrow YES ORIGINAL)

Quasi-transitive digraphs

Quasi-transitive digraphs: $x y, y z \in A$ implies that $z x \in A$ or $x z \in A$:

Theorem (Bang-Jensen and Huang)

D be quasi-transitive, then either

- $D=T\left[H_{1}, \ldots, H_{t}\right], T$ acyclic and H_{1}, \ldots, H_{t} (strong) quasi-transitive, or
- $D=S\left[Q_{1}, Q_{2}, \ldots, Q_{s}\right]$, S semicomplete and Q_{1}, \ldots, Q_{S} (non-strong) quasi-transitive.

Quasi-transitive digraphs

Observation
Quasi-transitive are totally Φ_{1}-decomposable, where

$$
\Phi_{1}=\{\text { Semicomplete } \cup \text { Acyclic }\}
$$

Quasi-transitive digraphs

Observation

Quasi-transitive are totally Φ_{1}-decomposable, where

$$
\Phi_{1}=\{\text { Semicomplete } \cup \text { Acyclic }\}
$$

Observation

There is a virgin $O\left(k^{3}\right)$ kernel for FVS on Φ_{1}

Theorem

FVS has an $O\left(k^{4}\right)$ kernel on quasi-transitive digraphs.

Quasi-transitive digraphs

Observation

Quasi-transitive are totally Φ_{1}-decomposable, where

$$
\Phi_{1}=\{\text { Semicomplete } \cup \text { Acyclic }\}
$$

Observation

There is a virgin $O\left(k^{3}\right)$ kernel for FVS on Φ_{1}

Theorem

FVS has an $O\left(k^{4}\right)$ kernel on quasi-transitive digraphs.
We hit also other classes:
(1) Directed cographs
(2) Extended semicomplete digraphs

Observation (Speckenmeyer)
A $2^{o(k)}$ algorithm for $k-F A S$ is unlikely to exist

Observation (Speckenmeyer)

A $2^{o(k)}$ algorithm for $k-F A S$ is unlikely to exist

Theorem (Bessy, Fomin, Gaspers, Paul, Perez, Saurabh, Thomassé)

There is an $O(k)$ kernel for k-FAS on tournaments (semicomplete digraphs).

Theorem (Alon, Lokshtanov, Saurabh)

There is a $2^{o(k)}$ algorithm for k-FAS on tournaments (semicomplete digraphs). (Best complexity $n^{O(1)} 2^{O(\sqrt{k})}$ by Feige).

FAS on totally Φ-decomposable

A kernel $\left(x^{\prime}, k^{\prime}\right)$ of (x, k) is tight if $k^{\prime}=k$ and

$$
\forall h \leq k,\left(x^{\prime}, h\right) \text { is a YES } \Leftrightarrow(x, h) \text { is a YES }
$$

Let Φ s.t.

- \exists poly algorithm for total Φ-decomposition
- k-FAS has an $O(f(k))$ tight kernel on Φ.

Theorem

k-FAS has an $O(k \cdot f(k))$ kernel on totally Φ-decomposable digraphs

FAS on totally Φ-decomposable

- Totally decompose D : Get $D_{1}, \ldots, D_{p} \in \Phi$
- Find non-acyclic digraphs in the decomposition $D_{i_{1}}, \ldots, D_{i_{c}}$
- Output $\left(D_{i_{1}} \cup \ldots \cup D_{i_{c}}, k\right)$.

Key lemma

Given $D=Q\left[M_{1}, \ldots, M_{q}\right]$, there is a min fas $F=F_{1} \cup \ldots \cup F_{q} \cup F^{*}$ s.t. F_{i} is a min fas of M_{i} and F^{*} is a min fas of Q^{D}.

FAS on totally Φ-decomposable

```
\Phi}\mp@subsup{\mp@code{2}}{2}{={ Semicomplete \cup Acyclic \cup Round }
```


Corollary

There is an $O\left(k^{2}\right)$ kernel for k-FAS on totally Φ_{2}-decomposable digraphs

In particular for quasi-transitive or extended semicomplete or directed cographs or round decomposable.
In fact there is an $O(k)$ kernel for totally Φ_{2}-decomposable.

Theorem

There is an $O\left(n^{3} \cdot 2^{O(\sqrt{k} \log k)}\right)$ algorithm for k-FAS has on Isd.
An Isd is either

- Round decomposable= round + semicomplete, or
- Has vertex set partitionable into two tournaments

Theorem

There is an $O\left(n^{3} \cdot 2^{O(\sqrt{k} \log k)}\right)$ algorithm for k-FAS has on Isd.
An Isd is either

- Round decomposable= round + semicomplete, or
- Has vertex set partitionable into two tournaments

First case: Round part is poly semicomplete part reduces to second case

Fast FAST+

Fix a random partition V_{1}, \ldots, V_{l} of $V . I=O(\sqrt{k})$.
Theorem (Alon, Lokshtanov, Saurabh)
$P\left(\right.$ "arcs of a fas of size $\leq k$ belong to different V_{i} 's ") \geq (2e) $)^{-\sqrt{k / 8}}$

Fast FAST+

Fix a random partition V_{1}, \ldots, V_{l} of $V . I=O(\sqrt{k})$.
Theorem (Alon, Lokshtanov, Saurabh)
P ("arcs of a fas of size $\leq k$ belong to different V_{i} 's ") \geq
$(2 e)^{-\sqrt{k / 8}}$

- Objective: Find a partition and a fas of size $\leq k$ with arcs belonging to different V_{i} 's.
- Expected number of iterations is $O\left(2^{\sqrt{k}}\right)$.
- Derandomize (use $\tilde{O}\left(2^{\sqrt{k}}\right)$ iterations)
$p=\left(a_{1}, \ldots, a_{l}\right), 0 \leq a_{i} \leq\left|V_{i}\right|$
Define $F A S(p)=\min$ fas of $D\langle p\rangle$.

$$
F A S(p)=\min _{i \in[\zeta]}\left(F A S\left(p-e_{i}\right)+d_{D\langle p\rangle}^{+}\left(v_{i, a_{i}}\right)\right)
$$

fast FAST+

$p=\left(a_{1}, \ldots, a_{l}\right), 0 \leq a_{i} \leq\left|V_{i}\right|$
Define $F A S(p)=$ min fas of $D\langle p\rangle$.

$$
F A S(p)=\min _{i \in[I]}\left(F A S\left(p-e_{i}\right)+d_{D\langle p\rangle}^{+}\left(v_{i, a_{i}}\right)\right)
$$

Do dynamic programming over a restricted table: size $O\left(n^{2} \cdot 2^{O(\sqrt{k} \log k)}\right)$.

Theorem

There is an $O\left(n^{3} \cdot 2^{O(\sqrt{k} \log k)}\right)$ algorithm for k-FAS on digraphs such that $V(D)=V_{1} \cup V_{2}, V_{1}, V_{2}$ semicomplete.

Open problems

Conjecture

There is a poly kernel for k-FAS on Isd

Problem

Is there a poly kernel for k-FAS on digraph with bounded independence number?

Open problems

Conjecture

There is a poly kernel for k-FAS on Isd

Problem

Is there a poly kernel for k-FAS on digraph with bounded independence number?

Problem

Is there a poly kernel for k-FAS (and thus k-FVS) on general digraphs?

