Fixed parameter tractability and kernels for feedback set problems on generalization of tournaments

Alessandro Maddaloni

University of Southern Denmark

LIRMM, February 7

Joint work with

Jørgen Bang-Jensen and Saket Saurabh

Problem (FVS (FAS))

Given a digraph D, find a minimum $F \subset V(D)$ ($F \subset A(D)$) s.t. D - F is acyclic?

It is known that Both problems are NP-complete (even if restricted to tournaments).

Problem (FVS (FAS))

Given a digraph D, find a minimum $F \subset V(D)$ ($F \subset A(D)$) s.t. D - F is acyclic?

It is known that Both problems are NP-complete (even if restricted to tournaments).

Problem (Parametrized feedback set problems)

Given D and $k \in \mathbb{N}$, is there $F \subset V(D)$ ($F \subset A(D)$) s.t. $|F| \le k$ and D - F is acyclic?

Theorem (Chen,Liu,Lu,O'Sullivan,Razgon)

Parametrized FVS (and thus FAS) is FPT.

Problem

Given D and $k, g \in \mathbb{N}$, is there $F \subset V(D)$ s.t. $|F| \le k$ and g(D - F) > g?

Problem

Given D and $k, g \in \mathbb{N}$, is there $F \subset V(D)$ s.t. $|F| \le k$ and g(D - F) > g?

A sunflower with *h* petals is a collection of sets $S_1, ..., S_h$ s.t. $\forall i \neq j \ S_i \cap S_j = Y$.

Lemma (Erdös-Rado)

Among $d!k^d$ sets of size $\leq d$ there is a sunflower with k + 1 petals.

Theorem

The previous problem has an $O(g \cdot g! \cdot k^g)$ kernel.

Proof sketch.

- Make a list $\mathcal F$ of all the cycles of length $\leq g$
- For every sunflower with > k + 1 petals in *F*. Delete one of the petals. (If the Y = Ø answer NO)
- If no sunflower is found there are O((k + 1)^g · g!) sets.
 Output the digraph induced by all the edges of the sets (size O(k^g · g! · g)).

• D acyclic iff $g(D) > 2\alpha(D) + 1$.

Corollary

k-FVS has an $O(k^{2\alpha+1})$ kernel for digraph with independence number α , (in particular $O(k^3)$ for tournaments)

Modules

H an induced subdigraph of D is a module if

$$\forall a, b \in V(H), v \in V(D \setminus H) \quad \mu(va) = \mu(vb), \ \mu(av) = \mu(bv).$$

(If D is simple, we simply say that every vertex of H must have the same in and out neighborhood)

D is decomposable if \exists partition of *V* into modules $H_1, ..., H_s$, $s \ge 2$. We write $D = S[H_1, ..., H_s]$, where *S* is the adjacency (or quotient) digraph of $H_1, ..., H_s$.

D is decomposable if \exists partition of *V* into modules $H_1, ..., H_s$, $s \ge 2$. We write $D = S[H_1, ..., H_s]$, where *S* is the adjacency (or quotient) digraph of $H_1, ..., H_s$.

D is decomposable if \exists partition of *V* into modules $H_1, ..., H_s$, $s \ge 2$. We write $D = S[H_1, ..., H_s]$, where *S* is the adjacency (or quotient) digraph of $H_1, ..., H_s$.

 Φ class of digraphs. *D* is totally Φ -decomposable if either $D \in \Phi$ or $D = S[H_1, ..., H_s]$, with $S \in \Phi$ and H_i totally Φ -decomposable, i = 1, ..., s. The digraph in the figure is totally Φ -decomposable with $\Phi = P_3 \cup C_3 \cup P_1$

Round digraphs

• *D* is round if we can label its vertices $v_1, ..., v_n$ so that $\forall i$, $N^+(v_i) = \{v_{i+1}, ..., v_{i+d^+(i)}\}$ and $N^-(v_i) = \{v_{i-d^-(i)}, ..., v_{i-1}\}.$

Round digraphs

- *D* is round if we can label its vertices $v_1, ..., v_n$ so that $\forall i$, $N^+(v_i) = \{v_{i+1}, ..., v_{i+d^+(i)}\}$ and $N^-(v_i) = \{v_{i-d^-(i)}, ..., v_{i-1}\}.$
- *D* is round decomposable if $D = R[H_1, ..., H_r]$, where *R* is a round digraph and $H_1, ..., H_r$ are semicomplete digraphs.

Observation

FVS is poly on round digraphs (One among $(N^+(v), N^-(v))_{v \in V}$ must be killed, and it is enough)

Theorem

k-FVS has an $O(k^3)$ kernel on round decomposable digraphs.

- **1** Decompose $D = R[H_1, ..., H_r]$.
- Find non-trivial modules K₁, , , , K_h and kernelize each of them (keep the size > k if it was before)
- 3 Find a min FVS *M* for *Q*.
- Keep M the K_i's kernels and the 2k modules around them (k left and k right).
- **(3)** Contract the gaps into I_{k+1} .

Locally semicomplete digraphs (LSD): $\forall x \in V, N^+(x), N^-(x)$ are semicomplete :

Theorem (Guo)

- A connected LSD is either
 - round decomposable, or
 - Every cycle induces a cycle on \leq 4 vertices.

Theorem

k-FVS has an $O(k^4)$ kernel on LSD.

We say that a kernel is virgin if it contains all minimal solutions Let Φ be s.t.

- \exists poly algorithm to find total Φ -decomposition
- k-FVS has an O(f(k)) virgin kernel on Φ .

Theorem

k-FVS has a $O(k \cdot f(k))$ kernel on totally Φ -decomposable digraphs.

- **1** Decompose $D = Q[M_1, ..., M_q]$
- Find recursively virgin kernels K₁, ..., K_h for the cyclic modules.
- 3 4

- Decompose $D = Q[M_1, ..., M_q]$
- Find recursively virgin kernels K₁, ..., K_h for the cyclic modules.
- **③** Find a virgin kernel K for Q.
- 4

- Decompose $D = Q[M_1, ..., M_q]$
- Find recursively virgin kernels K₁, ..., K_h for the cyclic modules.
- 3 Find a virgin kernel K for Q.
- **Output** $(K \cup \bigcup_{K_i \not \lhd K} K_i, k)$.

- If YES, then O(k) kernels recursively constructed.
- KERNEL \subset ORIGINAL DIGRAPH
- VIRGINITY \Rightarrow (YES KERNEL \leftrightarrow YES ORIGINAL)

Quasi-transitive digraphs

Quasi-transitive digraphs: $xy, yz \in A$ implies that $zx \in A$ or $xz \in A$:

Theorem (Bang-Jensen and Huang)

D be quasi-transitive, then either

- $D = T[H_1, ..., H_t]$, T acyclic and $H_1, ..., H_t$ (strong) quasi-transitive, or
- D = S[Q₁, Q₂,..., Q_s], S semicomplete and Q₁,..., Q_s (non-strong) quasi-transitive.

Quasi-transitive digraphs

Observation

Quasi-transitive are totally Φ_1 *-decomposable, where*

 $\Phi_1 = \{ \textit{ Semicomplete } \cup \textit{ Acyclic } \}$

Observation

Quasi-transitive are totally Φ_1 -decomposable, where

 $\Phi_1 = \{ \textit{ Semicomplete } \cup \textit{ Acyclic } \}$

Observation

There is a virgin $O(k^3)$ kernel for FVS on Φ_1

Theorem

FVS has an $O(k^4)$ kernel on quasi-transitive digraphs.

Observation

Quasi-transitive are totally Φ_1 -decomposable, where

 $\Phi_1 = \{ \textit{ Semicomplete } \cup \textit{ Acyclic } \}$

Observation

There is a virgin $O(k^3)$ kernel for FVS on Φ_1

Theorem

FVS has an $O(k^4)$ kernel on quasi-transitive digraphs.

We hit also other classes:

- Directed cographs
- 2 Extended semicomplete digraphs

Observation (Speckenmeyer)

A $2^{o(k)}$ algorithm for k-FAS is unlikely to exist

Observation (Speckenmeyer)

A $2^{o(k)}$ algorithm for k-FAS is unlikely to exist

Theorem (Bessy, Fomin, Gaspers, Paul, Perez, Saurabh, Thomassé)

There is an O(k) kernel for k-FAS on tournaments (semicomplete digraphs).

Theorem (Alon, Lokshtanov, Saurabh)

There is a $2^{o(k)}$ algorithm for k-FAS on tournaments (semicomplete digraphs). (Best complexity $n^{O(1)}2^{O(\sqrt{k})}$ by Feige).

A kernel (x', k') of (x, k) is tight if k' = k and

 $\forall h \leq k, \ (x', h) \text{ is a YES} \Leftrightarrow (x, h) \text{ is a YES}$

Let Φ s.t.

- ∃ poly algorithm for total Φ-decomposition
- k-FAS has an O(f(k)) tight kernel on Φ.

Theorem

k-FAS has an $O(k \cdot f(k))$ kernel on totally Φ -decomposable digraphs

- Totally decompose D: Get $D_1, ..., D_p \in \Phi$
- Find non-acyclic digraphs in the decomposition $D_{i_1}, ..., D_{i_c}$
- Output $(D_{i_1} \cup \ldots \cup D_{i_c}, k)$.

Key lemma

Given $D = Q[M_1, ..., M_q]$, there is a min fas $F = F_1 \cup ... \cup F_q \cup F^*$ s.t. F_i is a min fas of M_i and F^* is a min fas of Q^D .

$\Phi_2 = \{ \text{ Semicomplete } \cup \text{ Acyclic } \cup \text{ Round } \}$

Corollary

There is an $O(k^2)$ kernel for k-FAS on totally Φ_2 -decomposable digraphs

In particular for quasi-transitive or extended semicomplete or directed cographs or round decomposable. In fact there is an O(k) kernel for totally Φ_2 -decomposable.

Theorem

There is an $O(n^3 \cdot 2^{O(\sqrt{k} \log k)})$ algorithm for k-FAS has on lsd.

An Isd is either

- Round decomposable= round + semicomplete, or
- Has vertex set partitionable into two tournaments

Theorem

There is an $O(n^3 \cdot 2^{O(\sqrt{k} \log k)})$ algorithm for k-FAS has on lsd.

An Isd is either

- Round decomposable= round + semicomplete, or
- Has vertex set partitionable into two tournaments First case: Round part is poly semicomplete part reduces to second case

Fix a random partition $V_1, ..., V_l$ of V. $l = O(\sqrt{k})$.

Theorem (Alon, Lokshtanov, Saurabh)

P("arcs of a fas of size $\leq k$ belong to different V_i 's ") $\geq (2e)^{-\sqrt{k/8}}$

Fix a random partition $V_1, ..., V_l$ of V. $l = O(\sqrt{k})$.

Theorem (Alon, Lokshtanov, Saurabh)

P("arcs of a fas of size $\leq k$ belong to different V_i 's ") $\geq (2e)^{-\sqrt{k/8}}$

- Objective: Find a partition and a fas of size < k with arcs belonging to different V_i's.
- Expected number of iterations is $O(2^{\sqrt{k}})$.
- Derandomize (use $\tilde{O}(2^{\sqrt{k}})$ iterations)

 $p = (a_1, ..., a_l), 0 \le a_i \le |V_i|$ Define $FAS(p) = \min$ fas of $D\langle p \rangle$.

$$\mathit{FAS}(p) = \min_{i \in [I]} (\mathit{FAS}(p - e_i) + d^+_{D\langle p \rangle}(v_{i,a_i}))$$

 $p = (a_1, ..., a_l), 0 \le a_i \le |V_i|$ Define FAS(p) = min fas of $D\langle p \rangle$.

$$\mathit{FAS}(p) = \min_{i \in [I]}(\mathit{FAS}(p - e_i) + d^+_{D\langle p \rangle}(v_{i,a_i}))$$

Do dynamic programming over a restricted table: size $O(n^2 \cdot 2^{O(\sqrt{k} \log k)})$.

Theorem

There is an $O(n^3 \cdot 2^{O(\sqrt{k} \log k)})$ algorithm for k-FAS on digraphs such that $V(D) = V_1 \cup V_2$, V_1 , V_2 semicomplete.

Conjecture

There is a poly kernel for k-FAS on Isd

Problem

Is there a poly kernel for k-FAS on digraph with bounded independence number?

Conjecture

There is a poly kernel for k-FAS on Isd

Problem

Is there a poly kernel for k-FAS on digraph with bounded independence number?

Problem

Is there a poly kernel for k-FAS (and thus k-FVS) on general digraphs?